基于新型聚集荧光增强分子的荧光探针和光学材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以水杨醛与氨基化合物生成水杨醛腙席夫碱类衍生物的反应为基础,合成了一系列分子结构简单、制备成本低廉的新型聚集荧光增强型分子。这类化合物的特点是:水杨醛席夫碱结构中的羟基与亚胺基形成了“六元环”分子内氢键结构,共轭体系之间通过氮-氮单键或碳-氮单键连接,在溶液中沿单键方向发生的分子内自由旋转会使分子激发态能量发生非辐射衰变而无荧光,而在固态(聚集态、晶态或薄膜态)时分子内旋转受到分子堆积效应的阻碍而荧光增强。
     本文以具有以上骨架结构的系列分子为基础,通过其结构与荧光性质的相关规律,构建了基于水杨醛腙类分子聚集荧光增强现象的荧光探针体系及有机光学材料。在荧光探针体系的研究中,以分散于溶液中不发射荧光的分子为探针,通过探针与目标分析物结合形成聚集体而产生的聚集荧光增强信号,分别实现了对水溶液中污染物肼以及鱼精蛋白的荧光增强型分析检测,在体积比为30/4/66的乙醇/乙酸/水混合溶剂中对肼的检测限为80nM,在pH=9.16的缓冲水溶液中对鱼精蛋白的检测限为43ng/mL;制备了表面为水杨醛腙共价修饰的具有聚集荧光增强性质的介孔材料薄膜,基于水杨醛席夫碱结构对铜离子的络合作用,实现了固态薄膜探针对水溶液中铜离子的荧光淬灭型分析检测,在pH=5.13的缓冲水溶液中对铜离子的检测限为0.8μM,该薄膜探针至少可以循环使用45次。上述三种探针均具有响应时间短、选择性好、灵敏度高的特点,并可用于实际样品的分析检测。在有机光学材料的研究中,本文制备了两类固态荧光性质可控的光学材料,一类以苯胺水杨醛腙分子结构为母体,通过改变分子结构中取代基的种类或位置来实现对所得晶体颜色/形貌的调控;另外一类以二水杨醛缩肼分子结构为母体,引入了有助于使固态分子形成亚稳态堆积模式的基团,通过加热或压力的外界刺激使固态分子在亚稳态与稳态之间转换而产生不同的固体荧光,得到了具有热致/压致固体荧光变色性质的光学材料。上述两种材料均具有合成路线与晶体制备方法简单的优点,对于分子结构与发光性质之间关系的研究具有重要意义,并有望在OLED及其它功能光学材料的研究中获得应用。
In this dissertation, a series of salicylaldehyde hydrazone (SH) derivativeswere synthesized by condensing salicylaldehyde and amine compounds withease-preparation and low-cost. Intramolecular H-bonds of salicylaldiminemoieties allowed the nonradiative intramolecular rotation of two planarπ-conjugated moieties only around N-N or C-N single bond when moleculeswere dissolved in solvents. Therefore, potential aggregation-induced emissionenhancement (AIEE) properties of SH derivatives could be promised by therestriction of free intramolecular rotation in aggregate/solid state.
     Structure-property relationships of SH derivatives were utilized to constructfluorescence detecting systems and organic optical materials on basis of AIEE effect. Inthe respect of fluorescence detecting system, facile methods for the determination ofhydrazine and protamine have been developed based on fluorescence turn-on effect ofaggregate production; the limit of detection (LOD) of hydrazine in EtOH/HAc/H2O(30/4/66) was80nM, and that for protamine in buffer solution (pH=9.16) was43ng/mL. Also, an SH immobilized hybrid mesoporous materials with AIEE propertieswas prepared, and further utilized as a solid fluorescent sensor for reproducibledetection of Cu(II) ions based on fluorescence-off signal, with an LOD of0.8μM inbuffer solution (pH=5.3). The above three methods are with short response time, highselectivity and sensitivity, and could be used for detecting practical samples. On theother hand, two kinds of organic optical material with AIEE properties were prepared:firstly, a series of salicylaldimine crystals with color/morphology tunable propertieswere obtained by changing substituents; secondly, a crystalline solid of salicylaldehydeazine derivative with switchable solid-state fluorescence in responsible to externalthermal and piezochromic stimulus was obtained, which resulted from two distinctivecrystalline lattices via different π-π interactions. The facile synthesis andcrystal-preparing procedures favors the further theoretic exploration and practical use.
引文
[1] F rster T, Kasper K. Ein konzentrationsumschlag der fluoreszenz pyres (A concentrationdependent-fluorescence of pyrene). Z Phys Chem NFI,1954,1:275277.
    [2] Birks J B. Photophysics of aromatic molecules. London:Wiley,1970.
    [3] Malkin J. Photophysical and photochemical properties of aromatic compounds. Boca Raton:CRC Press,1992:101.
    [4] Turro N J, Modern molecular photochemistry. Mill Valley: University Science Books,1991:Charpter5.
    [5] Li X C, Moratti S C. Photonic polymer systems. Wise D L, Wnek G E, Trantolo D J, et al. eds.New York: INC,1998:Chapter10.
    [6] Turro N J. Modern molecular phytochemistry. Menlo Park CA: Benjamin CummingsPublishing Co.,1978:137.
    [7]吴世康.荧光化学传感器研究中的光化学与光物理问题.化学进展:2004,16:174183.
    [8] Lakowicz J R. Principles of fluorescence spectroscopy.3nd ed. New York: Springer,2006:Chapter1.
    [9] Jenekhe S A, Osaheni J A. Excimers and exciplexes of conjugated polymers. Science,1994,265:765773.
    [10] Cornil J, dos Santos D A, Crispin X, et al. Influence of interchain interactions on theabsorption and luminescence of conjugated oligomers and polymers: a quantum-chemicalcharacterization. J Am Chem Soc,1998,120:12891299.
    [11] Janyanty S, Radhakrishnan T P. Enhanced fluorescence of remote functionalizeddiaminodicyanoquinodimethanes in the solid state and fluorescence switching in a dopedpolymer by solvent vapors. Chem Eur J,2004,10:791797.
    [12] Slavík J. Fluorescence microscopy and fluorescent probes. New York: Plenum,1998:Fluorescent probes.
    [13] Valeur B. Molecular fluorescence: principle and applications. Weinheim: Wiley,2001:Chapter4.
    [14] Geddes C D, Lakopwicz J R, eds. Advanced concepts in fluorescence sensing. Norwell:Springer,2005:Charpter7.
