Al_2(WO_4)_3粉体和薄膜的制备及其热膨胀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负热膨胀(Negative thermal expansion,简称NTE)材料研究是材料科学中近年来新兴的学科分支,负热膨胀性金属氧化物具有负热膨胀系数大、响应温度范围宽等特点,在制造生产、航空航天及日常生活等方面有巨大的潜在应用价值。其中Al_2(WO_4)_3材料在较宽温度范围内具有负热膨胀特性,制备过程较简单,在高温高压下保持稳定,是性能优良的负热膨胀材料。本文围绕着Al_2(WO_4)_3粉体和薄膜的合成及其负热膨胀特性开展了相关的研究工作。
     在本文中,Al_2(WO_4)_3粉体的制备采用两种方法:(1)以Al_2O_3和WO_3为原料,采用固相反应法制备Al_2(WO_4)_3粉体,工艺过程为把Al_2O_3粉体和WO_3粉体以1:3的比例混合球磨,烘干压片后在1000℃烧结30h,冷却后得到Al_2(WO_4)_3粉体;(2)以硝酸铝[Al(NO_3)_3·9H_2O]和钨酸铵[N_5H_(37)W_6O_(24)·H_2O]为原料,采用共沉淀法制备Al_2(WO_4)_3粉体,工艺过程为把硝酸铝和钨酸铵按一定的摩尔比混合搅拌,出现白色沉淀,烘干后得到Al_2(WO_4)_3前驱体,把此前驱体在800℃烧结10h得到Al_2(WO_4)_3粉体。
     在本文中,Al_2(WO_4)3薄膜采用Al_2O_3和WO_3双靶交替射频磁控溅射法制备,沉积的薄膜在1000℃热处理10min可得到Al_2(WO_4)_3薄膜。
     对固相法制得的Al_2(WO_4)_3粉体和沉淀法制得的Al_2(WO_4)_3前驱体进行热重—差热(TG-DSC)分析,考察Al_2(WO_4)_3粉体的热稳定性和前驱体的热力学性质;以X射线衍射仪(XRD)对所得粉体和薄膜进行分析,考察其结构组成;以扫描电子显微镜(SEM)和透射电子显微镜(TEM)对粉体和薄膜进行表征,考察粉体的颗粒形貌和薄膜的表面形貌。利用变温X射线衍射仪精确收集粉体和薄膜在不同温度下的XRD数据,分别计算其在不同温度下的晶胞参数,进而计算其热膨胀系数。把两种方法制得的粉体压制烧结成圆柱试样,用NETZSCH热膨胀仪分别测定试样的热膨胀性能,计算试样的热膨胀系数。
     结果表明,采用固相反应法和共沉淀法都制得了纯度极高的Al_2(WO_4)_3粉体,固相法制得的粉体颗粒呈长方形和椭圆形,平均尺寸大小为0.6×0.4μm,共沉淀法制得的粉体颗粒呈椭圆形,平均尺寸大小为0.2×0.1μm。两者的晶胞参数都表现出各向异性的热膨胀特性,其中a、c两轴随温度的升高而收缩,表现为负热膨胀性,b轴随温度的升高表现出强烈的正热膨胀性。两种粉体烧结试样的热膨胀性表现有差异,从室温到900℃,固相法的表现为负热膨胀,而沉淀法的在室温到520℃表现出一定的正膨胀性,520~900℃表现出较强的负膨胀性;两者的平均热膨胀系数分别为-1.56×10~(-6)K~(-1)和-1.13×10~(-6)。Al_2(WO_4)_3粉体热性能稳定,室温到其熔点范围内,不分解,无相变。
     采用磁控溅射法经后热处理制得了纯的Al_2(WO_4)_3薄膜,薄膜有择向生长性,在基体上分布均匀。薄膜的晶胞参数也表现出各向异性的热膨胀特性,但与粉体相比,薄膜的a、c轴的负热膨胀性表现不稳定,b轴也呈现出正热膨胀性。
Negative thermal expansion (NTE) material becomes a new branch of materials science in recent years. The NTE dysphasia have the characteristic of large coefficient of NTE and wide range of response temperature. Their potential uses in products, voyage and livelihood vastly. As one kind of the NTE material, Al(WO) have NTE capability in large range of temperature. The synthesis of Al(WO) is simple and it retain stability at high temperature and stress, so it is good NTE material. Due to the strange properties and potential applications of Al(WO), the synthesis of Al(WO) powders and thin-film and the NTE property were studied in this paper.
