气凝胶催化剂规模化制备多壁碳纳米管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管由于具有一系列优异的性能,从1991年被发现以来,受到物理学家、化学家和材料学家的广泛关注。目前碳纳米管的应用及产业化过程还存在诸多问题,碳纳米管的规模化制备技术尚未成熟。本论文以日产公斤级多壁碳纳米管为目标,利用溶胶-凝胶和超临界流体干燥技术制备的复合气凝胶NiO/SiO_2为催化剂,用催化气相裂解法制备了不同形貌和结构的多壁碳纳米管,系统地研究了裂解反应温度、催化剂的化学组分、反应时间、气体流量等工艺条件对多壁碳纳米管的收得率、形貌和结构的影响,探讨了不同的纯化处理工艺对多壁碳纳米管表面特性和内部结构的影响,并比较由不同碳源气制备的碳纳米管的形貌和结构。在实验室研究的基础上,对多壁碳纳米管的规模化制备进行设计研究,设计出一条多壁碳纳米管规模化制备生产线,制得的多壁碳纳米管纯度高,成本低,具有竞争优势。得到以下结论:
     1.以正硅酸乙酯和硝酸镍为原料,通过合理调变溶胶-凝胶和超临界流体干燥法的制备条件,获得了比表面积在500~1400m~2/g范围内,并具有中孔和微孔结构的二元气凝胶——NiO/SiO_2。
     2.对各工艺参数的研究结果表明:反应温度、催化剂的化学组分、反应时间、气体流量均对多壁碳纳米管的形貌、结构和收得率有重要影响。
     (1)反应温度直接影响着多壁碳纳米管的形貌和收得率。适宜的温度有利于碳纳米管的形成,600~740℃是多壁碳纳米管的适宜生长温度区间,温度过高或过低均使收得率大大降低,在680℃左右,收得率最高(8.6)。温度过低多壁碳纳米管生长不完全,长径比很小,而温度过高合成的产物中含有大量杂质。
     (2)催化剂的化学组分是影响多壁碳纳米管的收得率的关键因素。以n_((Ni)):n_((Si))值不同的气凝胶NiO/SiO_2为催化剂,制各出的多壁碳纳米管收得率差异较大,当气凝胶中n_((Ni)):n_((Si))=4:6时,收得率最高。
     (3)反应时间对多壁碳纳米管的收得率有重要影响,对碳纳米管的形貌影响相对较小。在180min内,随反应时间延长,多壁碳纳米管的收得率呈增长趋势,多壁碳纳米管的长径比增加,而直径的变化不大。超过180min,多壁碳纳米管的收得率增长很慢,最终保持在一个最大值。
     (4)碳纳米管的形貌和收得率随气体流量的变化而变化。CH_4与H_2的流量比例为2:1
Since their discovery in 1991, carbon nanotubes (CNTs) have attracted many scientists to study them due to their excellent properties. At present, many problems about application and industrialization of CNTs need to be solved, and the technology of large-scale preparation of CNTs has not been well developed. In this dissertation, in order to prepare multi-walled carbon nanotubes (MWNTs) at least one kilogram every day, MWNTs with different morphologies and microstructures were prepared by using composite aerogel NiO/SiO_2 as catalyst, which was synthesized using sol-gel and supercritical fluid drying technology. It was studied that how the aerogel component, decomposition temperature, time and gas flow rate affect the yield, morphology and microstructure, and the influence of purifying process of MWNTs was discussed. On the basis of laboratory work, the author designed a set of product line for large-scale preparing MWNTs. Resultant MWNTs have high purity, low cost and competitive advantage. Some conclusions were draw as below:1. By using tetraethoxysilane, nickel nitrate as starting materials, NiO/SiO_2 aerogel, with high specific surface area in the range of 500~1400m~2/g, having micropore and mesopore structure, was synthesized by sol-gel and supercritical fluid drying method. The microstructure and aerogel component could be controlled by adjusting preparing conditions.2. The experimental results indicate that parameters, including decomposition temperature, aerogel component, decomposition time and gas flow rate, directly influence morphology, microstructure and yield of resultant MWNTs.(1) The decomposition temperature influences morphology and yield of MWNTs directly. Proper temperature is helpful for MWNTs' growth. MWNTs prepared at lower temperature can not grow enough and have a low aspect ratio, but MWNTs prepared at higher temperature have much impurity. The yield of MWNTs will be reduced much at too high or low temperature. The temperature range, from 600 to 740℃, is suitable for MWNTs growth, and the yield of MWNTs prepared at 680℃ is the highest (8.6).(2) Aerogel Component is the key factor to influence yield of MWNTs. The yield of MWNTs varies greatly with the different value of n_(Ni):in_(Si) in NiO/SiO_2 aerogel. If value of