    [15] Thompson R B, ed. Fluorescence sensors and biosensors. Boca Raton: CRC press,2006:Chapter3.
    [16] Tan W H, Wang K M, Drake T J. Molecular beacons. Curr Opin Chem Biol,2004,8:547553;
    [17] Sapsford K E, Berti L, Medintz I L. Materials for fluorescence resonance energy transferanalysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed,2006,45:45624588.
    [18] Borisov S M, Wolfbeis O S. Optical sensors. Chem Rev,2008,108:423461.
    [19]马於光,沈家骢.光电功能有机晶体研究进展.中国科学B:化学,2007,37:105123.
    [20] Luo L, Xie Z, Lam J W Y, et al. Aggregation-induced emission of1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun,2001:17401741.
    [21] Deans R, Kim J, Machacek M R, et al. A poly(p-phenyleneethynylene) with a highly emissiveaggregated phase. J Am Chem Soc,2000,122:85658566.
    [22] Lv J, Zhao Y J, Li G X, et al. Aggregation-enhancement emission in gold nanoparticlesprotected by tetradentate perylene derivative. Langmuir,2009,25:1135111357.
    [23] Li Y P, Li Feng, Zhang H Y, et al. Tight intermolecular packing through supramolecularinteractions in crystals of cyano substituted oligo(para-phenylene vinlene): a key factor foraggregation-induced emission, Chem Commun,2007:231233.
    [24] Tang L, Jin J K, Qin A J, et al. Fluorescent thermometer operating in aggregation-inducedemission mechanism: probing thermal transitions of PNIPAM in water. Chem Commun,2009:49744976.
    [25] Bhongale C J, Hsu C S. Emission enhancement by formation of aggregates in hybridchromophoric surfactant amphiphile/silica nanocomposites. Angew Chem Int Ed,2006,45:14041408.
    [26] Qian Y, Li S Y, Zhang G Q, et al. Aggregation-induced emission enhancement of2-(2’-hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfercompounds. J Phys Chem B,2007,111:58615868.
    [27] Hong Y N, Lam J W Y, Tang B Z. Aggregation-induced emission: phenomenon, mechanismand applications. Chem Commun,2009:43324353.
    [28] Wang M, Zhang G X, Zhang D Q, et al. Fluorescent bio/chemosensors based on silole andtetraphenylethene luminogens with aggregation-induced emission feature. J Mater Chem,2010,20:18581867.
    [29] Chen J, Peng H, Law C C W,et al. Hyperbranched poly(phenylenesilolene)s: synthesis,thermal stability, electronic conjugation, optical power limiting, and cooling-enhanced lightemission. Macromolecules,2003,36:43194327.
    [30] Li Z, Dong Y, Mi B, et al. Structural control of the photoluminescence of silole regioisomersand their utility as sensitive regiodiscriminating chemosensors and efficientelectroluminescent materials. J Phys Chem B,2005,109:1006110066.
    [31] Tamao K, Yamaguchi S. New type of polysilanes: poly(1,1-silole)s. J Organomet Chem,2000,611:511.
    [32] Sartin M M, Boydston A J, Pagenkopf B L, et al. Electrochemistry, spectroscopy, andelectrogenerated chemiluminescence of silole-based chromophoes. J Am Chem Soc,2006,128:1016310170.
    [33] Ohshita J, Lee K H, Kimura K, et al. Synthesis of siloles condensed with bezothiophene andindole rings. Organometallics,2004,23:56225625
    [34] Tang B Z, Zhan X, Yu G, et al. Efficient blue emission from siloles. J Mater Chem,2001,11:29742978.
    [35] Ren Y, Lam J W Y, Dong Y Q, et al. Enhanced emission efficiency and excited state lifetimedue to restricted intramolecular motion in silole aggregated. J Phys Chem B,2005,109:11351140.
    [36] Yu G, Yin S, Liu Y Q, et al. Structures, electronic states, photoluminescence, and carriertransport properties of1,1-disubstituted2,3,4,5-tetraphenylsiloles. J Am Chem Soc,2005,127:63356346.
    [37] Fan X, Sun J, Wang F, et al. Photoluminescence and electroluminescence of hexaphenylsiloleare enhanced by pressurization in the solid state. Chem Commun,2008:29892991.
    [38] He L M, Xiong F, Li S Y, et al. High-pressure tuning of excited states: distinguish theemission of the exciplexes in the intramolecular electron transfer compound. J Phys Chem B,2004,108:70927097.
    [39] Lee S H, Jang B B, Kafafi Z H. Highly fluorescent solid-state asymmetric spirosilabiluorenederivatives. J Am Chem Soc,2005,127:90179078.
    [40] Peng Q, Yi Y P, Shuai Z G, et al. Towards quantitative prediction of molecular luminescencequantum efficiency: role of Duschinsky rotation. J Am Chem Soc,2007,129:93339339.
    [41] Chen J W, Xie Z, Lam J W Y, et al. Silole-containing polyacetylenes synthesis thermalstability, light emission nanodimensional aggregation, and restricted intramolecular rotation.Macromolecules,2003,36:11081117.
    [42] Li Z, Dong Y, Lam J W Y, et al. Functionalized siloles: Versatile synthesis,aggregation-induced emission, and sensory and device applications. Adv Funct Mater,2009,19:905917.
    [43] Tong H, Hong Y N, Dong Y Q, et al. Protein detection and quantitation bytetraphenylethene-based fluorescent probes with aggregation-induced emission characteristics.J Phys Chem B,2007,111:1181711823.
    [44] Tong H, Hong Y, Dong Y, et al. Fluorescent “light-up” bioprobes based ontetraphenylethylene derivatives with aggregation-induced emission characteristics. ChemCommun,2006,35:37053707.
    [45] Wang Z, Shao H, Ye J, et al. Dibenzosuberenylidene-ended fluorophores rapid and efficientsynthesis characterization and aggregation-induced emissions. J Phys Chem B,2005,109:1962719633.
    [46] Dong Y Q, Lam J W Y, Qin A J, et al. Aggregation-induced and crystallization-enhancedemissions of1,2-diphenyl-3,4-bis(diphenylmethylene)-1-cyclobutene. Chem Commun,2007:32553257.
    [47] Tang B Z, H uβler M, Dong Y Q, et al. Environment sensor and conjugated polyene formanufacturing environment sensors: United States,20060240565[P].2006-04-22.