     Two methods were used to synthesize the powders in this paper. The one, Al(WO) powders were prepared using the solid state reaction. AlO and WO powders, which were used as raw materials, were mixed at 1:3 ratios and milled, and then sintered at 1000℃for 30h to prepare Al(WO) powders. The other, Al(WO) powders were also synthesized using co-precipitation method. In this method, Al(NO)·9HO and NHWO·HO, which were used as raw materials, were mixed at certain ratios and stirred, and then they produced the white sedimentations which were sintered at 800℃for 10h to prepare Al(WO) powders.
     In this paper, the Al(WO) film were prepared using two-butt-rotating magnetron sputtering method by ZrO and WO which were used as butts. The heat treatment temperature was 1000℃and the time was 10min.
     The Al(WO) powders which were synthesize by solid state method and the precursors of Al(WO) which were synthesize by co-precipitation method were studied by Thermo gravimetric and differential scanning calorimetric (TG-DSC), and it used to research heat stability of Al(WO) powders and thermodynamic property of the precursors. The structure of the powders and thin film was studied by Powder X-ray diffraction (XRD) and the morphology of the resulting powders and thin film was characterized by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The negative thermal expansion coefficient was calculated using the lattice constants obtained by the data collected at different temperatures by in Situ X-ray measurement. The thermal expansion characteristic of column sample, which was sintered by the powders of two method, was determinate by NETZSCH thermal expansion instrument and the coefficient of thermal expansion was calculated using the resulting data.
     The results showed that pure Al(WO) powders were synthesized by both solid state method and co-precipitation method. The granule of Al(WO) powders by solid state method was rectangle and ellipse and the average size was 0.6×0.4μm. The granule of Al(WO) powders by co-precipitation method was ellipse and the average size was 0.2×0.1μm. The lattice constants of powders by two method both showed anisotropic thermal expansion characteristic. The a and c axis showed NTE character that shrink when temperature rose. The b axis showed strong positive thermal expansive character when temperature rose. The macro performance of thermal expansion that were showed by the powders synthesized by two method was difference. The powders synthesized by solid state method showed NTE at the range of room temperature to 900℃. The powders synthesized by co-precipitation method first showed positive thermal expansion at the range of room temperature to 520℃and then showed NTE at the range of 520℃to 900℃. The average coefficient of thermal expansion of the powders by two method were-1.56×10Kand-1.13×10K respectively. The Al(WO) powders was no decomposition and no phase transition in the range of room temperature to melting point.
     The pure Al(WO) thin-film was synthesized by magnetron sputtering method and the growth of film showed the character of pick-direction. The film well distribute on the matrix. The lattice constants of thin-film also showed anisotropic thermal expansion characteristic. However, compared to powders, the negative thermal expansion character of a and c axis was not stabilization and the b axis also showed positive thermal expansive character.
引文
[1] 关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1998,119-138.
    [2] 谭强强,张中太,方克明.复合氧化物负热膨胀材料研究进展[J].功能材料,2003,4(34):353-356.
    [3] 曾竟成,罗清,唐羽章.复合材料理化性能[M].长沙:国防大学出版社,1998,156-159.
    [4] Heine V, Patrick RL, Martin T W. Geometrical Origin and Theory of Negative Thermal Expansion in Framework Structures [J]. J.Am. Ceram. Soc., 1999, 82(7):1793-1802.
    [5] 田莳.材料物理性能[M].北京:北京航空航天大学出版社,2001:196-198.
    [6] Bussem W, Bluth M, Grochmann G. [J]. I Ber Dsch Kerarn Ges, 1935,16:381-392.
    [7] Wdght A F, Leadbettrt A J. [J]. Philos. Mag., 1975,31:1391.
    [8] Hummel F A. Thermal Expansion Properties of Some Synthetic Lithia Minerals [J]. J. Am. Ceram. Soc., 1951, 34(8):235-239.
