制作工艺及辐射交联对PMMA性能影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔修复学临床工作主要是为患者制作各种义齿及颌面赝复体等。用于义齿基托制作的材料有金属和树脂两大类,树脂基托具有颜色好、易成型、易修理、价格便宜等特点,目前在我国仍广泛应用于临床。改进可摘义齿树脂基托材料力学性能一直是修复专业的主要研究方向。随着科学技术的进步,树脂基托性能改进方法也发生了巨大变化,新的方法不断涌现,但目前这些新技术仍不能完全满足树脂基托力学性能的要求。在义齿的使用过程中,会因各种原因造成树脂基托的折裂,虽然许多学者采用各种方法加强树脂基托的强度,但每种方法都有不同程度的缺陷,如成本过高、设备昂贵、操作复杂、没有适于临床应用的配套设备、易形成局部应力集中、影响基托色泽以及基托局部难以缓冲、加强物与树脂基质粘结不好、纤维外露对粘膜有激惹症状等,这些都限制了临床的应用。
     工业上树脂改性的方法包括表面改性及整体改性。表面改性仅作用于树脂的表面,主要是改变树脂表面的一些特性,不能对树脂的整体性能加以改进,因此应用有一定局限。
     自20世纪50年代发现高能电离辐射可以引发聚乙烯交联聚合
    
    第四军医大学博士学位论文
    反应以来,辐射化学急速发展起来,辐射技术不仅应用于开发新的
    材料,目前更多的是应用于对原有材料的改性研究。高分子辐射交
    联技术就是利用高能或电离辐射引发聚合物电离与激发,从而产生
    一些次级反应,进一步引起化学反应,实现高分子间交联网络的形
    成,是聚合物改性制备新型材料的有效手段之一。辐射交联改性的
    优点在于穿透力强,不用交联剂,可在室温下进行,所以可在制品成
    型后进行交联,并保证树脂制品不发生变形。因此本研究在分析制
    作工艺对义齿树脂基托力学性能及质量影响的基础上利用高能辐
    射技术对PMMA材料进行辐射交联改性研究,并就辐射剂量和辐
    射时间对PMMA材料辐射交联后力学性能的影响进行实验,探索
    出一种新的改进PMMA基托性能的方法,提出适合PMMA树脂
    辐照的剂量和时间。
     本实验研究可得到如下结果:
    1 .PMMA单体含量增加,材料的弹性模量和布氏硬度降低;
    单体含量减少,冲击强度增加,弯曲强度降低。
    2.丝状期充填的PMMA,弯曲强度和冲击强度均降低;面团
    后期充填的PMMA,冲击强度提高。建议临床应用时将充填时
    期调整为面团后期,以获得更好的力学性能。
    3.热处理时若将PMMA直接置入70℃温水中恒温9h,或直
    接置入100℃沸水中,均会造成材料的力学性能降低。由此提
    示技工操作时应采用长时间低温处理(70℃温水中恒温1一Zh)
    并升温至100℃,维持0.5一lh,以获得质量优良的义齿。
    4.PMMA热处理完成后出盒温度应控制在40℃或40℃以下,
    才能获得良好的义齿基托力学性能。
    5,影响义齿基托适合性的因素有:粉液比过大过小、长时间
    低温处理未经100℃高温处理或仅经100℃高温处理未经长时
    间低温处理以及高于40℃出盒。
    
