王草三种降解糖化技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
王草是C4植物,具有植株高大、生长速度快、高生物质产量、多年生等特点,是我国产量最高的热带牧草,因此以王草为原料制取生物燃料乙醇具有巨大的潜力。在利用王草木质纤维原料生成乙醇的过程中,最重要是将高度结晶度和难溶性木质纤维素降解为糖类,再经微生物的发酵作用制取燃料乙醇。
     本论文以热研4号王草(Pennisetum purpureum×P. typhoideum cv. Reyan No.4)为原料,对化学法降解、生物法降解及综合法降解工艺进行了研究,选择适宜的反应条件获得最大还原糖产量,并与麦秆和甘蔗渣进行比较,以期为后续戊糖、己糖发酵制取燃料乙醇提供基础和依据。
     试验结果总结如下:
     1、以还原糖得率作为指标,研究了酸浓度(v/v)、时间、固液比(g/mL)、温度对还原糖得率的影响。在单因素实验的基础上通过二次通用旋转组合试验设计建立了稀硫酸最佳处理工艺,获得了稀硫酸最佳处理工艺参数为:稀硫酸浓度3%,水解温度117℃,水解时间15 min;最佳工艺条件下的还原糖得率分别为王草33.08%;甘蔗渣31.98%;麦秆28.56%。
     2、研究了含不同原料(王草、麦秆、甘蔗渣)的混合发酵培养基中木霉菌(Trichoderma sp.)的诱变菌株H28、赭绿青霉(Penicillium ochro-chloron) SP1、粗毛栓菌(Trametes gallica sp.)的诱变菌株T906分别产纤维素酶、木聚糖酶和漆酶的情况。结果表明,菌株H28和SP1都能较好利用王草产酶,其中H28产羧甲基纤维素酶的最高酶活为80.91U/mL, SP1产木聚糖酶的最高酶活为104.36U/mL。菌株T906能较好利用麦秆产漆酶,其漆酶活力在第1ld达到24118.52 U/L。而三株菌对甘蔗渣的利用效果不好,酶活不高。根据在混合发酵培养基中,酶活力随时间的变化规律,确定三菌混合糖化的最佳时间。结果表明,单独培养8d的T906与单独培养4d的H28、SP1混合,对原料的糖化效率最高,分别为:王草5.85%;麦秆5.44%;甘蔗渣3.60%。
     3、利用H28所产的纤维素酶对稀硫酸处理后的三种样品进行水解,测定了水解后的还原糖含量并计算糖化效率。结果表明,对三种底物进行水解的最适条件为:纤维素酶使用量15 U/g底物,于50-C,酶解72 h。在此条件下,底物酶水解得率分别为:麦秆29.47%;王草17.64%;甘蔗渣15.39%。
The king grass, which is C4 plants with tall, fast growth, high biomass material yield, perennial and other features, is the highest production of tropical grasses in our country. The biological fuel ethanol made from king grass has great potential.In the process of ethanol in the use of king grass wooden fiber as raw material, the most important key point is lignocellulose which high crystallinity and hard woodiness degraded to sugars, and microbial fermentation after.
     In this research, king grass (Pennisetum purpureum×P. typhoideum cv. Reyan No.4) was used as materials in the degradation techniques of chemical, bioanalysis and comprehensive, choose appropriate reaction conditions for maximum reducing sugar production, and compared with wheat-straw and bagasse, which providing foundation and depending of making fuel ethanol from sugar and subsequent sugar fermentation.
     The results were as follows:
     1. The influence of acid concentration, treatment time, solid-to-liquid ratio and temperature on reducing sugar were studied. A general rotatory composed test was done to optimize the process of dilute sulfuric acid pretreatment. Based on the single factor, the results showed that the best pretreatment process was acid concentration was 3%, at 117℃for 15 min, reducing sugars of king grass, bagasse, wheat-straw were 33.08%,31.98%,28.56% respectively under this condition.