    [48] Tong H, Dong Y Q, H uβler M, et al. Tunable aggregation induced emission ofdiphenyldibenzofulvenes. Chem Commun,2006:11331135.
    [49] Dong Y Q, Lam JW Y, Qin A J, et al. Switching the light emission of (4-biphenylyl) phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement.Chem Commun,2007:4042.
    [50] Tong H, Dong Y Q, Hong Y, et al. Aggregation-induced emission: Effects of molecularstructure solid-state conformation and morphological packing arrangement on light-emittingbehaviors of diphenyldibenzofulvene derivatives. J Phys Chem C,2007,111:22872294.
    [51] An B K, Kwon S K, Jung S D, et al. Enhanced emission and its switching in fluorescentorganic nanoparticles. J Am Chem Soc,2002,124:1441014415.
    [52] An B K, Lee D S, Lee J S, et al. Strongly fluorescent organogel system comprising fibrillarself-assembly of a trifluoromethyl-based cyanostilbene derivative. J Am Chem Soc,2004,126:1023210233.
    [53] Lim S J, An B K, Jung S D, et al. Photoswitchable organic nanoparticles and a polymer filmemploying multifunctional molecules with enhanced fluorescence emission and bistablephotochromism. Angew Chem Int Ed,2004,46:63466350.
    [54] An B K, Kwon S K, Park S Y. Photopatterned arrays of fluorescent organic nanoparticles.Angew Chem Int Ed,2007,46:19781982.
    [55] Tong X, Zhao Y, An B K, et al. Fluorescent liquid crystal gels with electrically switchablephotoluminescence. Adv Funct Mater,2006,16,17991804.
    [56] Tong H, Dong Y, H uβler M, et al. Molecular packing and aggregation-induced emission of4-dicyanomethylene-2,6-distyryl-4H-pyran derivatives. Chem Phys Lett,2006,428:326330.
    [57] Tong H, Dong Y Q, H ussler M, et al. Novel linear and cyclic polyneneswith dramaticaggregation-induced enhancement in photoresponsiveness. Mol Cryst Liq Cryst,2006,446:183191.
    [58] Tong H, H uβler M, Dong Y Q, et al. Aggregation-induced emission of4-dicyanomethylene-2,6-distyryl-4H-pyran. J Chin Chem Soc,2006,53:243246.
    [59] Tong H, Dong Y Q, H uβler M, et al. Aggregation-induced emission s of pyran fulvene andsilole derivatives. Non linear Opt Quantum Opt,2006,35:147154.
    [60] Zeng Q, Li Z, Dong Y Q, et al. Fluorescence enhancements of benzene-cored luminophors byrestricted Intramolecular rotations: AIE and AIEE effects. Chem Commun,2007:7072.
    [61] Zhang H Q, Yang B, Zheng Y. et al. J Phys Chem B,2004,108:95710573.
    [62] Chen J, Law C C W, Lam J W Y, et al. Synthesis, light emission, nanoaggregation, andrestricted intramolecular rotation of1,1-substituted2,3,4,5-tetra-phenylsiloles. Chem Mater,2003,15:15351546.
    [63] Xie Z Q, Yang B, Cheng G, et al. Supramolecular interactions induced fluorescencein crystal:anomalous emission of2,5-diphenyl-1,4-distyrylbenzene with all cis double bonds. ChemMater,2005,17:1287-1289.
    [64] Xie Z Q, Liu L L, Yang B, et al. Poly-morphism of2,5-diphenyl-1,4-distyrylbenzene withtwo cis double bonds: the essential role of aromatic CH/π hydrogen bonds. Cryst Growth&Des,2005,5:19591964.
    [65] Xie Z Q, Yang B, Xie W J, et al. A class of nonplanar conjugated compounds withaggregation-induced emis-sion: structural and optical properties of2,5-diphenyl-1,4-distyrylbenzene derivatives with all cis double bonds. J Phys Chem B,2006,110:2099321000.
    [66] McDonagh C, Burke C S, MacCraith B D. Optical chemical sensors. Chem Rev,2008,108:400422.
    [67] Wolfbeis O S. Fibre optic chemical sensors and biosensors. Boca Raton: CRC Press,1991:Volumes1and2.
    [68] Cammann G G, Guilbault E A, Hal H, et al. The Cambridge definition of chemical sensors,Cambridge workshop on chemical sensors and biosensors. New York: Cambridge UniversityPress,1996.
    [69] Callan J F, de Silva A P, Magri D C. Luminescent sensors and switches in the early21stcentury. Tetrahedron,2005,61:85518588.
    [70] Otsuki J, Akasaka T, Araki K. Molecular switches for electron and energy transfer processesbased on metal complexes. Coord Chem Rev,2008,252:3256.
    [71] Dong Y Q, Lam J W Y, Qin A J, et al. Endowing hexaphenylsilole with chemical sensory andbiological probing properties by attaching amino pendants to the silolyl core. Chem Phys Lett.2007,446:124127.
    [72] Zhao M C, Wang M, Liu H J, et al. Continuous on-site label-free ATP fluorometric assaybased on aggregation-induced emission of silole. Langmuir,2009,25:676678.
    [73] Wang M, Gu X G, Zhang G X, et al. Convenient and continuous fluorometric assay methodfor acetylcholinesterase and inhibitor screening based on the aggregation-induced emission.Anal Chem,2009,81:44444449.
    [74] Whitehouse P J, Price D L, Struble R G, et al. Alzheimer’s disease and senile dementia: loss ofneurons in the basal forebrain. Science,1982,215:12371239.
    [75] Hadd A G, Jacobson S C, Ramsey J M. Microfluidic assays of acetylcholinesterase inhibitors.Anal Chem,1999,71:52065212.
    [76] Hong Y N, H ubler M, Lam J W Y, et al. Label-free fluorescent probing of G-quadruplexformation and real-time monitoring of DNA folding by a quaternized tetraphenylethene saltwith aggregation-induced emission characteristics. Chem Eur J,2008,14:64286437.
    [77] Liu L, Zhang G X, Xiang J F, et al. Fluorescence “Turn On” Chemosensors for Ag+and Hg2+Based on Tetraphenylethylene Motif Featuring Adenine and Thymine Moieties. Org Lett,2008,10:45814584.
    [78] Toal S J, Jones K A, Magde D,et al. Luminescent silole nanoparticles as chemoselectivesensors for Cr6+. J Am Chem Soc,2005,127:1166111665.