    [9] Korthuis V, Khosrovani N, Sleight A W, et al. Negative Thermal Expansion and Phase Transition in the ZrV_(2-x)P_xO_7 Series [J]. Chem. Mater., 1995,7:412-417.
    [10] Sleight A W, Mary T A, Evans J S O. Negative Thermal Expansion Materials [P]. U S A, Patent: No.5514360, May 7,1995.
    [11] Mary T A, Evans J S O, Sleight A W, et al. Negative thermal expansion from 0.3 to 1050K in ZrW_2O_8 [J]. Science, 1996, 272:90-92.
    [12] EvansJ.S.O., Mary T.A., Sleight A.W., Negative thermal expansion in a large molybdate and tungstate family [J]. Solid State Chem., 1997,133:580-583.
    [13] Khosrovani N, Sleight AW. Structure of ZrV_2O_7 from-263 to 470℃ [J]. J. Solid State Chem., 1997,132:355-369.
    [14] Evans J S O, Mary T A, Sleight A W. Negative Thermal Expansion in Sc_2(WO_4)_3 [J]. J.Solid State Chem., 1998,137:148-160.
    [15] Forster P M, Yokochi A, Sleight A W. Enhanced Negative Thermal Expansion in Lu_2W_3O_(12)[J]. J.Solid State Chem., 1998,140:157-158.
    [16] Cora L, Angus P W, Hu Zhongbo, et al. Synthesis and Properties of the Negative Thermal Expansion Material Cubic ZrMo_2O_8[J]. Chem. Mater., 1998, 10(9):2335-2337.
    [17] David A W, Philip L, Lius A V, et al. Negative Thermal Expansion in the Siliceous Zeolites Chabazite and ITQ-4: A Neutron Powder Diffraction Study [J]. Chem. Mater., 1999,11(9):2508-2514.
    [18] 赵淑华.热致收缩化合物[J].化学通报,1998,11:19-24.
    [19] 王聪,王天民,沈容,梁敬魁.新型负热膨胀氧化物材料的研究[J].物理学报,2001(12):772-777.
    [20] Fleming D A, Johnson D W, Lemaire P J. [P].U S APatent:No.5694503,Dec.2,1997
    [21] Verdon C, Dunand D C. High-temperature reactivity in the ZrW_2O_8-Cu system [J]. Scripta Materialia, 1997,36:1075-1078.
    [22] Holzer Hermann, Dunand D C. Phase transformation and thermal expansion of Cu/ZrW_2O_8 metal matrix composites [J]. J. Mater. Res., 1999,14:780-789.
    [23] 郑昌琼,冉军国.新型无机材料[M].北京:科学出版社.2003,14-20.
    [24] Evans J S O, et al. Negative thermal expansion materials [J]. J Chem Soe Dalton Trans, 1999,19:3317-3322.
    [25] A New Three-Dimensional Incommensurately Modulated Cubic Phase and Its Symmetry Characterization via Temperature-Dependent Electron Diffraction [J]. Journal of Solid State Chemistry, 2001,157:186-192
    [26] Evans J S O, Hanson J C, Sleight A W. Room-temperature superstructure of ZrV_2O_7 [J]. Acta. cryst., 1998,54:705-713.
    [27] Pryde Alexandra K A, Hammonds Kenton D, Dove Martin T, et al. Origin of the negative thermal expansion in ZrW_2O_8 and ZrV_2O_7[J]. J. Phys. Condens. Marret, 1996,8:10973-10982.
    [28] Pryde Alexandra K A, Hammonds Kenton D, Dove Martin T, et al. Simulation studies of ZrW_2O_8 at high pressure [J]. J. Phys. Condens. Marret, 1998,10:8417-8421.
    [29] Sleight A W. Isotropic Negative Thermal Expansion [J]. Annu. Rev. Mater. Sci., 1998,28:29-43.
    [30] Khosrovani N, et al. Unusual 180° P-O-P Bond Angles in ZrP_2O_7 [J]. Inorg. Chem., 1996,35:485-489.
    [31] Evans J S O, Jorgensen J D, Short S, et al. Thermal expansion in the orthorhombie γ-phase of ZrW_2O_8 [J]. Phys. Rev. B, 1999,60(21):14643.