    第四军医大学博士学位论文
    6.单体含量过低、充填过早、热处理升温过快、出盒温度过
    高均能使义齿树脂基托材料颜色发生改变,提示操作过程中,
    应严格遵守操作规程,粉液比例适当、缓慢升温及冷却,即可
    保证义齿树脂基托的颜色稳定性。
    7.单体含量降低、丝状期充填和未经高温处理均可增加PMMA
    表面粗糙度。
    8.限氧辐照可以抑制QC一20PMMA的降解反应。
    9.辐照可以对PMMA的力学性能进行改进,在50一lookGy的
    剂量范围内, Qc一20 PMMA的冲击强度、弯曲强度、弹性模量
    和布氏硬度随辐射剂量的增加可分别提高19%、7%、巧.6%、50%。
    10.辐照时间影响PMMA的力学性能,在6一12h范围内,QC一20
    PMMA的冲击强度、弯曲强度、弹性模量和布氏硬度随辐照时
    间的增加可分别提高19%、7%、巧.6%、50%。
The main clinical practice of restorative dentistry is to prepare all kinds of dentures and maxillofacial falses. The materials to prepare denture base include two main categories: metal and resin, the latter is widely used in clinical practice in China for its fine color, good elasticity, easy repairing and low costs. To improve the mechanic properties of resin denture base of removable denture has long been the main research for restorative dentistry. With the development of science and technology, the improvement methods for the mechanic properties of resin denture base have greatly changed with the increasing overflow of new methods. However, these new methods still cannot fully meet the demands of mechanic properties of resin denture base. In the course of denture application,
    
    
    various causes will result in fractures and fissures of resin denture base. Although many scholars have adopted various methods to strengthen resin denture base, each of these methods has manifested some defects such as high costs, expensive instruments, complex operation, lacking of affiliated instruments for the clinical application, liability to form local stress concentration, defect of denture base color or difficulty of local relief of denture base, poor cohesion between intensified products and resin matrices and irritation symptoms of fibers to mucus with the consequences of inapplicability in clinical practices.
    The methods to improve the mechanic properties of resin in industry consist of surface modification and whole modification. Surface modification is only applied to the resin surface, mainly to change some properties of resin surface without the modification to the entirety of resin as a result of limitations in applicability.
    The discovery of high-energy ionized radiation to cause the reaction of crosslinking concentration of polyethylene in 50s of 20th century led to the high development of radiation chemistry with the radiation techniques widely used not only in developing new materials but also mainly in the research of the modification of the original materials. The high-molecule radiation crosslinking technique is to use high energy or ionized radiation to cause ionization and excitation of polymers with the result of occurrences of some sub-reactions to lead in further chemical reactions for the purpose of formations of crosslinking network among high molecules, which is one of the main effective methods for the polymers to modify the new materials. The advantages of radiation crosslinking modification are that this modification does not acquire
    
    crosslinking agents and can be prepared in room temperature. Therefore, the products can be crosslinked after they are molded and this modification can also maintain the original form of the resin products. This study, based on the analysis on effects of preparation technology to the mechanic properties and quality of resin denture base, uses high-energy radiation techniques to study PMMA resin materials with radiation crosslinking methods and some experiments are carried out on the effects of radiation dose volume and radiation time on the mechanic properties of PMMA resin materials after radiation crosslinking, with the purpose to find out a new way to modify the properties of PMMA resin denture base and to point out the proper dose volume and time of radiation to PMMA resin.
    The experimental research has found out the results as follows:
    1.The increase of content of monomer, PMMA leads to the lowering of modulus of elasticity and Brinell hardness; and the decrease of content of monomer, PMMA leads to the increase of impact strength and decrease of bending strength.
    2.PMMA filled during stringy stage shows the decrease of bending strength and impact strength and PMMA filled after doughlike stage shows the increase of impact strength. The suggestion is that filling stage should be arranged after the doughlike stage in clinic to obtain the better mechanic properties.
    3.The heat treatment of PMMA in the warm water of 70 C for 9 hours or directly in the water of 100 C
引文
1.徐君伍.口腔修复学.第三版.北京:人民卫生出版社,1994.219
    2. Deboer J, Vermilyea SG, Brady RE. The effect of carbon fiber orientation on the fatigue resistance and bending properties of two denture resins. J ProsthetDent , 1984; 51: 119—121
    3.张少锋,周敬行,王雅北等.上颌全口义齿及其支持组织的三维有限元分析(正中(牙合)垂直加载).中华口腔医学杂志,1992;27(1):6—9
    4.王惠福.全口义齿基托正中折断的原因分析及处理方法.华西口腔医学杂志,1984;2(3):174—176
    5.李国珍,吕培军,梁惠.总义齿基托纵裂原因的实验研究.中华口腔医学杂志,1992;27(5):279-281
    6.袁井圻.上颌总义齿基托纵折原因分析及预防措施.中华口腔医学杂志,1988;23(4):217-219
    7.白乐康,胡燕萍,张颖.单颌总义齿基托折裂的修理及病因探讨.实用口腔医学杂志,1998;14(1):64-65
    8.于德珍.上中切牙不同排列位置对骨组织及基托影响的力学分析.口腔医学纵横杂志,1998;14(3):147-150
    9. Lambrecht JR, Kydd WL. A functional stress analysis of the maxillary complete denture base. J Prosthet Dent, 1962; 12:865-869
    10. Schneider RL. Diagnosing functional complete denturefractures. J Prosthet Dent, 1985; 54:809-813
    11. Beyli MS, Von Fraunhafer JA. An analysis of cause of fracture of acrylic resin dentures. J Prosthet Dent, 1981; 51:238-242
    12.白保晶,白乐康,李晓红.计及牙尖斜度的上颌全口义齿基
    