    [79] Peng L H, Wang M, Zhang G X, et al. A fluorescence turn-on detection of cyanide in aqueoussolution based on the aggregation-induced emission. Org Lett,2009,11:19431946.
    [80] Qin A J, Lam J W Y, Tang L, et al. Polytriazoles with aggregation-induced emissioncharacteristics: synthesis by click polymerization and application as explosive chemosensors.Macromolecules,2009,42:14211424.
    [81] Yersin H, ed. Highly efficient OLEDs with phosphorescent materials. Weinheim: Wiley,2008.
    [82] Wang J, Gudiksen M S, Duan X, et al. Lieber C M, Highly polarized photoluminescence andpolarization-sensitive photodetectors from single indium phosphide nanowirees. Science,2001,293:14551457.
    [83] Chan L H, Lee R H, Hsieh C F, et al. Optimization of high-performancec blue organiclight-emitting diodes containing tetraphenyl-silane molecular glass materials. J Am Chem Soc,2002,124:64696479.
    [84] Chung J W, Yang H, Singh B, et al. Single-crystalline organic nanowires with large mobilityand strong fluorescence emission: a conductive-AFM and space-charge-limited-current study.J Mater Chem,2009,19:59205925.
    [85] Dong Y Q, Lam J W Y, A J Qin, et al. Aggregation-induced emissions of tetraphenylethenederivataives and their utilities as chemical vapor sensors and in organic light-emitting diodes.Appl Phys Lett,2997,91:011111011113.
    [86] Ning Z J, Chen Z C, Zhang Q, et al. Aggregation-induced emission (AIE)-active starbursttriarylamine fluorophores as potential non-doped red emitters for organic light-emittingdiodes and Cl2gas chemodosimeter, Adv Funct Mater,2007,17:37993807.
    [87] Pandit P, Chatterjee N, Halder S, et al. Regiospecific [3+2]-tandem oxidative cyclization ofimine toward cofacially self-aggregated low molecular mass organic materials. J Org Chem,2009,74:25812584.
    [88] Bourroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based onconjugated polymers. Nature,1990,347:539541.
    [89] Kraft A, Grimsdale A C, Holmes A B. Electroluminescent conjugated polymers-seeingpolymers in a new light. Angew Chem Int Ed,1998,37:402428.
    [90] Ling M M, Bao Z N. Thin film deposition, patterning, and printing in organic thin filmtransistors. Chem Mater,2004,16:48244840.
    [91] Wang Z L. Nanobelts, Nanowires and nanodiskettes of semiconducting oxides–frommaterials to nanodevices. Adv Mater,2003,15:432436.
    [92] Tong H, Hong Y N, Dong Y Q. Color-tunable, Aggregation-induced emission of abutterfly-shaped Molecule comprising of pyran skeleton and two cholesteryl wings. J PhysChem B,2007,111,20002007.
    [93] An B K, Gihm S H, Chung J W, et al. Color-tuned highly fluorescent organicnanowires/nanofabrics: easy massive fabrication and molecular structural origin. J Am ChemSoc,2009,131:39503975.
    [94] Yoon S J, Chung J W, Gierschner J, et al. Multistimuli two-color luminescence switching viadifferent slip-stacking of highly fluorescent molecular sheets. J Am Chem Soc,2010,132:1367513683.
    [95] Tang W X, Xiang Y, Tong A J. Salicylaldehyde azines as fluorophores of aggregation-inducedemission enhancement characteristics. J Org Chem,2009,74:21632166.
    [96] Schmidt E W. Hydrazine and Its Derivatives. vol.2,2nd ed. New York: Wiley–Interscience,2001:820.
    [97] Budavari S, ed. The Merck Index,12th ed. Whitehouse Station: Merck Research Laboratories,1996:816.
    [98] He Z K, Fuhrmann B, Spohn U. Bromimetric titration of low concentrations of hydrazine andammonium, Anal Chim Acta,2000,409:8391.
    [99] Ikeda S, Sutake S, Kohri Y. Flow injection analysis with an amperometric detector utilizingthe redox reaction of iodate ion. Chem Lett,1984,6:873876.
    [100] Guerra S V, Xavier C R, Hakagaki S, et al. Electrochemical behaviour of copper porphyrinsynthesized into zeolite cavity: a sensor for hydrazine. Electroanalysis,1998,7:462466.
    [101] Casella I G, Guascito M R, Salvi A M, et al. Catalytic oxidation and flow detection ofhydrazine compounds at a nafion/ruthenium3+chemically modified electrode. Anal Chim Acta,1997,354:333341.
    [102] Safavi A, Baezzat M R, Flow injection chemiluminescence determination of hydrazine. AnalChim Acta,1998,358:121125.
    [103] Collins G E, Latturner S, Rose-Pehrsson S L. Chemiluminescence detection of hydrazinevapor, Talanta,1995,42:543551.
    [104] Weeks R W, Yasuda S K, Dean B K. Fluorescent detection of hydrazines via fluorescamineand isomeric phthalaldehydes, Anal Chem,1976,48:159161.
    [105] Collins G E, Rose-Pehrsson S L. Sensitive, fluorescent detection of hydrazine viaderivatization with2,3-naphthalene dicarboxaldehyde. Anal Chim Acta,1993,284:207215.
    [106] Collins G E, Rose-Pehrsson S L. Fluorescent detection of hydrazine, monomethylhydrazine,and1,1-dimethylhydrazine by derivatization with aromatic dicarbaldehydes. Analyst,1994,119:19071913.
    [107] Ensafi A A, Rezaei B. Flow injection determination of hydrazine with fluorimetric detection.Talanta,1998,47:645649.
    [108] Collins G E, Rose-Pehrsson S L. Fluorescent detection of hydrazine, monomethylhydrazine,and1,1-dimethylhydrazine by derivatization with aromatic dicarbaldehydes. Analyst,1994,119:19071913.
    [109] Harris W, Stone K. Reaction of hydrazine with acetic acid at25degrees. J Org Chem,1958,23:20322034.
    [110] Malone H E, Biggers R A. The gas-chromatographic separation of mixtures of hydrazine,methylhydrazine and1,1-dimethylhydrazine. Anal Chem.1964,36:10371039.
    [111] Penneman R A, Audrieth L F. Quantitative determination of hydrazine. Anal Chem.1948,20:10581061.
    [112] Abdou H M, Medwick T. Kinetics of the reactions of hydrazine and acethydrazide withacetic acid. J Org Chem.1978,43:1518.