    [32] Hu Z, Jorgensen J D, Teslic S, Short S, et al. Pressure-induced phase transformation in ZrW_2O_8-compressibility and thermal expansion of the orthorhombic phase [J]. Phisca B, 1998,241-243:370-372.
    [33] 李钢,姚杰,王克宇等.一种负热膨胀性材料的物相结构分析[J].南京师大学报(自然科学版),2000(1):56-59.
    [34] 孔向阳,吴建生,曾振鹏.ZrW_2O_8微波合成、表征及负热膨胀行为研究[J].1999,3(27):265-269.
    [35] Lind C, Vanderveer D G, Wilkinson A P, et al. New high-pressure form of the negative thermal expansion material zirconiun tungstate and hafnium molybdate [J]. Chem. Mater., 2001,13:487-490.
    [36] Muthu D V S, Chen B, Sleight A W, et al. ZrW_2O_8 and HfW_2O_8: Band Gap Shifts under Pressure [J]. Solid State Commu., 2002,122:25-28.
    [37] Sleight A W. Strong anisotropic thermal expansion in oxides [J]. Inter. J. of Inorg. Mater., 1999,1:3-10.
    [38] Kowach G R. Growth of Single Crystals of ZrW_2O_8[J]. J. Cryst. Growth, 2000,212:167-172.
    [39] Tao J Z, Sleight A W. The Role of Rigid Unit Modes in Negative Thermal Expansion [J]. J. Solid State Chem., 2003,173(2):442-448.
    [40] Evans J S O, Mary T A. Structural phase transitions and negative thermal expansion in Sc_2(MoO_4)_3 [J]. Inter. J. of Inorg. Mater., 2000,2:143-151.
    [41] Evans J S O, Mary T A, Vogt T, et al. negative thermal expansion in Zr and HfW_2O_8[J]. Chem. Mater., 1996, 8:2808-2823.
    [42] Woodcock D.A., Lightfoot P., Ritter C., Negative thermal expansion inY_2(WO_4)_3[J]. Solid State Chem., 2000,149:92-98.
    [43] Seo D K, Whangbo M H. Symmetric Stretching Vibrations of Two-coordinate Oxygen Bridges as a Cause for Negative Thermal Expansion in ZrV_xP_(2-x)O_7 and AW_2O_8 (A=Zr, Hf) at High Temperature [J]. J. Solid State Chem., 1997,129(1):160-163.
    [44] Evans J S O. Negative Thermal Expansion [J]. J. Chem.Soc., Dalton Trans., 1999:3317-3326.
    [45] 谭强强,方克明.复合氧化物材料的负热膨胀机理[J].耐火材料,2001,35(5):296-298.
    [46] Sleight A W. Compound that Contract on Heating [J]. Inorg. Chem., 1998,37:2854-2860.
    [47] Evans J S O, Mary T A, Sleight A W. Negative Thermal Expansion in a large Molybdate and Tungstate Famiy [J]. J. Solid State Chem., 1997,133:580-583.
    [48] Pryde A K A, Hammonds K D, Dove M T, et al. Rigid unitmodes and the negative thermal expansion in ZrW_2O_8[J]. Phas Trans. 1997, 61:141-143.
    [49] Yamamura Y, Nakjima N, Tsuji T. Heat capacity anomaly due to the α-to-β structural phase transition in ZrW_2O_8[J]. Solid State Commu., 2000,114:453-455.
    [50] 刑献然.氧化物材料负热膨胀机理[J].北京科技大学学报,2000,1(22):56-58.
    [51] Cao D, Bridges F, Kowach G R, et al. Frustrated Soft Modes and Negative Thermal Expansion in ZrW_2O_8[J]. Phys. Rev. Lett., 2002, 89(21): 215902-1-215902-4.
    [52] Karneswari U, Sleight A W, Evans J S O. Rapid Synthesis of ZrW_2O_8 and Related Phase, and Structure Ref'mement of ZrWMoO_8[J]. Inter. J. Inorg. Mater., 2000.2:333-337.
    [53] Withers R L, Evans J S O, Hanson J, et al. An in situ Temperature-dependent Electron and X-Ray Diffraction Study of Structural Phase Transition in ZrV_2O_7[J]. J. Solid State Chem., 1998,137(1):161-167.
