纤维高性能混凝土筒体构件高温性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道火灾具有升温剧烈、温度高的特点,严重威胁人民生命和财产的安全。对于隧道衬砌结构的耐火性能设计,一方面需要考虑高温造成的材料性能劣化,另一方面还要考虑剧烈升温导致的温度应力,衬砌的严重变形和开裂同样危害隧道的安全性。有鉴于此,本文针对纤维高性能混凝土筒体在高温冲击下的性能,结合国家自然科学基金项目:纤维混凝土/喷射混凝土在循环高温作用下的力学性能(50278013),主要包括以下内容:
     1、进行了纤维高性能混凝土工作性的试验研究。研制了具有较高工作性的高性能混凝土;分析了不同类型及掺量的钢纤维、聚丙烯纤维和混杂纤维对高性能混凝土振前、振后坍落流动度的影响,聚丙烯纤维和混杂纤维对高性能混凝土的工作性有显著的降低作用,但可通过少量振动加以缓解;以保证筒体浇筑的顺利完成。
     2、对高温前后纤维高性能混凝土的抗压强度和弹性模量进行了试验研究。PP纤维对400℃高温后抗压强度的影响较明显;高温对混凝土弹性模量的影响大于抗压强度。
     3、在总结普通混凝土热工性能的基础上,对高温下纤维高性能混凝土的热膨胀性能进行了试验研究。研究表明,混杂纤维可明显减小高性能混凝土的热膨胀变形,为实际工程使用混杂纤维降低混凝土结构在高温冲击下的温度应力提供了依据。给出了纤维高性能混凝土高温下自由热应变的计算式和平均热膨胀系数,可作为相应结构高温行为分析的计算参数。
     4、针对隧道火灾的高温冲击特点,自行设计了明火高温试验系统并改装了高温位移传感器,研制出适合进行筒体耐高温冲击性能研究的明火高温试验系统。研究了高温冲击下筒体温度场、变形的特点和变化规律:结合温度应力的有限元计算,研究了温度、变形和应力之间的关系;给出了开裂前筒外壁径向位移的简化计算式。
     5、分析了不同纤维对筒体高温变形及高温后筒外壁裂缝形态的影响,混杂纤维可限制筒体的高温变形,减小高温后的裂缝宽度,使高温后筒体的裂缝分布“多、细、密”,因而可提高筒体的耐高温冲击性能。
     6、确定高温(火灾)时混凝土构件内部的温度场是研究构件及结构高温力学行为的基础。基于试验结果,应用ANSYS软件对筒壁的瞬态温度场进行了有限元分析,同时探讨了选取不同热工参数及对流换热系数对计算结果的影响。
     7、以温度场分析为基础,对高温冲击下筒壁开裂前的变形和温度应力进行了有限元分析,总结了筒壁温度应力分布及其随温度的变化规律,分析了筒壁开裂时的应力状态。
Tunnel fire has the character of temperature rising up rapidly and highly, which may severely damage safety of people's lives and properties. For designing fire-resistant performance of tunnel lining, deteriorations of materials due to high temperature are needed to consider on one hand, while thermal stress due to temperature rising-up acutely should also be considered on the other hand. Safety of tunnel is also decreased by severe deformation and cracking of lining structure. For this reason, aiming at the behaviours of Fiber Reinforced High Performance Concrete (FRHPC) pipes under high temperature impact, based on the project of National Nature Science Foundation, Investigation on Bearing Capacity of Fiber Reinforced Concrete/Shotcrete under the Repeated High Temperature (No. 50278013), the following researches are presented in this thesis:
     1. Test on workability of FRHPC are carried out. High Performance Concrete (HPC) with high workability is developed. The influences of steel fiber, PP fiber and hybrid fiber with different type and content on the Slump-Flow of HPC before and after vibrating are analyzed. PP fiber and hybrid fiber have remarkable effects on decreasing the workability of HPC, but with slightly vibrating the effects can be mitigated. Casting pipe successfully is ensured.
     2. Test on compressive strength and elastic modulus of FRHPC before and after high temperature are carried out. PP fiber has clear effect on the compressive strength after high temperature of 400℃. The influence of high temperature on elastic modulus is greater than on compressive strength.