     2. The production of carboxy methyl cellulose(CMCase), xylanase and laccase by Trichoderma inductive-mutant strain H28, Penicillium ochro-chloron, named SP1 and Trametes gallica inductive-mutant strain T906 was studied, respectively, in the mixed fermentation medium contained different materials, such as king grass, wheat-straw and bagasse. Results showed that, H28 and SP1 could use king grass producing enzymes. The highest enzyme activity of carboxy methyl cellulose secreted by H28 was 80.91 U/mL, while the xylanase from SP1 reached 104.36 U/mL. T906 could use wheat-straw producing laccase, and the laccase activity was 24118.52 U/L in the eleventh day. Whereas, the effect of bagasse is not good, and the enzyme activity is not high. According to the variation of enzyme production of H28, SP1 and T906 with time in the mixture, the saccharification efficiency was highest when the culture of T906 for 8 days, the culture of H28 and SP1 which had fermented for 4 days, was mix together. After co-cultured, the saccharification efficiencies of king grass and wheat-straw was 5.85% and 5.44% respectively, while that of bagasse was only 3.6%.
     3. The king grass, wheat-straw and bagasse, which was after pretreated with dilute sulfuric acid were hydrolyzed by the cellulose secreted by H28. Resules showed that, it was saitable to hydrolyze the three mterials with 15U/g per gram material, at 50℃for 72h. In this way, the saccharfication efficiency of wheat-straw, king grass and bagasse was about 29.47%,17.64% and 15.39% respectively.
引文
1 安宏.纤维素稀酸水解制取燃料酒精的试验研究[D].[硕士学位论文]浙江大学,2005.
    2 波饮诺克XH著,荆家海,丁钟荣译.植物生物化学分析方法[M].北京:科学出版社,1981:158-181.
    3 伯永科.基于稀酸水解法的纤维素糖化技术研究[D].[硕士学位论文]中国农业科学院,2008.
    4 曾晶,龚大春,田毅红,等.碱法_酶法处理麦秆木质纤维素的工艺研究[J].农产品加工(学刊),2007(10):7-9,21.
    5 陈驹声,胡学智.酶制剂生产技术[M].北京:化学工业出版社.1994.437-455.
    6 陈娜,顾金刚,徐凤花,等.产纤维素酶真菌混合发酵研究进展[J].中国土壤与肥料,2007,4:16-20.
    7 陈育如,夏黎明,吴棉斌,等.植物纤维素原料预处理基础的研究进展[J].化工进展,1999(4):24-26.
    8 陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2002:98-99.
    9 陈志彤,黄勤楼,潘伟彬,等.狼尾草属牧草rDNA的ITS序列分析[J].草业学报,2010,(04):135-141.
    10丁翠华.皇竹草特性及综合开发利用[J].现代化农业,2008(12):33-34.
    11 董璐,李新平.湿氧化法预处理蔗渣对酶水解效率的影响[J].中华纸业.2010(12):86-89.
    12杜风光,冯文生.燃料乙醇发展现状和前景展望[J].现代化工,2006,26(1):6-9.
    13杜申奎,张根国.皇竹草的开发价值及栽培技术[J].河南林业科技,2002,(03):42-43.
    14杜申奎.皇竹草的开发价值及栽培技术[J].2002(03).
    15杜申奎.水土保持/滩涂绿化、畜禽养殖新品种,牧草之王——皇竹草的开发价值及栽培技术[J].湖北林业科技,2001(04).
    16冯玉杰,李冬梅,任南琪.混合菌群用于纤维素糖化和燃料酒精发酵的试验研究[J].太阳能学报,2007.4:375-379.
    17高洁,汤烈贵.纤维素科学[M].科学出版社,1996:183-189.
    18韩永芬,赵名坤.皇草微贮饲料的制作及对羊补饲的增重效果[J].贵州畜牧兽医,1997,21(6):27-28.