    托应力及其分布状况.实用口腔医学杂志,2000;16(2):146-149
    13. Polyzois GL. Acrylic resin denture repair with adhesive resin and metal wires:effects on strength parameters. J Prosthet Dent,1996; 75:381-385
    14. Vallittu RK. The effect of notch shape, and self-cured acrylic resin repair on the fatigue resistance of an acrylic resin denture base. J Oral Rehabil, 1996; 23:108-112
    15. E1-Ghazali-S. On the clinical deformation of maxillary complete denture : Influence of denture-base design and shape of denture-bearing tissue. Acta-Odontol-Scand , 1989; 47:69-73
    16. Matthews E. Stresses indenture bases. J Br Dent, 1956; 100: 167-171
    17. Dipetro GJ , Moergeli JR Significance of the Frankfort-mandibular plane angle to prosthodontics. J Prosthet Dent, 1976; 36; 624-627
    18.李笑梅,郭天文.上颌单颌总义齿基托纵折的原因分析及其预防措施.口腔颌面修复学杂志,2001;2(2):51-53
    19. Robinson JG, McCabe JF. Impact strength of acrylic resin denture base materials with surface defects. Dent Mater, 1993; 9: 355-360
    20. Harrison A, Huggett R. Effect of the curing cycle on residual monomer levels of acrylic resin denture base polymers. J Dent, 1992; 20(6): 370-374
    21. Kawara M, Komiyama O, Kimoto S. Distortion behavior of heat-activated acrylic denture-base resin in conventional and long, low-temperature processing methods. J Dent Res, 1998; 77(6): 1446-1453
    22.吴景轮,马桂芳,汤学华.甲基丙烯酸甲酯塑料热聚中影响
    
    质量因素的实验分析.口腔材料器械杂志,2000;9(3):166-168
    23. Anderson JN. Applied Dental Materials. ed 5. London: Blackwell Scientific Publications, 1976. 58
    24. Bates JF, Stafford GD. Polymeric and denture base specifications. Biomed Eng, 1973; 8:288-292
    25.常复生.义齿基托材料抗折强度的实验研究.现代口腔医学杂志,1996;10(3):142-143
    26.陈治清.口腔材料学.北京:人民卫生出版社,1993.25
    27. Stafford GD, Bates JE, Huggett R. A review of the properties of some denture base polymers. J Dent, 1980; 8:292-297
    28.赵信义,施长溪,谢贺明.高冲击强度义齿基托材料的实验研究.实用口腔医学杂志,1994;10(3):177-178
    29.谢贺明.义齿基托塑料增韧的研究.化学与粘合,1995;11(3):105-107
    30. Rodford RA. Further development and evaluation of high-impact-strength denture base materials. J Dent, 1990; 18:151-156
    31. Shang SW, Williams JW, Soderholm KJ. Using the bond energy density to predict the reinforcing ability of a composite. Journal of Material Science, 1992; 27:4949-4955
    32.俞胜,徐连来,李长福. 纳米(PMMA/SiO_2)义齿基托复合材料的基础研究.天津医科大学学报,2003;9(1):90-92
    33.陈治清.口腔材料学.第二版.北京:人民卫生出版社,1995.58
    34. Wallace PW, Graser GN, Myers ML, et al. Dimensional accuracy of denture resin cured by microwave energy. J Prosthet Dent, 1991; 66(3): 403-407
    35.林映荷,邓红颖,巢永烈.微波加热法及常规水浴法处理聚甲基丙烯酸甲酯基托材料的性能比较研究.华西口腔医学杂志,
    