     3. Based on summarizing thermal properties of Normal Concrete (NC), test on thermal expansion property of FRHPC under high temperature are carried out. Hybrid fiber can clearly reduce the thermal expansion of HPC, which provides support for engineering practice of using hybrid fiber to decrease thermal stress of concrete structure under high temperature impact. The formulae of free thermal strain and the average thermal expansion coefficients of FRHPCs under high temperature are presented, which can be calculation parameters when analyzing high temperature behaviour of relevant structure.
     4. Based on the character of temperature rising-up rapidly and highly in tunnel fire, a fire-simulated high temperature test system, which is suit for researching pipe's performance of resisting high temperature impact, is developed. Pipe' features and changing laws of temperature and deformation under high temperature impact are investigated. Based on FE solution of thermal stress, the relationship between temperature, deformation and stress is analyzed. Simplified formula for calculating radial displacement of pipe's outer-side layer before cracking is presented.
     5. The influence of different fibers on pipe's deformation under high temperature and cracking manner after high temperature is analyzed. Hybrid fiber restricted pipe's deformation under high temperature, reduced crack width after high temperature, also made pipe's crack distribution "more, thin and dense" after high temperature, so can improve pipe' s performance of resisting high temperature impact as a result.
     6. Analyzing temperature field inside concrete member under high temperature/fire is the precondition for investigating high-temperature mechanical bahaviour of members and structures. Based on test data, using ANSYS, FE analysis on transient temperature field of pipe is carried out, and the effects of choosing different thermal properties and convection coefficients on the solution are discussed at the same time.
     7. Based on temperature field analysis, FE analysis on pipe's deformation and thermal stress before cracking under high temperature impact is carried out. Distribution and law of thermal stress changing with temperature is summarized, and stress state of pipe shell when cracking is analyzed.
引文
[1]范进,吕志涛.混凝土结构抗火研究的主要内容.建筑技术,1999,30(5):319-320.
    [2]Kirkland C J.The fire in the Channel Tunnel.Tunnelling and Underground Space Technology,2002,17:129-132.
    [3]Heel A.Untersuchungen zum Abplatzverhalten von Faser-und Stahlbeton:(Diplomarbeit fuer Diplom-Ingenieur).Innsbruck:University of Innsbruck,2003.
    [4]Leitner A.The fire catastrophe in the Tauern Tunnel:experience and conclusions for the Austrian guidelines.Tunnelling and Underground Space Technology,2001,16:217-223.
    [5]Savoy K,Lackner R,Mang H A.Stability assessment of shallow tunnels subjected to fire load.Fire Safety Journal,2005,40:745-763.
    [6]王明年,杨其新,袁雪戡等.公路隧道火灾温度场的分布规律研究.地下空间,2003,23(3):317-322.
    [7]洪丽娟,刘传聚.隧道火灾研究现状综述.地下空间与工程学报,2005,1(1):149-155.
    [8]曾艳华,何川,关宝树.火灾时隧道内温度场的模拟研究.地下空间,2004,24(1):69-71.
    [9]Loennermark A,Ingason H.Gas temperatures in heavy goods vehicle fires in tunnels.Fire Safety Journal,2005,40:506-527.
    [10]Carvel R O,Beard A N,Jowitt P W et al.Variation of heat release rate with forced longitudinal ventilation for vehicle fires in tunnels.Fire Safety Journal,2001,36:569-596.
    [11]Carvel R O,Beard A N,Jowitt P W.The influence of longitudinal ventilation systems on fires in tunnels.Tunnelling and Underground Space Technology,2001,16:3-21.
    [12]梅志荣,韩跃.隧道结构火灾损伤评定与修复加固措施的研究.世界隧道,1999,(4):9-14.
    [13]杨寒冰,田世文,杨思忠.预制盾构管片高性能混凝土的研究和应用.混凝土与水泥制品,2006,(4):31-33.
    [14]蔡亚宁,乔中胜.北京地铁五号线预制盾构管片的高性能混凝土研究.现代隧道技术,2005,42(1):20-25.
    [15]晏浩,朱合华,傅德明.钢纤维混凝土在盾构隧道衬砌管片中应用的可行性研究.同济大学地下建筑与工程系,2000,(1):13-16,20.
    [16]吴鸣泉.钢纤维砼盾构管片在地铁隧道工程的应用研究.广东建材,2004,(3):6-8.
    [17]鞠丽艳.地铁隧道复合纤维混凝土管片新技术.混凝土,2004,(8):69-71.
    [18]王明年,杨其新,袁雪戡等.公路隧道火灾温度场的分布规律研究.地下空间,2003,23(3):317-322.