    19何泽超.纤维素的酶水解及超声波对其加速作用的研究[D].[博士学位论文]四川大学,2001.
    20侯冠或,王东劲,周汗林.热研4号王草利用概述[J].热带农业科学,2009,(03):71-74.
    21 计红果,庞浩,张容丽,等.木质纤维素的预处理及其酶解[J].化学通报,2008(5),329-335.
    22江苏省轻化工业厅纤维水解研究所.植物纤维水解生产[M].燃料化学工业出版社,1974.
    23康广博.超声波技术应用于植物木质纤维素预处理及酶水解的研究[D],[硕士学位论文]湖南大 学,2008.
    24李高扬,李建龙,王艳,等.利用高产牧草柳枝稷生产清洁生物质能源研究进展[J].草业科学,2008,25(5):15-21.
    25李静,凌娟,刘茂昌,等.超声波和碱联合预处理对畜禽粪便乙醇化的比较研究[J].重庆师范大学学报(自然科学版),2008,(04):82-85.
    26李瑞阳.21世纪的重要能源—生物质能[J],世界科学,1999,10:25-27.
    27廖双泉,马凤国,廖建和,等.蒸汽爆破处理对剑麻纤维组分分离的影响[J],热带作物学报,2003,24(3):27-30.
    28廖双泉,马凤国,邵自强,等.蒸汽爆破处理再椰壳纤维组分分离中的应用[J].热带作物学报,2002,10(2):37-42.
    29廖兴华,夏延斌,周传云.燃料乙醇的发展现状和研究趋势[J].酿酒,2007,34(5):18-20.
    30刘国道,白昌军,王东劲,等.热研4号王草选育[J].草地学报,2002,2(10):92-96.
    31刘国道.热带牧草及草坪草优良品种简介[M].海南:中国热带农业科学院热带牧草研究中心,2002.2-3.
    32刘吉利,朱万斌,谢光辉,等.能源作物柳枝稷研究进展[J].草业学报,2009,(03):232-240.
    33刘庆玉,陈志丽,张敏.木质素降解菌的筛选[J].太阳能学报,2010,(02):73-75.
    34刘荣厚,梅晓岩,颜涌捷主编.燃料乙醇的制取工艺与实例[M].化学工业出版社,2008.
    35龙忠富,赵名坤,韩永芬.EM处理皇草饲喂肉牛效果初探[J].兽药与饲料添加剂,1999,4(2):5-7.
    36龙忠富,赵名坤,韩永芬.EM发酵秸杆料对羊补饲效果初探[J].当代畜牧,1999(4):34-35.
    37卢波,经艳,蔡爱华,等.酸催化蒸汽爆破预处理提高蔗渣酶解性能研究[J].广西科学,2009,16(4):441-445,450.
    38卢月霞,陈凯.纤维素降解菌的筛选及相互作用分析[J].安徽农业科,2007,35(1):11-17.
    39鲁杰,石淑兰,邢效功,等NaOH预处理对植物纤维素酶解特性的影响[J].纤维素科学与技术,2004,(01):1-6.
    40罗国荣.木质纤维素生物质热解产物发酵燃料乙醇研究[D].[硕士学位论文]中国地质大学(北京),2009.
    41 罗艳,郑正,杨世关,等.皇竹草厌氧发酵产沼气特性[J].环境化学,2010,(02):258-261.
    42孟庆祥,鲍思龙,王冠华,等.青霉T24-2和灰绿曲霉EU7-22降解甘蔗渣产糖的研究[J].江西师范大学学报(自然科学版),2009,33(6):733-736.
    43 牛盾.改性稻草的制备及性能研究[D],沈阳.东北大学,2005.
    44秦伟军,陈业富,赵换英,等.玉米芯碱液预处理条件优化[J].农业工程学报,2010,26(4):248-253.
    45瞿亮,徐勇,张红漫,等.蒸汽爆破木质纤维原料的乙醇脱毒研究[J].林产化学与工业,2010,30(1):22-26.