    [113] Irving H M N H, Freiser H, West T S, eds. IUPAC compendium of analytical nomenclature,definitive rules. Oxford: Pergamon Press,1981.
    [114] Suzuki K, Ando T. Studies on protamines. XVII. The complete amino acid sequence ofclupeine. J Biochem,1972,72:14191432.
    [115] Ando T, Yamasaki K, Suzuki K. Protamines: isolation, characterisation, structure and function.Berlin: Springer Verlag,1973.
    [116] Jaques L B. Protamine: antagonist to hepatin. J Can Med Assoc,1973,108:12911297.
    [117] O’Reilly R A. The pharmacological basis of therapeutics. Goodman A G, Gilman L S, GilmanA, eds. New York: Macmillan,1980:1347.
    [118] Brange J. Galenics of insulin berlin. Berlin: Springer-Verlag,1987:34.
    [119] Okamoto Y, Ogawa K, Motohiro T, et al. Primary structure of scombrine γ, protamine isolatedfrom spotted mackerel (scomber australasicus). J Biochem,1993,113:658–664.
    [120] Weber C J. A modification of Sakaguchi's reaction for the quantitative determination ofarginine. J Biol Chem,1929,86:217–222.
    [121] Sakaguchi S. A new method for the colorimetric determination of arginine. J Biochem,1950,37:231236.
    [122] Meyerhoff M E, Fu B, Bakker E, et al. Polyion-sensitive membrane electrodes for biomedicalanalysis. Anal Chem,1996,68:A168A175.
    [123] Ramamurthy N, Baliga N, Wakefield T W, et al. Determination of low-molecular-weightheparins and their binding to protamine and a protamine analog using polyion-sensitivemembrane electrodes. Anal Biochem,1999,266:116124.
    [124] Fu B, Bakker E, Yun J H, et al. Response mechanism of polymer membrane-basedpotentiometric polyion sensors. Anal Chem,1994,66:22502259.
    [125] Xiao K P, Kim B Y, Bruening M L. Detection of protamine and heparin using electrodesmodified with poly(acrylic acid) and its amine derivative. Electroanalysis,2001,13:14471453.
    [126] Mathison S, Bakker E. Renewable pH cross-sensitive potentiometric heparin sensors withincorporated electrically charged H+ionophores. Anal Chem,1999,71:46144621.
    [127] Chan J K, Thompson J W, Gill T A. Quantitative determination of protamines by coomassieblue G assay. Anal Biochem,1995,226:191–193.
    [128] Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folin phenolreagent. J Biol Chem,1951,193:265–275.
    [129] Smith P K, Krohn R I, Hermanson G T, et al. Measurement of protein using bicinchoninicacid. Anal Biochem,1985,150:76–85.
    [130] Wang M, Zhang D Q, Zhang G X, et al. The convenient fluorescence turn-ondetection of heparin with a silole derivative featuring an ammonium group. ChemCommun,2008:44694471.
    [131] Caplia I, Linhardt R J. Heparin-protein interactions. Angew Chem Int Ed,2002,41:390412.
    [132] Lorentsen R H, Graversen J H, Catter N R, et al. The heparin-binding site in tetranectin islocated in the N-terminal region and binding does not involve the carbohydrate recognitiondomain. Biochem J,2000,347:8387.
    [133] Tang B Z, Geng Y, Lam J W Y, et al. Processible Nanostructured,materials with electricalconductivity and magnetic susceptibility: Preparation and properties of maghemite polyanilinenanocomposite films. Chem Mater,1999,11:15811589.
    [134] Wang Y X, Huang X, Li Y J, et al. Aggregation properties of zwitterionic surfactants withdifferent ionic headgroups, hydrophobic chain length and inter-charge spacers. Colloids andSurfaces A: Physicochem Eng Aspects,2009,333:108114.
    [135] Wang M, Zhang D Q, Zhang G X, et al. The convenient fluorescence turn-on detection ofheparin with a silole derivative featuring an ammonium group. Chem Commun,2008:44694471.
    [136] Sorgi F L, Bhattacharya S, Huang L.Potentiation of cationic liposome-mediated gene deliveryby polycations. Gene Ther,1997,4:961968.
    [137] Sigel H. Metal ions in biological systems. vol.12: Properties of copper. Boca Raton: CRCPress,1981.
    [138] Waggoner D J, Bartnikas T B, Gitlin J D. The role of copper in neurodegenerative disease.Neurobiol. Dis.,1999,6:221230.
    [139] High B, Bruce D, Richter M M. Determining copper ions in water usingelectrochemiluminescence. Anal Chim Acta,2001,449:1722.
    [140] Tapia L, Suazo M, Hodar C, et al. Copper exposure modifies the content and distribution oftrace metals in mammalian cultured cells. Biometals,2003,16:169174.
    [141] Wu Q, Anslyn E V. Catalytic signal amplification using a heck reaction. An example in thefluorescence sensing of Cu2+. J Am Chem Soc,2004,126:1468214683.
    [142] Graf N, Goeritz M, Kraemer R. A metal-ion-releasing probe for DNA detection by catalyticsignal amplification. Angew Chem,2006,45:40134015.
    [143] Mokhir A, Kraemer R. Double discrimination by binding and reactivity in fluorescent metalion detection. Chem Commun,2005,22442246.
    [144] Zhou Z, Fahrni C J. A fluorogenic probe for the Copper+-catalyzed azide-alkyne ligationreaction: modulation of the fluorescence emission via3(n,π*)-1(π, π*) inversion. J Am ChemSoc,2004,126:88628863.
    [145] Dujols V, Ford F, Czarnik A W. A long-wavelength fluorescent chemodosimeter selective forCu2+ion in water. J Am Chem Soc,1997,119:73867387.
    [146] Kierat R M, Kraemer R. A fluorogenic and chromogenic probe that detects the esteraseactivity of trace copper2+. Bioorg Med Chem Lett,2005,15:48244827.
    [147] Fife T H, Przystas T J. Divalent metal ion catalysis in the hydrolysis of esters of picolinic acid.Metal ion promoted hydroxide ion and water catalyzed reactions. J Am Chem Soc,1985,107:10411047.
    [148] Kovács J, R dler T, Mokhir A. Chemodosimeter for Cu2+detection based on cyclic peptidenucleic acids. Angew Chem Int Ed,2005,45:78157817.
    [149] Xiang Y, Li N, Chen X T, et al. Highly sensitive and selective optical chemosensors fordetermination of Cu2+in aqueous solution. Talanta,2008,74:11481153.