    [19]曾艳华,何川,关宝树.火灾时隧道内温度场的模拟研究.地下空间,2004,24(1):69-71.
    [20]张发勇,冯炼.终南山特长公路隧道火灾通风数值模拟分析.地下空间,2004,24(4):506-509.
    [21]王泽宇,冯炼,张发勇.竖井烟囱效应作用下的隧道火灾通风数值模拟.地下空间与工程学 报,2006,2(3):485-487,503.
    [22]赵志斌.火灾作用下长江隧道衬砌结构温度场和温度应力研究:(硕士学位论文).武汉:武汉理工大学,2006.
    [23]赵国藩.混凝土及其增强材料的发展与应用.建筑材料学报,2000,3(1):1-6.
    [24]H索默.高性能混凝土的耐久性,北京:科学出版社,1998.
    [25]冯乃谦.高性能混凝土结构,北京:机械工业出版社,2004.
    [26]吴中伟,廉慧珍.高性能混凝土,北京:中国铁道出版社,1999.
    [27]Rostam S.High performance concrete cover-why it is needed,and how to achieve it in practice.Construction and Building Materials,1996,10(5):407-421.
    [28]Khatri R P,Sirivivatnanon V.Effect of different supplementary cementitious materials on mechanical properties of high performance concrete.Cement and Concrete Research,1995,25(1):209-220.
    [29]Vivekanandam K,Patnaikuni I.Transition zone in high performance concrete during hydration.Cement and Concrete Research,1997,27(6):817-823.
    [30]Zain M F M,Safiuddin M,Yusof K M.A study on the properties of freshly mixed high performance concrete.Cement and Concrete Research,1999,29:1427-1432.
    [31]丁一宁,王岳华,董香军等.纤维自密实高性能混凝土工作度的试验研究.土木工程学报,2005,38(11):52-57.
    [32]A(i|¨)tcin P C.The durability characteristics of high performance concrete:a review.Cement and Concrete Composites,2003,25:409-420.
    [33]赵国藩,彭少民,黄承逵等.钢纤维混凝土结构,北京:中国建筑工业出版社,1999.
    [34]黄承逵.纤维混凝土结构,北京:机械工业出版社,2004.
    [35]Shannag M J,Brincker R,Hansen W.Pullout behavior of steel fibers from cement-based composites.Cement and Concrete Research,1997,27(6):925-936.
    [36]Wafa F F,Ashour S A.Mechanical properties of high-strength fiber reinforced concrete.ACI Materials Journal,1992,89(5):449-455.
    [37]Song P S,Hwang S.Mechanical properties of high-strength steel fiber-reinforced concrete.Construction and Building Materials,2004,18:669-673.
    [38]Ashour S A,Wafa F F.Flexural behavior of high-strength fiber reinforced concrete beams.ACI Structural Journal,1993,90(3):279-287.
    [39]Balendran R V,Zhou F P,Nadeem A et al.Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete.Building and Environment,2002,37(12):1361-1367.
    [40]Jeng F S,Lin M L,Yuan S C.Performance of toughness indices for steel fiber reinforced shotcrete.Tunnelling and Underground Space Technology,2002,17:69-82.
    [41]Valle M,Butukozturk O.Behavior of fiber reinforced high-strength concrete under direct shear.ACI Materials Journal,1993,90(2):122-133.
    [42]Mirsayah A A,Banthia N.Shear strength of steel fiber-reinforced concrete.ACI Materials Journal,2002,99(5):473-479.
    [43]Luo X,Sun W,Chan S Y N.Characteristics of high-performance steel fiber-reinforced concrete subject to high velocity impact.Cement and Concrete Research,2000,30(6):907-914.
    [44]Banthia N,Yan C,Mindess S.Restrained shrinkage cracking in fiber reinforced concrete:a novel test technique.Cement and Concrete Research,1996,26(1):9-14.
    [45]Tan K H,Paramasivam P.Punching shear strength of steel fiber reinforced concrete slabs.Journal of Materials in Civil Engineering,1994,6(2):240-253.
    [46]Falkner H,Huang Z,Teutsch M.Comparative study of plain and steel fiber reinforced concrete ground slabs.Concrete International,1995,17(1):45-51.
    [47]Filho R D T,SanjuanMA.Effect of low modulus sisal and polypropylene fibre on the free and restrained shrinkage of mortars at early age.Cement and Concrete Research,1999,29:1597-1604.