    46沈萍,范秀容,李广武主编.微生物学实验[M].高等教育出版社,2001:124-125.
    47石海英,彭向前,徐伟.皇竹草保健饮料的研制[J].农技服务,2009,(09):59-61.
    48孙宝魁,王东伟.高效稳定纤维素分解混合菌群的筛选及分解特性研究[J].环境科学与管理,2008,9:116-119.
    49孙智谋,蒋磊,张俊波,等.世界各国木质纤维原料生物转化燃料乙醇的工业化进程[J].酿酒科技,2007,1:91-94.
    50 覃益民,吴苗苗,刘幽燕.超声波辅助碱法预处理提高蔗渣酶解糖化活性的研究[J].可再生能源:2009,(06):28-32.
    51 唐爱民,梁文芷.纤维素预处理技术的发展[J],林产化学与工业,1999,19(4):81-86.
    52涂绍勇,杨爱华,胡名龙,等.微波/酸/碱/H2O2预处理稻草及其糖化工艺研究[J].武汉生物工程学院学报.2009,5(01):244-26.
    53涂旭川,朱新祥,涂晓川,等.王草在云南的推广应用[J].中国农村小康科技,2009,(07):45-47.
    54王艳敏,丁长河,李里特,等.树干毕赤酵母发酵半纤维素稀酸水解液生产乙醇的研究进展[J].酿酒科技,2008,(12):97-99.
    55王仪明,张宗舟,蔺海明,等.绿色木霉固态发酵产纤维素酶活力的研究[J]-草业科学,2009,(05):123-127.
    56王应芬,罗京焰,罗纯,等.皇竹草青喂泌乳奶牛的效果[J].当代畜牧,2002(6):35-36.
    57邬敏辰,李江华.里氏木霉固态发酵生产纤维素酶的研究[J].四川食品与发酵,1998:8~15.
    58 肖豪.纤维素稀酸水解糖化工艺的研究[D].[硕士学位论文]中南大学,2010.
    59小云.玉米秸秆湿氧化预处理生产酒精的研究取得新进展[J].农产品加工(学刊),2005,(02):80.
    60谢国强,何余勇,程树芳.玉米、皇草青贮料饲养肉牛效果比较研究[J].黄牛杂志,2004,30(1):1-5.
    61 谢君,孙迅,任路,等.侧耳菌与粗毛栓菌在麦草培养基中产生木质纤维素降解酶的研究[J].生物工程学报,2001,(05):575-578.
    62邢启明.几种能源草转化燃料乙醇研究[D].[硕士学位论文]中国农业科学院,2009.
    63 幸婷,程可可,张建安,等.利用木质纤维原料制取燃料乙醇预处理方法的研究进展[J].现代化工,2007,27增刊(2):92-97.
    64许晓菁,王祥河,何雨青.秸秆燃料乙醇的关键问题与对策[J].食品与发酵工业.2010,36(7):108-113.
    65 杨培周,姜绍通,潘丽军,等.超声波/稀H2SO4预处理对玉米秸秆液体发酵产纤维素酶[J].安徽农业科学,2010,38(1):520-521,537.
    66杨声莲,李登煜,郑林用,等.混合菌在纤维素降解中的作用研究[A].第九届中国青年土壤科学工作者学术会议,2004(17):404---406.
    67杨胜.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社,1993(2):82-84.
    68杨勇,杨红霞,李静,等.超声波强化秸秆乙醇化原料碱预处理效果研究[J].2007,29(7): 149-152.
    69姚广龙,蒋盛军,张伟敏,等.热研4号王草袋泡茶的加工制作及活性成分分析[J].热带作物学报,2009,(12):1883-1886.
    70于德海,王宁.喀斯特地区皇竹草繁育技术及其综合效益研究[J].贵州科学,2007,(01):63-67.