    [150] Qi X, Jun E J, Xu L, et al. New BODIPY derivatives as OFF-ON fluorescent chemosensorand fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+. JOrg Chem,2006,71:28812884.
    [151] Ariga K, Vinu A, Hill J, et al. Coordination chemistry and supramolecular chemistry inmesoporous nanospace. Coord Chem Rev,2007,251:25622591.
    [152] Melde B, Johnson B. Mesoporous materials in sensing: morphology and functionality at themeso-interface. Anal Bioanal Chem,2010,398:15651573.
    [153] Gao L, Wang J, Huang L, et al. Novel inorganic organic hybrid fluorescencechemosensor derived from SBA-15for copper cation. Inorg Chem,2007,46:1028710293.
    [154] Meng Q, Zhang X, He C, et al. Multifunctional mesoporous silica material used fordetection and adsorption of Cu2+in aqueous solution and biological applications in vitro andin vivo. Adv Funct Mater,2010,20:17.
    [155] Li L, Sun H, Fang C, et al. Optical sensors based on functionalized mesoporous silicaSBA-15for the detection of multianalytes (H+and Cu2+) in water. J Mater Chem,2007,17:44924498.
    [156] De Vos D, Dams M, Sels B, et al. Ordered mesoporous and microporous molecularsievesfunctionalized with transition metal complexes as catalysts for selective organictransformations. Chem Rev,2002,102:36153640.
    [157] Taguchi A, Schüth F, Ordered mesoporous materials in catalysis. Micropor Mesopor Mater,2005,77:145.
    [158] Kim Y, Yi J, Advances in environmental technologies via the application of mesoporousmaterials. J. Ind. Eng. Chem.,2004,10:4151.
    [159] Vinu A, Hossain K, Ariga K. Recent advances in functionalization of mesoporous silica. JNanosci Nanotech,2005,5:347375.
    [160] Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporous organic-inorganic hybridmaterials. Angew Chem Int Ed,2006,45:32163251.
    [161] Basabe-Desmonts L, Reinhoudt D N, Crego-Calama M. Design of fluorescent materials forchemical sensing. Chem Soc Rev,2007,36:9931017.
    [162] Yajima S, Nakajima T, Higashi M. Drastic selectivity reversal on crown-ether basedion-sensing membranes made of ordered mesoporous silica and conventional sol-gel derivedone. Chem Commun,2010,46:19141916.
    [163] Jin Y H, Li A, Hazelton S G, et al. Amorphous silica nanohybrids: synthesis, properties andapplications. Coordin Chem Rev,2009,253:29983014.
    [164] Yamaguchi A, Uejo F, Yoda T, et al. Self-assembly of a silica–surfactant nanocomposite in aporous alumina membrane. Nat Mater,2004,3:337341.
    [165] Stein A, Melde B, Schroden R. Hybrid inorganic-organic mesoporous silicates-nanoscopicreactors coming of age. Adv Mater,2000,12:14031419.
    [166] Yamaguchi A, Kaneda H, Fu W S, et al. Structural control ofsurfactant-templated mesoporous silica formed inside columnar alumina pores. Adv Mater,2008,20:10341037.
    [167] Yamaguchi A, Teramae N. Fabrication and analytical applications of hybrid mesoporousmembranes. Anal Sci,2008,24:2530.
    [168] Gao L, Wang Y, Wang J, et al. A novel Zn2+-sensitive fluorescent chemosensor assembledwithin aminopropyl-functionalized mesoporous SBA-15. Inorg Chem,2006,45:68446850.
    [169] Sarkar K, Dhara K, Nandi M, et al. Selective Zinc2+-Ion fluorescence sensing by afunctionalized meso-porous material covalently grafted with a fluorescentchromophore and consequent biological applications, Adv Funct Mater,2009,19:223234.
    [170] Xiang Y, Tong A, Jin P, et al. New fluorescent rhodamine hydrazone chemosensor for Cu2+with high selectivity and sensitivity. Org Lett,2006,13:28632866.
    [171] Dujols V, Ford F, Czarnik A W. A long-wavelength fluorescent chemodosimeter selective forCu(II) ion in water. J Am Chem Soc,1997,119:73867387.
    [172] Lu Y, Liu J W. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ions in aqueoussolution with high sensitivity and selectivity. J Am Chem Soc,2007,129:98389389.
    [173] Gennadii V, Kudryavtsev G, Miltchenko D, et al. Ion sorption on modified silica surface. JColloid Interface Sci,1990,140:114122.
    [174] Manu V, Haresh M, Hari C, et al. Adsoprtion of Cu2+on amino functionalized silica gel withdifferent loading. Ind Eng Chem Res,2009,48:89548960.
    [175] Samuel I D W, Turnbull G A, Organic semiconductor lasers. Chem Rev,2007,107:12721295.
    [176] Scherf U, Riechel S, Lemmer U, et al. Conjugated polymers: lasing and stimulated emission.Curr Opin Solid State Mater Sci,2001,5:143154.
    [177] Asahi T, Sugiyama T, Hasuhara H. Laser fabrication and spectroscopy of organicnanoparticles. Acc Chem Res,2008,41:17901798.
    [178] Zhu X, Gindre D, Mercier N, et al. Stimulated emission from a needle-like single crystal of anend-capped fluorene/phenylene co-oligomer. Adv Mater,2003,15:906909.
    [179] Pschirer N G, Kohl C, Fabian N, et al. Pentarylene-and hexarylenebis (discarboximide)s: nearinfrared-absorbing polyaromatic dyes. Angew Chim Int Ed,2006,45:14011404.
    [180] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers.Nature,1999,397:121128.
    [181] Zang L, Che Y K, Moore J S. One-dimensional self-assembly of planar π-conjugatedmolecules: adaptable building blocks for organic nanodevices. Acc Chem Res,2008,41:15961608.
    [182] Kind H, Yan H, Law M, et al. Nanowire ultraviolet photodetectors and optical switches. AdvMater,2002,14:158160.
    [183] Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: field-effect transistorwith a polythiophene thin film. Appl Phys Lett,1986,49:12101212.
    [184] Fichou D, Delysee S, Nunzi J M. First evidence of stimulated emission from a monolithicorganic single crystal: α-Octithio-phene. Adv Mater,1997,9:11781181.
    [185] Yanagi H, Ohara T, Morikawa T. Self-waveguided gain-narrowing of blue light emissionfrom epitaxially oriented p-sexiphenyl crystals. Adv Mater,2001,13:14521455.