    [48]Soroushian P,Mirza F,Alhozairry A.Plastic shrinkage cracking of polypropylene fiber reinforced concrete.ACI Materials Journal,1995,92(5):553-560.
    [49]Soroushian P,Khan A,Hsu J W.Mechanical properties of concrete materials reinforced with polypropylene or polyethylene fibers.ACI Materials Journal,1992,89(6):535-540.
    [50]邓宗才.高性能合成纤维混凝土,北京:科学出版社,2003.
    [51]徐至钧.纤维混凝土技术及应用,北京:中国建筑工业出版社,2003.
    [52]周明耀,杨鼎宜,汪洋.合成纤维混凝土材料的发展与应用。水利与建筑科学工程,2003,1(4):1-4.
    [53]谷章昭,倪梦象,樊钧等.合成纤维混凝土的性能及其工程应用.建筑材料学报,1999,2(2):59-62.
    [54]ASTM Designation E119-97.Standard test methods for fire tests of building construction and materials,ASTM Committee E-5.1998.
    [55]Iding R H,Bresler B,Nizamuddin Z.FIRES-T3-A computer program for the fire response of structures-Thermal.Report No.UCB FRG 77-15:Fire Research Group,University of California,Berkeley,1977.
    [56]Iding R H,Bresler B,Nizamuddin Z.FIRES-RC-A computer program for the fire response of structures-Reinforced concrete frames.Report No.UCB FRG 77-8:Fire Research Group,University of California,Berkeley,1977.
    [57]ACI 216 R-81.Guide for determining the fire endurance of concrete elements,ACI Committee 216,Detroit,Michigan.1982.
    [58]ACI 216 1-97.Standard method for determining the fire resistance of concrete and masonry construction assemblies,ACI Committee 216,Detroit,Michigan.1997.
    [59]原田有.建筑耐火构法,日本:工业调查会,昭和48年.
    [60]苏联建设部混凝土研究院.建筑物火灾后混凝土结构鉴定标准.1987.
    [61]Lie T T.New facility to determine fire resistance of columns.Can.J.Civ.Eng.,1980,7:551-558.
    [62]Lie T T,Celikkol B.Method to calculate the fire resistance of circular reinforced concrete columns.ACI Materials Journal,1991,88(1):84-91.
    [63]Lie T T,Irwin R J.Method to calculate the fire resistance of reinforced concrete columns with rectangular cross section.ACI Structural Journal,1993,90(1):52-60.
    [64]Lie T T,Kodur V K R.Fire resistance of circular steel columns filled with bar-reinforced concrete.Journal of Structural Engineering,1994,120(5):30-36.
    [65]Lie T T,Irwin R J.Fire resistance of steel columns filled with bar-reinforced concrete.Journal of Structural Engineering,1995,121(5):797-805.
    [66]Kodur V K R,Lie T T.Fire resistance of circular steel columns filled with fiber-reinforced concrete.Journal of Structural Engineering,1996,122(7):776-782.
    [67]Kodur V K R,Sultan M A.Effect of temperature on thermal properties of high-strength concrete.Journal of Materials in Civil Engineering,ASCE,2003,15(2):101-107.
    [68]Hertz K D.Heat-induced explosion of dense concretes,Report No.166:Institute of Building Design,Technical University of Denmark,Lyngby,1984.
    [69]Hertz K D.Danish investigations on silica fume concretes at elevated temperatures.ACI Materials Journal,1992,89(4):345-347.
    [70]Hertz K D.Limits of spalling of fire-exposed concrete.Fire Safety Journal,2003,38(103-116).
    [71]Hertz K D,Sorensen L S.Test method for spalling of fire exposed concrete.Fire Safety Journal,2005,40(5):466-476.
    [72]国家标准.建筑设计防火规范GBJ16-87.1988.
    [73]国家标准.建筑设计防火规范GBJ16-87(2001修订版).2001.
    [74]国家标准.高层民用建筑设计防火规范GB50045-95.1995.
    [75]国家标准.建筑构件耐火试验方法GB/T9978-1988.1988.
    [76]国家标准.建筑构件耐火试验方法GB/T9978-1999.1999.
    [77]国家标准.人民防空工程设计防火规范GB50098-98.1999.
    [78]国家标准.地铁设计规范GB50157-2003.2003.
    [79]国家标准.烟囱设计规范GB50051-2002.2003.