    1999; 17 (1): 18-20
    36. Bafile M, Graser G, Myers ML, et al. Porosity of denture resin cured by microwave energy. J Prosthet Dent, 1991; 66(2): 269-274
    37. Baysarr A. Use of microwave energy to disinfect a long-term soft lining material contaminated with Candida albicans staphyococcus aureus. J Prosthet Dent, 1998;79 (4): 454-459
    38. Huggett R, Zissis A, Harrison A, et al. Dimensional accuracy and stability of acrylic resin denture bases. J Prosthet Dent, 1992; 68(4): 634-640
    39. Phoenix RD. Introduction of a denture injection system for use with microwaveable acrylic resins. J Prosthodont, 1997; 6(4): 286-291
    40.蔡玉惠,周国兴,王国平.蒸汽压力机热处理义齿基托材料的实验研究.口腔医学,2001;21(3):125-126
    41.施长溪,陈吉华,刘钢.义齿树脂基托热压灌注成型新工艺.中华口腔医学杂志,1994;29(4):252
    42.欧阳芳瑾,张建中.不同固化方式对基托树脂收缩量的影响.上海口腔医学,1999:8(4):200-203
    43. Regli HD. Acrylic resin denture repair with adhesive resin ahd metal wires: Effects on sevength parameters. J Prosthet Dent, 1996; 75(4): 381-385
    44. Jennings RE, Wurrbenhorst AM. The effect of metal reinforcements on the transverse strength of acrylic resin. J Dent for Child, 1960; 27: 162-165
    45. Ruffino AR. Effect of stainless steel strengtheners on fracture resistance of the acrylic resin complete denture base. J Prosthet Dent, 1985; 54(3): 75-79
    46.程为,张振庭,袁玉姝.用金属加固物加强义齿基托抗折强
    
    度的实验研究.北京口腔医学,1998;6(2):69-70
    47.李光元.塑料义齿基托抗折实验.现代口腔医学杂志,1995;9(1):54-55
    48.王雅北,张少锋,周敬行.用有限元法对上颌总义齿塑料基托不同网状加强的效果比较.生物医学工程学杂志,1994;11(3):242-246
    49.施生根,郭天文,欧阳官.钢制支架对义齿塑料基托弯曲强度的影响.第四军医大学学报,1994;15(3):221-223
    50.蔡玉惠,屠苏,张金芬.基托内附不同金属架抗折力的实验研究.口腔医学,1995;15(4):185-186
    51.李智钢,朱发坤,杨玉祥.金属纤维增强树脂基托材料的研制.口腔材料器械杂志,1998;7(4):181-184
    52. Sehajpai SB, Sood VK. Effect of fillers on some physical properties of acrylic resin. J Prosthet Dent, 1989; 61: 746-751
    53. Vallittu PK, Lassila VP. Effect of metal strengthener's surface roughness on fracture resistance of acrylic denture base material. J Oral Rehabil, 1992; 19: 385-389
    54.张雪华.釉质瓷修复.临床口腔医学杂志,1997;13(2):125-127
    55. Rudo DN, Karbhari VM. Physical behaviors of fiber reinforcement to tooth stabilization. Dent Clin North Am, 1999; 43(1): 7-13
    56. Bowman AJ, Manlry TR. The elemination of brakages in upper dentures by reinforcement with carbon fiber. J Br Dent, 1984; 156: 87-92
    57.钱箫羽,姚月玲,孙延.碳纤维织布增强型义齿基托材料的机械性能研究.中国美容医学,2002;11(6):521-523
    58. Chow TW. A study of the reinforcement of dental polymers with
    