    [186] Nagawa M, Hibino R, Hotta S, et al. Emission gain narrowing from single crystals of athiophene/phenylene co-oligomer. Appl Phys Lett,2002,80:544546.
    [187] Wang Y B, Fu H B, Peng A D,et al. Distinct nanostructures from isomeric molecules ofbis(iminopyrrole) benzenes: effects of molecular structures on nanostructural morphologies.Chem Commun,2007:16231625.
    [188] Ishi-I T, Murakami K, Iami Y, et al. Self-assembled fluorescent hexaazatriphenylenes that actas a light-harvesting antenna. J Org Chem,2006,71:57525760.
    [189] Shimizu M, Takeda Y, Higashi M, et al.1,4-Bis(alkenyl)-2,5-dipiperidinobenzenes: minimalfluorophores exhibiting highly efficient emission in the solid state. Angew Chem Int Ed,2009,48:36533656.
    [190] Zhao Z J, Wang Z M, Lu P, et al. Structural modulation of solid-state emission of2,5-bis(trialkylsilylethynyl)-3,4-diphenylsiloles. Angew Chem Int Ed,2009,48:76087611.
    [191] Wang F, Han M Y, Mya K Y, et al. Aggregation-driven growth of size-tunable organicnanoparticles using electronically altered conjugated polymers. J Am Chem Soc,2005,127;1035010355.
    [192] Zhang H Y, Zhang Z L, Ye K Q, et al. Organic crystals with tunable emission colors based ona single organic molecule and different molecular packing structures. Adv Mater,2006,18:23692372.
    [193] Jiang Y H, Wang Y C, Hua J L, et al. Multibranched triarylamine end-capped triazines withaggregation-induced emission and large two-photon absorption cross-sections. ChemCommun,2010,46:46894691.
    [194] Oelkrug D, Tompert A, Gierschner J, et al. Tuning of fluorescence in films and nanoparticlesof oligophenylenevinylenes. J Phys Chem B,1998,102:19021907.
    [195] Adhikari R M, Neckers D C.Photophysical study of blue, green, and orange-red light-emittingcarbazoles. J Org Chem,2009,74:33413349.
    [196] Cheon J D, Mutai T, Araki K. Tuning of fluorescence properties of aminoterpyridinefluorophores by N-substitution. Org Biomol Chem,2007,5:27622766.
    [197] Biradha K, Mahata G. A3D-honeycomb network with unique encapsulation of dimers of1D-chains. Cryst Growth Des,2005,5:4951.
    [198] Cheon D J, Mutai T, Araki K. Tuning of fluorescence properties of aminoterpyridinefluorophore by N-substitution. Org. Biomol. Chem.,2007,5:27622766.
    [199] Plass K E, Grzesiak A L, Matzger A J. Molecular packing and symmetry of two-dimensionalcrystals. Acc Chem Res,2007,40:287293.
    [200] Hadjoudis E, Mavridis I M. Photochromism and thermochromism of Schiff bases in thesolid state: structural aspects. Chem Soc Rev,2004,33:579588.
    [201] Harada J, Fujiwara T, Ogawa K. Crucial role of fluorescence in the solid-statethermochromism of salicylideneanilines. J Am Chem Soc,2007,129:1621616221.
    [202] Arod F, Pattison P, Schenk K J, et al. Polymorphism in N-salicylideneaniline reconsidered.Cryst Growth Des,2007,7:16791685.
    [203] Zi ek M, Gil M, Organero J A et al. What is the difference between the dynamics of anion-and keto-type of photochromic salicylaldehyde azine? Phys Chem Chem Phys,2010,12:21072115.
    [204] Hoshino N, Inabe T, Mitani T, et al. Thermally induced intramolecular proton transfer in theN,N′-bis(salicylidene)-p-phenylenediamine crystals. Bull Chem Soc Jpn,1988,61:42074214.
    [205] Guo L, Wang Q L, Jiang Q Q, et al. Anion-triggered substituent-dependent conformationalswitching of salicylanilides. New hints for understanding the inhibitory mechanism ofsalicylanilides. J Org Chem.2007,72:99479953.
    [206] Zhao Y S, Xu J J, Peng A D, et al. Optical waveguide based on single crystalline organicmicrotubes. Angew Chem Int E.,2008,47:73017305.
    [207] Yang P, Yan H, Mao S, et al. Controlled growth of ZnO nanowires and their opticalproperties. Adv Funct Mater,2002,12:323331.
    [208] Law M, Sirbuly D L, Johnson J C, et al. Nanoribbon waveguides for subwavelength photonicsintegration. Science,2004,305:12691273.
    [209] Syunroku T. Application of thermochromic materials to textiles. Kino Zairyo,1989,9:3945.
    [210] Marinkovic M, Nikolic R, Savovic J, et al. Thermochromic complex compounds in phasechange materials: possible application in an agricultral greenhouse. Sol Energ Mat Sol C,1998,51:404411.
    [211] Stepthen M B, John G, Andrew D T. Reversibly thermochromic systems based onpH-sensitive spirolactone-derived fundctional dyes. J Mater Chem,1998,8:26772685.
    [212] Ritesh G, Manish P, Ranjan G.3,6-Disubtituted fluorans containing4(3H)-quinazolinon-3-yl,diethyl amino groups and their application in reversible thermochromic materials. Dyes Pigm.2005,66:713.
    [213] Ikeda T, Mamiya J I, Yu Y. Photomechanics of liquid-crystalline elastomers and otherpolymers. Angew Chem Int Ed,2007,46:506528.
    [214] Sagara Y, Kato T. Mechanically induced luminescence changes in molecular assemblies.Nature Chem,2009,1:605610.
    [215] Mutai T, Satou H, Araki K. Reproducible on–off switching of solid-state luminescence bycontrolling molecular packing through heat-mode interconversion. Nature Mater,2005,4:685687.
    [216] Zhao Y F, Gao H Z, Fan Y, et al. Thermally induced reversible phase transformationsaccompanied by emission switching between different colors of two aromatic-aminecompounds. Adv Mater,2009,21:31653169.
    [217] Davis R, Rath N P, Das S. Thermally reversible fluorescent polymorphs of alkoxy-cyanosubstituted diphenylbutadiene: role of crystal packing in solid state fluorescence. ChemCommun,2004:7476.
    [218] Bell T D M, Bhosale S V, Forsyth C M, et al. Melt-induced fluorescent signature in a simplenaphthalenediimide. Chem Commun,2010,46:48814883.