    [80]陆春森,屈立军等.建筑结构耐火设计,北京:建筑工业出版社,1995.
    [81]Wang H H,Fan W C.Progress and problem of fire protection in China.Fire Safety Journal,1997,28:191-205.
    [82]过镇海,时旭东.钢筋混凝土的高温性能及其计算,北京:清华大学出版社,2003.
    [83]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析:(博士学位论文学位论文).北京:清华大学,1992.
    [84]时旭东,过镇海.钢筋混凝土结构的温度场.工程力学,1996,13(1):35-43.
    [85]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系.土木工程学报,1993,26(5):58-69.
    [86]时旭东,过镇海.不同混凝土保护层厚度钢筋混凝土梁的耐火性能.工业建筑,1996,26(9):12-14.
    [87]南建林,过镇海,时旭东.温度升降循环下混凝土变形性能的试验研究.建筑科学,1997,(2):16-21.
    [88]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系.清华大学学报(自然科学版),1997,37(6):87-90.
    [89]时旭东,李华东,过镇海.三面受火钢筋混凝土轴心受压柱的受力性能试验研究.建筑结构学报,1997,18(4):13-22.
    [90]时旭东,过镇海.高温下钢筋混凝土连续梁的受力性能试验研究.土木工程学报,1997,33(4):26-34.
    [91]时旭东,过镇海.高温下钢筋混凝土框架的受力性能试验研究.土木工程学报,2000,33(1):36-45.
    [92]时旭东,过镇海.高温下钢筋混凝土受力性能的试验研究.土木工程学报,2000,33(6):6-16.
    [93]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系.四川建筑科学研究,1990,(1):37-43.
    [94]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究.土木工程学报,1993,26(3):47-54.
    [95]陆洲导,朱伯龙,姚亚雄.钢筋混凝土框架火灾反应分析.土木工程学报,1995,28(6):18-27.
    [96]陆洲导,徐朝晖.火灾下钢骨混凝土柱温度场分析.同济大学学报(自然科学版),2004,32(9):1121-1125.
    [97]吴波,马忠诚,欧进萍.火灾后钢筋混凝土结构的抗震性能研究.哈尔滨建筑大学学报,1996,29(1):9-16.
    [98]吴波,马忠诚.高温后混凝土在重复荷载作用下的应力应变关系.地震工程与工程振动,1997,13(3):36-43.
    [99]吴波,马忠诚.钢筋混凝土结构在火灾和低周反复荷载作用下的损伤分析.哈尔滨建筑大学学报,1997,30(3):7-12.
    [100]吴波,马忠诚,欧进萍.高温后钢筋混凝土柱抗震性能试验研究.土木工程学报,1999,32(2):53-58.
    [101]吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究.建筑结构学报,1999,20(5):42-49.
    [102]金贤玉,钱在兹,金南国.混凝土受火时温度分布的试验研究.浙江大学学报(自然科学版),1996,30(3):286-294.
    [103]钱在兹,吴慧.混凝土高温后的扫描电镜实验研究.福州大学学报(自然科学版),1996,24(增刊):34-38.
    [104]金贤玉,吴慧等.混凝土受高温后的电镜及X衍射观测.工程力学,1996,13(增刊2):64-68.
    [105]钱在兹,谢狄敏.混凝土受明火高温作用后的抗拉强度与粘结强度的试验研究.工程力学,1997,14(增刊2):1-5.
    [106]谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究.浙江大学学报(自然科学版),1998,32(5):597-602.
    [107]胡倍雷,宋玉普,赵国藩.高温后混凝土在复杂应力状态下的变形和强度特性的试验研究.四川建筑科学,1994,(1):47-50.
    [108]吕天启,赵国藩,林志伸.人工神经网络在高温后静置混凝土抗压强度预报中的应用.工程力学,2003,20(6):52-57.
    [109]吕天启.高温后混凝土静置性能的试验研究及已有建筑物的防火安全评估:(博士学位论文).大连:大连理工大学,2002.
    [110]覃丽坤,宋玉普,王玉杰.高温对混凝土力学性能影响的试验研究.混凝土,2004,(5):9-11.
    [111]刘永军.钢筋混凝土结构火灾反应数值模拟及软件开发:(博士学位论文).大连:大连理工大学,2002.
    [112]李锡夔,李荣涛,张雪珊.高温下混凝土中热-湿-气-力学耦合过程数值模拟.工程力学,2005,22(4):171-178,240.