    71 余先纯,李湘苏,龚铮午.响应面优化微波预处杨木发酵制备燃料乙醇研究[J].林业实用技术,2010(9):5-7.
    72余醉,李建龙,李高扬.利用多年生牧草生产燃料乙醇前景[J].草业科学,2009,(09):62-69.
    73袁振宏,孔晓英,颜涌捷,等.芒草稀硫酸水解工艺条件的正交实验[J].太阳能学报,2006,27(6):631-634.
    74张德强,黄镇亚,张志毅.木质纤维生物量一步法(SSF)转化成乙醇的研究进展[J].北京林业大学学报:2001,(06).
    75 张辉.造纸新原料皇竹草[J].造纸信息,2005,(05).28.
    76张纪庄,生物质能利用方式的分析比较[J].能源工程,2003,(2):23-25.
    77张龙翔,张庭芳,李令媛主编.生化实验方法和技术[M].北京:高等教育出版社,1997.
    78张盆,胡惠仁,石淑兰,半纤维素的应用[J],天津造纸,2006,28(2),16-18.
    79张婷.超声波与稀碱法联合预处理对秸秆厌氧发酵产沼气的影响[D].[硕士学位论文],湖北工业大学,2009.
    80张裕卿,付二红,梁江华.超声波对木质纤维素糖化过程影响的研究[J].中国生物工程杂志,2007,27(9):81-84.
    81 郑万里.热碱预处理对秸秆厌氧发酵的影响[D].[硕士学位论文],中国农业大学,2004.
    82郑颖洁,余勃,陆豫.绿色木霉降解稻草秸杆产葡萄糖工艺优化研究[J1.安徽农业科学,2010,38(13):6903-6905,6928.
    83周德明,董晓娜,陈或.竹材木素降解菌发酵条件优化及竹材降解红外光谱分析[J].生物技术,2010(01):73-75.
    84朱道飞,生物质在超临界水中液化转化的实验研究,[硕十学位论文],昆明:昆明理工大学,2004
    85 朱静,王皓.焦曲霉产木聚糖酶的研究.生物工程学报,1999,15(1):76.
    86 Biely P, Mislovicova D, Toman R. Soluble chromogenic substrates for the assay of endo-1,4-β-xylanases and endo endo-1,4-β-glucanases[J]. Analytical Biochemistry,1985,144(1): 142~146.
    87 Chaabouni S E, Hadj-Taieb N, Mosrati R, Ellouz R. Preliminary assessment of penieillium oceitanis cellulase:A further useful system[J]. Enzyme and Microbial Technology.1994.16(6).538~542.
    88 Chosdu R, Hilmy N E, Erlinda T B, Abbas B. Radiation and chemieal pretreatment of cellulosic waste[J]. Radiation Physics and Chemistry.1993.42(4-6).695~698.
    89 Deepak P, Alok A. Enhanced production of ligninolytic enzymes and decolorization of molasses distillery wastewater by fungi under solid statefermentation[J]. Biodegradation,2007, (18):647~659.
    90 Dien B S, Jung H G, Vogel K P, et al. Chemical composition and response to dilute-acid pr etreatment and enzymatic saccharification of alfalfa, reed canarygrass, and swit chgrass[J]. Biomass and Bioenergy,2006,30:880~891.
    91 Esterbauer H, Steiner W, Labudova I, et al. M. produetion of triehoderma cellulose in laboratory and pilot seale[J]. Bioresource Technology,36(1).51~65.
    92 Ghose T K. Measurement of cellulose aetivities[J]. Pure and Applied Chemistry.1987,59:57~68.
    93 Kim S W, Kang S W, Lee J S. Cellulase and xylanase produetion by aspergillus niger KKS in various bioreaetors[J]. Bioresource Technology.1997,59(1):63~67.
    94 Klinke H B, Thomsen A B, Ahring B K.Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobactermathranii[J]. Applied Microbiology and Biotechnology,2001,57(5/6):631~638.