    [219] Li S Y, Wang Q, Qian Y, et al. Pressure induced emission enhancement for triple fluorescentcompound with excited state intramolecular proton transfer. J Phys Chem A2007,111:1179311880.
    [220] Mutai T, Tomoda H, Ohkawa T, et al. Switching of polymorph-dependent ESIPTluminescence of an imidazo[1,2-a]pyridine derivative. Angew Chem Int Ed,2008,47:95229524.
    [221] Anthony S P, Draper S M. Assembly of one-dimensional organic luminescent nanowiresbased on quinacridone derivatives. J Phys Chem C,2010,114:1170811716.
    [222] Sagara Y, Kato T. Stimuli-responsive luminescent liquid crystals: changeof photoluminescent colors triggered by a shear-induced phase transition. Angew Chem IntEd,2008,47:51755178.
    [223] Sagara Y, Yamane S, Mutai T, et al. A stimuli-responsive, photoluminescent,anthracene-based liquid crystal: emission color determined by thermal and mechanicalprocesses. Adv Funct Mater,2009,19:18691875.
    [224] Kozhevnikov V N, Donnio B, Bruce D W. Phosphorescent, terdentate, liquid-crystallinecomplexes of platinum2+: stimulus-dependent emission. Angew Chem Int Ed,2008,47:62866289.
    [225] L we C, Weder C. Oligo(p-phenylene vinylene) excimers as molecular probes:deformation-induced color changes in photoluminescent polymer blends. Adv Mater,2002,14:16251629.
    [226] Crenshaw B R, Weder C. Deformation-induced color changes inmelt-processed photoluminescent polymer blends. Chem Mater,2003,15:47174724.
    [227] Kinami M, Crenshaw B R, Weder C. Polyesters with built-in deformation and thresholdtemperature sensors. Chem Mater,2006,18:946955.
    [228] Weder C. Polymers react to stress. Nature,2009,459:4546.
    [229] Yamamoto T, Muramatsu Y, Lee B L, et al. Chemical reactivity, packing structure,piezochromism, conductivity, and liquid crystalline and photonic properties of the polymers.Chem Mater,2003,15:43844393.
    [230] Kato T. Self-Assembly of phase-segregated liquid crystal structures. Science,2002,295:24142418.
    [231] Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organizedsoft materials. Angew Chem Int Ed,2005,45:3865.
    [232] Davis D A, Hamilton A, Yang J L, et al. Force-induced activation of covalent bonds inmechanoresponsive polymeric materials. Nature,2009,459:6872.
    [233] Rettig W. Topics of current chemistry, vol.169. Mattey J, ed. Berlin: Springer,1994:253.
    [234] Davis R, Das S, George M V, et al. Intramolecular charge transfer and photochemicalisomerization in donor/acceptor-substituted butadienes. J Phys Chem A,2001,105:47904798.
    [235] Davis R, Saleesh K N S, Abraham S, et al. Molecular packing and solid-states fluorescence ofalkoxy-cyano substituted diphenylbutadienes: structure of the luminescent aggregates. J PhysChem C,2008,112:21372146.
    [236] Kunzelman J, Kinami M, Crenshaw B R, et al. Oligo(p-phenylene vinylene)s as a “new” classof piezochromic fluorophores. Adv Mater,2008,20:119122.
    [237] Mizuguchi J, Tanifuji N, Kobayashi K. Electronic and structural characterization of apiezochromic indigoid:11-(3'-oxodihydrobenzothiophen-2'-ylidene)cyclopenta[1,2-b:4,3-b']dibenzothiophene. J Phys Chem B,2003,107:1263512638.
    [238] Ariga K, Nakanishi T, Terasaka Y, et al. Piezoluminescence at the air-water interface throughdynamic molecular recognition driven by lateral pressure application. Langmuir2005,21:976981.
    [239] Sheth A R, Lubach J W, Munson E J, et al. Mechanochromism of piroxicam accompanied byintermolecular proton transfer probed by spectroscopic methods. J Am Chem Soc,2005,127:66416651.
    [240] Duer M J. Introduction to solid-state NMR spectroscopy. Oxford: Blackwell,2004.
    [241] Gill R E, vanHutten P F, Meetsma A, et al. Synthesis and crystal structure of acyano-substituted oligo(p-phenylenevinylene). Chem Mater,1996,8:13411346.
    [242] Kishikawa K, Furusawa S, Yamaki T, et al. Novel superstructure of nondiscoidmesogens: uneven-parallel association of half-disk molecules,3,4,5-trialkoxybenzoicanhydrides, to a columnar structure and its one-directionally geared interdigitation. J AmChem Soc,2002,124:15971605.
    [243] Yasuda T, Imase T, Nakamura Y, et al. New alternative donor-acceptor arrangedpoly(aryleneethynylene)s and their related compounds composed of five-memberedelectron-accepting1,3,4-thiadiazole,1,2,4-triazole, or3,4-dinitrothiophene units: synthesis,packing structure, and optical properties. Macromolecules,2005,38:46874697.
    [244] Cacelli I, Feretti A, Girlanda M, et al. A two-state computational investigation of the methaneC-H and ethane C-C oxidative addition. Chem Phys,2006,320:8494.
    [245] Haino T, Tanaka M, Fukazawa Y. Self-assembly of tris(phenylisoxazolyl)benzene and itsasymmetric induction of supramolecular chirality. Chem Commun,2008:468470.
    [246] Kasha M. Spectroscopy of the excited state. New York:Plenum Press,1976:337.
    [247] Langhals H, Potrawa T, N th H, et al. Molecular mechanism of the solid-state fluorescencebehavior of the organic pigment yellow101and its derivatives. Angew Chem Int Ed Engl,1989,28:478480.
    [248] Ooyama Y, Okamoto T, Yamaguchi T, et al. Heterocyclic quinol-type fluorophores. ChemEur J,2006,12:78277838.
    [249] Xie Z, Wang H, Li F, et al. Crystal structure of a highly luminescent slice crystal grown in thevapor phase: a new polymorph of2,5-diphenyl-1,4-distyrylbenzene. Cryst Growth Des,2007,7:25122516.
    [250] Feast W J, L venich P W, Puschmann H, et al. Synthesis and structure of4,4′-bis(2,3,4,5,6-pentafluorostyryl)stilbene, a self-assembling J-aggregate based onaryl-fluoroaryl interactions. Chem Commun,2001:505506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700