    [113]傅祝满.建筑火灾模拟方法及进展.大自然探索,1996,15(5):28-33.
    [114]姚建达,范维澄.建筑火灾中场区网数值模拟的应用.中国科学技术大学学报,1997,27(3):304-308.
    [115]汪箭,范维澄.建筑物多室火灾过程的计算机模拟.中国科学技术大学学报,1996,26(2):204-209.
    [116]范维澄,崔锷,陈莉等.建筑火灾综合模拟评估在大空间建筑火灾中的应用.中国科学技术大学学报,1995,25(4):479-485.
    [117]Schneider U,Weiss R.Kinetic considerations on the thermal destruction of cement-bound concrete and its mechanical effects.Cement and Concrete Research,1977,7:259-268.
    [118]Rostasy F S,Weiss R,Wiedemann G.Changes of pore structure of cement mortars due to temperature.Cement and Concrete Research,1980,10:157-164.
    [119]Feldman R F,Ramachandran V S.Differentiation of interlayer and absorbed water in hydrated Portland cement on thermal analysis.Cement and Concrete Research,1971,1.
    [120]Khoury,A G.Compressive strength of concrete at high temperatures:a reassessment.Magazine of Concrete Research,1991,44(161):291-309.
    [121]Piasta J,Sawicz Z,Rudzinski L.Changes in the structure of hardened cement paste due to high temperature.Materials and Structures,1984,17(100):291-296.
    [122]Sarshar R,Khoury G A.Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures.Magazine of Concrete Research,1993,45(162):51-61.
    [123]Mohamedbhai G T G.Effect of exposure time and rates of heating and cooling on residual strength of heated concrete.Magazine of Concrete Research,1986,38(136):151-158.
    [124]Castillo C,Durrani A J.Effect of transient high temperature on high-strength concrete.ACI Materials Journal,1990,87(1):47-53.
    [125]Ahmed A E,Al-shaikh A H,Ararat T I.Residual compressive and bond strengths of limestone aggregate concrete subjected to elevated temperatures.Magazine of Concrete Research,1992,44(159):117-125.
    [126]Chan S Y N,Peng G F,Chan J K W.Comparison between high strength concrete and normal strength concrete subjected to high temperature.Materials and Structures,1996,29:616-619.
    [127]Kordina K,Meyer-ottens C.Beton-Brandschutz-Handbuch,Duesseldorf(Deutschland):Beton-Verlag,1981.
    [128]Xu Y,Wong Y L,Poon C S et al.Impact of high temperature on PFA concrete.Cement and Concrete Research,2001,31:1065-1073.
    [129]Xu Y,Wong Y L,Pooh C S et al.Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures.Cement and Concrete Research,2003,33:2009-2016.
    [130]Pooh C S,Azhar S,Anson Met al.Strength and durability recovery of fire-damaged concrete after post-fire-curing.Cement and Concrete Research,2001,31.
    [131]Wu B,Su X P,Li H et al.Effect of high temperature on residual mechanical properties of confined and unconfined high-strength concrete.ACI Materials Journal,2002,99(4):399-407.
    [132]Phan L T,Carino N J.Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures.ACI Materials Journal,2002,99(1):54-66.
    [133]Janotka I,BdgelLU.Pore structures,permeabilities,and compressive strengths of concrete at temperatures up to 800 oC.ACI Materials Journal,2002,99(2):196-200.
    [134]Noumowe AN.Temperature distribution and mechanical properties of high-strength silica fume concrete at temperatures up to 200 oC.ACI Materials Journal,2003,100(4):326-330.
    [135]Hossain g M A,Lachemi M.Residual strength and durability of volcanic ash concrete exposed to high temperature.ACI Materials Journal,2004,101(6):493-500.
    [136]李卫,过镇海.高温下砼的强度和变形性能试验研究.建筑结构学报,1993,14(1):8-16.
    [137]张自坚,陈荣荣,张建文.混凝土经火烧后的抗压强度及本构关系.浙江丝绸工学院学报,1994,11(2):52-57.
    [138]周新刚,吴江龙.高温后混凝土轴压疲劳性能初探.工业建筑,1996,26(5):33-35.
    [139]贾锋.受高温后混凝土抗压强度的试验研究.青岛建筑工程学院学报,1997,18(1):10-14.