    ultra high modulus polyethylene fibres. 1996. PhD thesis, University of London.
    59. Yazdanie N, Mahood M. Carbon fiber acrylic resin composite:an investigation of transverse strength. J Prosthet Dent, 1985; 53:543 -546
    60. Berrong LM, Young JM. Fracture resistance of Kevlar reinforced polymethyl methacrylate resin: a preliminary study. International Journal of Prosthodontics, 1990; 3:391-395
    61.周永明,施长溪,赵信义.芳纶纤维增强聚甲基丙烯酸甲酯基托的机械性能.实用口腔医学杂志,1998;14(4):271-272
    62. Gulay U, Teoman T. Effect of five woven fiber reinforcements on the impact transverse strength of denture base resin. J Prosthet Dent, 1999; 81: 616-622
    63. Grave AM, Chandler HD, Wolfaardt JF. Denture bases acrylic reinforced with modulus fiber. Dental Material, 1985; 1: 185-189
    64. Solnit GS. The effect of methyl methacrylate reinforcement with silane-treated and untreated glass fibers. J Prosthet Dent, 1991 ; 6: 510-516
    65. Vallittu PK, Lassila VP, Lappalainen R. Acrylic resin fiber composite. Part 1: The effect of fiber concentration on fracture resistance. J Prosthet Dent, 1994; 71 : 607-612
    66. Vallittu PK. Acrylic resin fiber composite. Part 2: The effect of polymerization shrinkage of poly methymethacrylate applied to fiber roving on transverse strength. J Prosthet Dent, 1994; 71:613-618
    67.周永明,施长溪,陈吉华.牙科用玻璃纤维增强复合树脂的研究.实用口腔医学杂志,1999;15(3):177-179
    68.张文云,施长溪,陈吉华.高强度玻璃纤维/树脂复合材料的力学性能研究.实用口腔医学杂志,2001;17(3):212-214
    
    
    69.王国庆,程祥荣.玻璃纤维增强复合树脂在总义齿基托中的应用.口腔颌面修复学杂志,2002;3(2):4-6
    70. Vallittu PK, Narva K. Impact strength of a modified continuous glass fiber poly methymethacrylate. International Journal of Prosthodontics, 1997; 10(2): 142-148
    71. Vallittu PK. Glass fiber reinforcement in repaired acrylic resin removeable denture : Preminary results of a clinic study. Quintessence Interational, 1997; 28:39-44
    72. Guttetidge DL. Reinforcement of poly(methyl methacrylate)with ultra high modulus polyethylene fiber. J Prosthet Dent, 1992; 67:500-506
    73. Ladizesky NH, Pang MKM, Chow TW. Acrylic resin reinforced with woven highly drawn linear polyethylene fibers. Mechanical properties and further aspects of denture construction. Australian Dental Journal, 1993; 38:28-35
    74. Ladizesky NH, Chow TW. Reinforcement of complete denture bases with continuous high performance polyethylene fibers. J ProsthetDent, 1992; 68:934-939
    75.孙酣经.医疗、整形、美容用高分子材料及制品.北京:中国工人出版社,1997.136
    76.陈萍,唐立辉,高世扬.硼酸铝晶须对CC—4型BA复合树脂力学性能的影响.牙体牙髓牙周病学杂志,1997;7(1):45-46
    77.刘大为,邓燕,隋智通.碳化硅晶须增强义齿基托挠曲强度的实验研究.口腔材料器械杂志,1995;4(3):102-103
    78. Gilbert JL, Ney DS, Lautenschlage EP. Self reinforced composite poly(methyl methacrylate) : static and fatigue properties. Bio Matefials, 1995; 16: 1043-1048
    79. Jagger DC, Harrison A, Jandt KD. The reinforcement of
    