    [54] Yamamura Y, Tsuji T, Saito K, et al. Heat Capacity and Order-disorder Phase Transition in Negative Thermal Expansion Compound ZrW_2O_8[J]. J. Chem. Thermodynamics, 2004,36:525-531.
    [55] Achary S N, Mukherjee G D, Tyagi A K, Vaidya S N. Preparation, thermal expansion, high pressure and high temperature behavior of Al_2(WO_4)_3[J]. Journal of Materials Science, 2002, 37:2501-2509.
    [56] Imanaka N, Tamura S, Hiraiwa M, et al. Tdvalent aluminum on conducting characteristics in Al_2(MO_4)_3 single crystals [J]. Chem Mater, 1998, 10(9):2542-2545.
    [57] Kohler J, lmanaka N. New action conducting solid electrolytes with the Sc_2(WO_4)_3 type structure [J]. J Materials Chemistry, 1999, 9:1357-1362.
    [58] D.C. Craig, N.C. [J]. Stephenson. Acta Crystal, 1968,24:1250-1255.
    [59] Imanaka N., Hiraiwa M., Adachi et al, Thermal contraction behavior in Al_2(WO_4)_3 single crystal [J]. J of Crystal Growth, 2000, 220: 176-179.
    [60] A. Dabkowski, H. Dabkowska, J. E. Greedan, N. Imanaka, M. Hiraiwa, S. Tamura, G. Adachi, Crystal growth of aluminum tungstate Al2(WO4)3 by the Czochralski method from nonstoichiometric melt [J]. J. Crystal Growth, 1999, 197: 879-882.
    [61] Evans J S O, Hu Z, Jorgensen J D, et al. Compressibility, phase transitions, and oxygen migration in zirconium tungstate ZrW2Os [J]. Science, 1996, 275: 61-65.
    [62] Perottoni C A, Jornada J A da. Pressure induced amorphization and negative thermal expansion in ZrW_2O_8 [J]. Science, 1998, 280: 886-889.
    [63] 刘海涛,杨郦,张树军等.无机材料合成[M].北京:化学工业出版社,2003,P127-133.
    [64] 罗静卿,赵新华,周固.微乳液法制备纳米Al_2(WO_4)_3[J].北京师范大学学报(自然科学版),2004,40(5):655-659.
    [65] 熊兆贤等.无机材料研究方法[M].厦门:厦门大学出版社.2001,3-17,268-269,392-395.
    [66] 杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,2000.21-23.
    [67] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:124-138,279-280.
    [68] 张立德.超微粉体制备与应用技术[M].北京:中国石化出版社.2001,139-145.
    [69] 田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006,215-218.
    [70] 吴丽君.发展中的溅射靶材[J].真空科学与技术.2001(4):342-347.
    [71] 李艳红,李建立,刘景和.φ100mmY系高温超导靶材及制备工艺[J].长春光学精密机械学院学报.2001(1):8-11.
    [72] J. L. Vossen. Contamination in Films Sputtered from Hot-Pressed Targets [J]. The Journal of Vacuum Science and Teehonology, 1972, 6(8): 751-752.
    [73] 周俊彪,吴建生,杨于兴.铝合金阳极氧化薄膜热膨胀性能测试分析[J].上海交通大学学报,1998,2(32):53-56.
    [74] 罗庆芳,郭述文,唐琳.薄膜内应力与温度特性的研究[J].微电子科学与计算机,1997,4:5-7.
    [75] 沈为,彭立华,李伟等.用热弯实验方法决定导电薄膜的热膨胀系数[J].复合材料学报,2001,18(2):91-92.
    [76] 刘军海,苏启生,陆明珠.亚微米级膜层热膨胀系数测量方法研究[J].表面技术1994,23(6):272-275.
    [77] Birringer R, Gleiter H, Adv. in Mater. Sci. in: Cahn R W. Encyclopedia of Mater. Sci. And Eng. Oxfod: Pergamin Press, 1988: 339-342.
    [78] Klam H J, Hahn H, Gleiter H. The Thermal Expansion of Grain boundaries [J]. Acta Metall., 1987, 35: 2101-2104.
    [79] Cullity BD. Elements of X-ray diffraction. 2nd ed. Reading, Ma: Addison-wesley, 1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700