    [140]Khoury G A,Grainger B N,Sullivan P J E.Transient thermal strain of concrete:literature review,conditions within specimen and behaviour of individual constituents.Magazine of Concrete Research,1985,37(132):131-144.
    [141]阎继红,林志伸,胡云昌.高温作用后混凝土抗压强度的试验研究.土木工程学报,2002,35(5):17-19.
    [142]胡海涛,董毓利.高温时高强混凝土强度和变形的试验研究.土木工程学报,2002,35(6):44-47.
    [143]肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析.建筑材料学报,2003,6(2):182-189.
    [144]Schneider U.Concrete at high temperatures-a general review.Fire Safety Journal,1988,13(1):55-68.
    [145]吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究.土木工程学报,2000,33(2):8-12,34.
    [146]Khoury G A,Grainger B N,Sullivan P J E.Transient thermal strain of concrete:literature review,conditions within specimen and behaviour of individual constituents.Magazine of Concrete Research,1985,37(132):131-144.
    [147]胡海涛,董毓利.高温时高强混凝土瞬态热应变的试验研究.建筑结构学报,2002,23(4):32-47.
    [148]余志武,丁发兴,罗建平.高温后不同类型混凝土力学性能试验研究.安全与环境学报,2005,5(5):1-6.
    [149]吴波,宿晓萍,李惠等.高温后约束高强混凝土力学性能的试验研究.土木工程学报,2002,35(2):26-32.
    [150]Kalifa P,Menneteau F D,Quenard D.Spalling and pore pressure in HPC at high temperatures.Cement and Concrete Research,2000,30(1):1915-1927.
    [151]周新刚.火灾时钢筋混凝土板中钢筋的温度分析.工业建筑,1996,26(9):15-19.
    [152]李国强,殷颖智,蒋首超.火灾下组合楼板的温度场分析.工业建筑,1999,29(12):47-49.
    [153]余志武,唐国庆,丁发兴.三面受火钢筋混凝土梁温度场非线性分析.建筑科学与工程学报,2005,22(4):11-14.
    [154]Terro,M J.Numerical modeling of the behavior of concrete structures.ACI Structural Journal,1998,95(2):183-193.
    [155]Huang Z H,Platten A,Roberts J.Non-linear finite element model to predict temperature histories within reinforced concrete in fires.Building and Environment,1996,31(2):109-118.
    [156]Zha X X.FE analysis of fire resistance of concrete filled CHS columns.Journal of Constructional Steel Research,2003,59:769-779.
    [157]Bazant Z P,Thonguthai W.Pore pressure in heated concrete walls:theoretical prediction.Magazine of Concrete Research,1979,31(107):67-76.
    [158]李荣涛,李锡夔.混凝土中化学-热-湿-力耦合过程的数值方法.力学学报,2006,34(4):471-479.
    [159]Huang C L D,Ahmed G N.Influence of slab thickness on response of concrete walls under fire.Numerical Heat Transfer,Part A,1991,19:43-64.
    [160]Selih J,Sousa A C M,Bremner T W.Mositure and heat flow in concrete walls exposed to fire.Journal of Engineering Mechanics,1994,120(10):2028-2043.
    [161]Majundar P,Marchertas A.Heat,moisture transport,and induced stresses in porous materials under rapid heating.Numerical Heat Transfer,Part A,1997,32:111-130.
    [162]Majorana C E,Salomoni V,Schrefler B A.Hygrothermal and mechanical model of concrete at high temperature.Materials and Structures,1998,31(210):378-386.
    [163]Hurst J P,Ahmed G N.Validation and application of a computer model for predicating the thermal response of concrete slabs subjected to fire.ACI Structural Journal,1998,95(5):480-487.
    [164]胡海涛.高温时高强混凝土压弯构件的试验研究及理论分析:(博士学位论文).西安:建筑科技大学,2002.
    [165]Ellingwood B,Lin T D.Flexure and shear behavior of concrete beams during fires.Journal of Structural Engineering,1991,117(2):440-458.
    [166]Zhang B,Bicanic N,Prarce C J et al.Residual fracture properties of normal-and high-strength concrete subject to elevated temperatures.Magazine of Concrete Research,2000,52(2):123-136.
    [167]Bentz D P.Fibers,percolation,and spalling of high-performance concrete.ACI Materials Journal,2000,97(3):351-359.
    [168]杜红秀,张雄.HSC/HPC的火灾(高温)性能研究进展.建筑材料学报,2003,6(4):391-396.