    ri(Ni):n(si) equals 4:6, the yield of MWNTs is the highest.(3) Decomposition time plays an important role on the yield of MWNTs, but little on their morphology. The yield of MWNTs increases with decomposition time within 180min. The length increases but the diameter changes little. MWNTs grow slowly after 180min, and the yield remains constant.(4) The morphology and yield of MWNTs vary with gas flow rate. The MWNTs with good morphology and large aspect ratio can be prepared while the flow rate of CH4 is twice that of H2, and the yield is high. The yield of MWNTs increases with the total gas flow rate, but above 300ml/min, the yield of MWNTs will be constant.(5) Purifying process can remove impurity in MWNTs, enhance their purity and influence their microstructure. Introducing 129Xe NMR to characterization of CNTs for the first time, the experimental results indicate that it is an effective technique to explore microstructure and surface condition of CNTs.3. Possibility of searching for other gas as carbon source is explored. The experimental results show that morphology and structure of MWNTS vary greatly with different carbon sources. MWNTs prepared from CH4 have a large aspect ratio, smooth wall and regular morphology; those from C3H6 have a little amorphous matter, rough wall, and some wrinkle, which means a lower oriented order of carbon atoms. Compared with from CH4, MWNTs prepared from C3H6 have a higher yield and a lower conversion.4. On the basis of above research, the author designed a set of safe, efficient and convenient product line for preparing MWNTs in large scale. The solid distributing style for catalyst can make an area over lm2. At the help of Pd-carbon fiber deoxy catalyst, tittle oxygen in industrial nitrogen can react with hydrogen at low temperature and produce water, and it can be absorbed by zeolite. Flowing route of gases can be prolonged by disturbing tube in pyrolysis furnace, and CH4 and H2 are utilized efficiently by using gas recycling equipment. According to the relationship among distribution area of catalyst, quartz tube volume and gas flow rate in laboratory catalytic decomposition, gas flow rate in large-scale preparation can be calculated. By comparing yield and microstructure of MWNTs, the processing parameters are optimized, and the practical cost of high quality MWNTs is no more than 1.5 yuan RMB.
引文
[1] Iijima S. Helical microtubes of graphitic carbon [J]. Nature, 1991, 354: 56-58
    [2] 高永刚,施兴华,赵亚溥.碳纳米管的力学行为[J].机械强度,2001,23:402-411.
    [3] Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000, 287: 637-640.
    [4] Pan ZW, Xie SS, Lu L, et al. Tensile tests of ropes of very long aligned multiwalled carbon nanotubes[J]. Appl. Phys. Lett., 1999, 74: 3152-3153.
    [5] Yakobson B I, Brabec C J, Bernhole J. Nanomechanics of carbon nanotubes: Instabilities beyond linear respone[J]. Phys. Rev. Lett., 1996, 76: 2511-2513.
    [6] Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic deflections and elactromechanical resonances of carbon nanotubes[J]. Science, 1999, 283: 1513-1516.
    [7] S J Tans, M H Devoret, H Dai, A Thess, et al. Individual single-wall carbon nanotubes as quantum wires [J]. Nature. 1997, 386: 474-478.
    [8] 杨全红,刘敏,成会明等.碳纳米管的孔结构、相关物性和应用[J].材料研究学报,2001,15:375-386.
    [9] Ugrate D, Chatelain A, Deheer W A. Nanocapillarity and chemistry in carbon nanotubes[J]. Science, 1996, 274: 1879-1899.
    [10] Yang Q H, Li F, Hou P X, et al. Evaluation of diameter distribution of inside cavities of open CNTs bu analyses of nitrogen cyro-adsorption isotherm[J]. Chinese Science Bulletin, 2001, 46: 1317-1320.
    [11] Yang Q H, Hou P X, Bai S, et al. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes[J]. Chem. Phys. Lett., 2001, 345: 18-23.
    [12] Williams K A, Eklund P C. Monte Carlo Simulation of H_2 physisorption in finite-diameter carbon nanotube ropes[J]. Chem. Phys. Lett., 2000, 320: 352-358.
    [13] Eswarmoorthy M, Sen R, Rao C N R. A study of micropores in sigle-walled carbon nanotubes by the adsorption of gases and vapors [J]. Chem. Phys. Lett., 1999, 304: 207-210.