    95 Lee J. Biologieal conversion of lignocellulosic biomass to ethanol[J]. Journal of Biotechnology,1997, 56(1):1~24.
    96 Lynd L R, Weimer P J, Zyl W H, et al. Microbial cellulose uitlization:Fundamentals and Biotechnology. Microbiol[J]. Microbiology and Molecular Biology Reviews,2002,66:506~577.
    97 Miller G L. Use of dinitrosalicylic acid reagent for the determination of reducing sugars[J]. Analytical and Bioanalytical Chemistry,1959,31(3):426~428.
    98 Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:a critieal review[J]. Energy Fuels,2006,20:848~89.
    99 Nguyen Q A, Thcker M P, Boyntonm B L, et al. Dilute-acid pretreatment of softwood[J]. Applied Biochemistry and Biotechnology.1998,70~72,77~87.
    100 Nguyen Q A, Thcker M P, Keller F A, et al. Two-stage dilute-aeid pretreatment of softwood[J]. Applied Biochemistry and Biotechnology.2000,84~86,561~576.
    101 Nora Szijarto, Zsofia Kadar, Eniko Varga, et al. Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production [J]. Applied Biochemistry and Biotechnology. 2009,155,386~396.
    102 Saddler J N. Sereening of highly cellulolytic fungi and the aetion of their cellulose enzyme systems[J]. Enzyme Mierob Technol.1982.4(6):414~418.
    103 Schmidt A S, Thomsen A B. Optimization of wet oxida-tion pretreatment of wheat straw[J]. Bioresource Technology,1998,64:139~151.
    104 Sealey J, Raguskas A J. Residual lignin studies of laccase delignified[J]. Krah pulps,1998, (23): 422-426.
    105 Sun Y, Cheng J Y. Hydrolysis of lignocellulosic materials for ethanol produetion:A review[J]. Bioresource Technology.2002, V83:1~11.
    106 Svetlana V, Mark R M, David F O. Kinetic model for batch cellulose produetion by triehoderma reesel RutC-30 [J]. Journal of Biotechnology,1997,54:83~94.
    107 Tewari H K, Singh L, Marwaha S S, et al. Role of pretreatments on enzymatic hydrolysis of agricultural residues for reducing sugar production [J], Journal of Chemical Technology and Biotechnology,1987,19(5):425~428.
    108 Torget R, Waler P, Himmel M, et al. Dilute acid pretreatment of corn residues and short-rotation woody corps [J]. Applied Biochemistry and Biotechnology,1991,28(29):75~86.
    109 Van Soest P J. Use of detergents in the analysis of fibrous feeds. Ⅱ. a rapid method for the determination of fiber and lignin[J]. Assoc Of Analytical Chemistry,1963,46:829~835.
    110 Vane C H, Martin S C, Snape C E, et al. Degradation of lignin in wheat straw during growth of the oyster mushroom (pleurotus ostreatus) using off-line thermoehemolysis with tetramethylammonium hydroxide and solid-state 13C NMR[J]. Journal of Agricultural and Food Chemistry,2001,49: 2709~2716.
    111 Xu Z, Wang Q H, Jiang Z H, et al. Enzymatic hydrolysis of pretreatedsoybean straw[J]. Biomass and Bioenergy,2007,31(2/3):162~167.
    112 Ye S, Jay J, Cheng. Dilute acid Pretreatment of rye straw and bennudagrass for ethanol production[J]. Bioresourec Technolugy.2005,96,1599~1606.
    113 Yu Z S, Zhang H X. Pretreatments of cellulose pyrolysate for ethanol production by Sacccharom yces cerevisiae, Pichia sp. YZ-1 and Zym om onas mobilis [J]. Biomass and Bioenergy,2003 (24):257-262.
    114 Zhang X L, Zhang H X, Yang J Z, et al. Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation[J]. Bioresource Technology,2001(79):63~66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700