    [169]Sanjayan G,Stocks L J.Spalling of high-strength silica fume concrete in fire.ACI Materials Journal,1993,90(2):170-173.
    [170]Chan Y N,Luo X,W S.Compressive strength and pore structure of high-performance concrete after exposure to hightemperature up to 800℃.Cement and Concrete Research,2000,30(2):247-251.
    [171]Winslow D N,Cohen M D,Bentz D P et al.Percolation and pore structure in mortars and concretes.Cement and Concrete Research,1994,24(1):25-37.
    [172]Bentz D P,Stutzman P E,Garboczi E J.Experimental and simulation studies of the interfacial zone in concrete.Cement and Concrete Research,1992,22:891-902.
    [173]Phan L T.Fire performance of high-strength concrete:A report of the state-of-the-art.NISTIR 5934,U.S.Department of Commerce,Dec.1996.
    [174]Bazant Z P.Analysis of pore pressure,thermal stress and fracture in rapidly heated concrete.International Workshop on Fire Performance of High-Strength Concrete,NIST SP 919,Gaithersburg in USA,1997.B.10:155-164.
    [175]Kalifa P,CheneG,GalleC.High-temperature behaviour of HPC with polypropylene fibres from spalling to microstructure.Cement and Concrete Research,2001,31:1487-1499.
    [176]Chen B,Liu J.Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures.Cement and Concrete Research,2004,34:1065-1069.
    [177]Pooh C S,Shui Z H,Lam L.Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures.Cement and Concrete Research,2004,34:2215-2222.
    [178]袁杰,吴波.PP纤维高强混凝土的和易性及高温后抗压强度的试验研究.混凝土,2001,(3):30-33.
    [179]Soroushian P,Elyamany H,Tlili A et al.Mixed-mode fracture properties of concrete reinforced with low volume fractions of steel and polypropylene fibers.Cement and Concrete Composites,1998,20:67-78.
    [180]Qian C X,Stroeven P.Development of hybrid polypropylene-steel fibre-reinforced concrete.Cement and Concrete Research,2000,30:63-69.
    [181]Qian C X,Stroeven P.Fracture properties of concrete reinforced with steel-polypropylene hybrid fibres.Cement and Concrete Composites,2000,22:343-351.
    [182]Sun W,Chen H S,Luo X et al.The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete.Cement and Concrete Research,2001,31:595-601.
    [183]Yao W,Li J,Wu K R.Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction.Cement and Concrete Research,2003,33(1):27-30.
    [184]Khoury G A,Grainger B N,Sullivan P J E.Strain of concrete during first heating to 600℃ under load.Magazine of Concrete Research,1985,37(133):195-215.
    [185]Khoury G A,Grainger B N,Sullivan P J E.Transient thermal strain of concrete:literature review,conditions within specimen and behaviour of individual constituents.Magazine of Concrete Research,1985,37(132):131-144.
    [186]Harmethy T Z,Allen L W.Thermal properties of selected masonry unit concretes.ACI,1973,70(2):132-142.
    [187]高丹盈,汤寄予,赵军.纤维高强混凝土弹性模量的试验研究.工业建筑,2004,34(10):47-49.
    [188]Harmathy T Z.Thermal properties of concrete at elevated temperatures.ASTM Journal of Materials,1970,5(1):47-74.
    [189]Fu X,Chung D D L.Effect of admixtures on thermal and thermo-mechanical behavior of cement paste.ACI Materials Journal,1999,96(4):455-461.
    [190]Khan M I.Factors affecting the thermal properties of concrete and applicability of its prediction models.Building and Environment,2002,37(6):607-614.
    [191]Kim K H,Jeon S E,Kim J K et al.An experimental study on thermal conductivity of concrete.Cement and Concrete Research,2003,33:363-371.
    [192]Demirboga R.Influence of mineral admixtures on thermal conductivity and compressive strength of mortar.Energy and Buildings,2003,35:189-192.
    [193]Design of Concrete Structures,Eurocode 2,Part 10:Structure Fire Design,Commission of the European Communities,April 1990.
    [194]董毓利.混凝土结构的火安全设计,北京:科学出版社,2001.
    [195]罗欣.高性能混凝土的防火性能、机理及数值模拟研究:(博士学位论文).南京:东南大学,2002.
    [196]陈礼刚.钢筋混凝土板受火性能的试验研究:(博士学位论文).西安:建筑科技大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700