    dentures. J Oral Rehabil, 1999; 26:185-191
    80.王文广.塑料改性实用技术.北京:中国轻工业出版社,1999.3~6
    81.徐保国.氟塑料表面处理.工程塑料应用,1998;21(3):9-11
    82.陈鹤鸣.高分子材料表面等离子体改性.塑料科技,1982;3(4):4-6
    83.屈晓珍.电火花处理大型三维塑件的进展.塑料科技,1995;16(5):17-20
    84.王庆林.装饰性塑料镀膜工艺研究.电镀与装饰,1998;20(3):17-19
    85.吴金坤.氟塑料的表面改性.塑料,1996;25(1):25-27
    86.肖作顺.化学氧化法提高聚烯烃制品表面的印刷性.塑料科技,1984;5(3):23-26
    87.徐黎明.静电粉末喷涂及应用.塑料科技,1993;14(4):16-18
    88.刘英俊.塑料填充改性.北京:中国轻工业出版社,1998.7
    89.张邦华.大分子偶联剂在PVC/CaCO_3复合体系中应用.中国塑料,1995;9(2):26-28
    90.祝桂香.高分子偶联剂在PVC/CaCO_3复合体系中研究.中国塑料,1997;11(6):43-45
    91.詹茂盛.高分子合金的力学性能与分散粒子尺寸关系.中国塑料,1997;11(6):4-7
    92.罗延龄.热致性液晶高分子增强复合材料研究进展.现代塑料加工应用,1997;9(6):59-62
    93.黄世强.动态硫化PP/EPDM热塑性弹形体(TPE).化工新型材料,1997;20(11):14-17
    94.杨军.聚丙烯结晶行为的控制因素.现代塑料加工应用,1998;
    
    10(4):60-62
    95.易玉华.聚丙烯β型晶的结构与性能.塑料开发,1998;21(1):846-848
    96.刘云杰.注塑件内应力分析.塑料科技,1993;14(3):28-30
    97.朱兆奇,唐晓红.不同分子链结构聚乙烯的交联研究.现代塑料加工应用,1992;4(4):13-15
    98.王剑,刘春阳,黄玉强.交链聚乙烯滚塑技术.中国塑料,2000;14(1):52-55
    99.左瑞森,张广成,何宏伟.聚乙烯的硅烷交联技术进展.塑料,2000;29(6):41-43
    100. Sen AL, Mukherjee B, Bhattacharyya AS, et al. Study of grafting of silances on polyethylene. J Appl Polym Sci, 1992;44: 1153-1160
    101.哈鸿飞,吴季兰.高分子辐射化学.北京:北京大学出版社,2002.10
    102.张志成,葛学武,张曼维.高分子辐射化学.北京:中国科学技术大学出版社,2000.8
    103.朱月群,宁荣昌,解云川.紫外光照射合成高吸水树脂的研究.高分子材料科学与工程,2001;17(4):70~73
    104.陈代涛,施鼐,谢立青.电子束辐照聚丙烯与丙烯酸的接枝共聚合.高分子学报,2000;21(1):32-35
    105.罗祥林,何斌,李赛.表面紫外光接枝润滑改性医用聚氨酯材料.高分子材料科学与工程,2000;16(2):132~135
    106.张聪.辐射交联低温热收缩聚烯烃材料的研制.中国塑料,2001;15(1):45~47
    107.严永昌.聚乙烯电线电缆辐射交联的研究.电线电缆,1991;167:39-41
    108.吴自强,王纲.高分子辐射交联技术的进展.化学建材,2002;
    
    4:10~13
    109.刘树德.辐射加工在国民经济中的应用及发展前景.新材料产业,2003;117(8):37~42
    110.国家标准GB1042-1979塑料弯曲试验方法.北京:中国标准出版社,1980
    111.国家标准GB1043-1979塑料简支梁冲击试验方法.北京:中国标准出版社,1980
    112.郑增葵.口腔应用材料学.西安:第四军医大学,1987.103
    113. Dogan A, Bek B, Cevik NN, et al. The effect of preparation conditions of acrylic denture base materials on the level of residual monomer, mechanical properties and water absorbtion. J Dent, 1995;23: 313-318
    114.吴景轮.口腔修复实用技术.济南:山东科学技术出版社,1993.129
    115.陈治清.口腔材料学.第二版.北京:人民卫生出版社,1995.55
    116. M Tanji SS, Domitti RLX, Consadi S, et al. Influence of curing cycles on the impact strength of acrylic resins. IADR/AADR/CADR 80th General Session(March 6-9, 2002)
    117.郑增葵.口腔应用材料学.西安:第四军医大学,1987.104
    118.陈治清.最新口腔材料学.成都:四川科学技术出版社,1989.79-83
    119.方金素,张春宝,王宝成.不同出盒温度对义齿塑料基托适合性的影响.实用口腔医学杂志,1998;14(3):183
    120.金钦汉,戴树珊,黄卡玛.微波化学.北京:科学出版社,1999.78
    121.刘飞跃,张丽叶.聚乙烯敏化辐射交联研究进展.中国塑料,1999;13(1):10-17
    
    
    122. Spadero G, Valenza A, Aciemo D, et al.The 9th Anual Meeting of the Polymer Processing Society. Manchester, 1993. 283
    123.吴石山,雷景新.紫外辐照聚烯烃官能化及其增容技术进展.现代塑料加工应用,2000;12(3):39-42
    124.汪辉亮.聚乙烯的辐射致色机理研究.辐射研究与辐射工艺学报,2001;19(1):1-6
    125.廖承勤,王琪,王良文.超声辐射引发聚丙烯与丙烯酸的接枝共聚合.高等化学学报,2001;22(7):1237-1240
    126.钱孟平.应用物理化学.辐射化学.上海:华东理工大学出版社,1988.55
    127.陈金周.空气中氧对PE尼龙辐射交联影响的研究.高分子材料科学与工程,1994;10(4):92-95
    128.鹿海军,马晓燕,朱光明.高密度聚乙烯限氧辐射交联改性.高分子材料科学与工程,2003;19(4):204-207
    129.张志成,葛学武,张曼维.高分子辐射化学.北京:中国科学技术大学出版社,2000.108
    130. Kummer S. Sensition radiation crosslinking of PE. J of Appl PolymSci. 1997;64(5): 823-828
    131.陈良.硕士学位论文.上海:华东理工大学,1993
    132.朱希涛主编.口腔修复学.第二版.北京:人民卫生出版社,1992.492-493,496
    133. Latta G H, Jr Bowles W F, Conkin J E. Three dimentional stability of new denture base resin systems. J Prosthet Dent, 1990, 63(6):654-661
    134.陈治清主编.最新口腔材料学.成都:四川科学技术出版社,1989.359
    135.陈治清.口腔材料学.第二版.北京:人民卫生出版社,2001.51-56
    
    
    136.王少海,姚月玲.前牙色彩信息数字化传递的应用研究.中国美容医学,2000;9(6):404-406
    137.徐君伍.口腔修复理论与临床.北京:人民卫生出版社,1999;84
    138.范冲之,施长溪,王继平.义齿塑料基托热压灌注成型新工艺——颜色稳定性的比较研究.实用口腔医学杂志,1998;14(1):27-29
    139. Vallittu PK, Ruyter IE, Buykuilmaz S. Effect of polymerization temperature and time on the residual monomer content of denture base polymers. Eur J Oral Sci, 1998; 106:588-593
    140. Liberman R, Combe EC, Piddock V, et al. Development and assessment of an objective method of color change measurement for acrylic denture base resins. J Oral Rehabil, 1995; 22(6): 445-450
    141.崔东培,张振庭,杨圣辉.钴铬合金表面粗糙度与细菌粘附.口腔颌面修复学杂志,2003;4(1):55-57
    142.李笑梅,郭天文,周中华,王宝成.表面粗糙度对铸造纯钛表面细菌粘附影响的临床研究.中华口腔医学杂志,2001;36(4):289-291
    143. Quirynen M, Van der Mer HC, Bollen CML, et al. An in-vivo study of the surface roughness of implants on the microbiology of supar-and subgingival plaque. DentRes, 1993; 72:1304-1310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700