    [14] A C Dillon, K B Jones, T A Bekkendahl, et al. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature. 1997, 386: 377-379.
    [15] Lee SM, Park KS, Choi YC, et al. Hydrogen adosorption and storage in carbon nanotubes [J]. Synth Metals. 2000, 113: 209-216.
    [16] Chen P, Wu X, Lin J, et al. High H_2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures[J]. Science, 1999, 285: 91-92.
    [17] Yang R T. Hydrogen storage by alkali-doped carbon nanotubes-revisted [J]. Carbon, 2000, 38: 623-626.
    [18] Wu X B, Chen P, Lin J, et al. Hydrogen uptake by carbon nanotubes[J]. Int. J. Hydrogen Energy, 2000, 25: 261-264.
    [19] Li X S, Zhu H W, Ci L J, et al. Influences of structure and surface properties on carbon nanotubes' hydrogen storage characteristics[J]. Chinese Sci. Bull., 2001, 46: 1358-1360.
    [20] Li X S, Zhu H W, Ci L J, et al. Hydrogen uptake by graphitized multi-walled carbon nanotubes under moderate pressure and at room temperature [J]. Carbon, 2001, 39: 2077-2079.
    [21] Lee S M, An K H, Kim W S, et al. Hydrogen storage in carbon nanotubes[J]. Synthetic Metals, 2001, 121: 1189-1190.
    [22] Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature[J]. Science, 1999, 286: 1127-1120.
    [23] A. G. Rinzler, J. H. Hafner, P. Nikolaev, et al. Unraveling Nanotubes: Field Emission from an Atomic Wire [J]. Science. 1995, 269: 1550-1553.
    [24] 贾志杰.碳纳米管/高分子复合材料的研究:[学位论文].北京:清华大学机械工程系,1999.
    [25] Ma RZ, Wu J, Wei BQ, et al. Processing and properties of carbon nanotubes—nano-SiC ceramic [J]. J Mater Sci. 1998, 33: 5243-5246.
    [26] Kroto HW, Heath JR, Brien SC, et al. C60: Buckminster fullerene [J]. Nature, 1985, 318: 162-165.
    [27] Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors: graphitic microtubules [J]. Plays Rev Lett, 1992, 68: 1579-1581
    [28] M. Q. Liu, J. M. Cowley. Structures of the helical carbon nanotubes [J]. Carbon, 1994, 32: 393-403
    [29] S. Amelinckx, X. B. Zhang, D. Bemaerts, et al. A formation mechanism for catalytically grown helix-shaped graphite nanotubes [J]. Science, 1994, 265: 635-639.
    [30] M. Q. Liu, J. M. Cowley. Structures of carbon nanotubes studied by HRTEM and nanodiffraction [J]. Ultramicroscopy, 1994, 53: 333-341.
    [31] M. Bretz. B. G. Demczyk, L. Q. Zhang. Structural imaging of a thick-walled carbon microtubule [J]. Cryst. Growth, 1994, 141: 304-309.
    [32] N Hamada, S Sawada and A Oshiyama. New one-dimensional conductors-graphitic microtubules [J]. Phys Rev Lett, 1992, 68: 1579-1582.
    [33] Dunlap, B. I. Connecting Carbon Tubules [J]. Phys. Rev. B. 1992, 46: 1933-1936.
    [34] P. M. Ajayan, T. Ishihashi, S. Iijima. Distribution of pentagons and shapes in carbon nano-tubes and nano-particles[J]. Chem. Phys. Lett. 1993, 202: 384-387.
    [35] http://dagotto.phys.utk.edu/condensed/noppi.carbon.1.pdf.
    [36] Dresselhaus MS, Dresselhaus G, Saito R. Carbon fibers based on C_(60) and their symmetry[J]. Physical Review B, 1992, 45: 6234-6241.
    [37] M. Q. Liu, J. M. Cowley. Growth behavior and growth defects of carbon nanotubes [J]. Mater. Sci. Eng. A, 1994, 185: 131-140.
    [38] T. W. Ebbesen, T. Takada. Topological and sp~3 defect structures in nanotubes [J]. Carbon, 1995,33:973-978.
    [39] Liu M, Cowley J M. Structure of carbon nanotubes studied by HRTEM and Nanodiffraction[J]. Ultramicroscopy, 1994, 53: 333-341.
    [40] P. M. Ajayan, T.W. Ebbesen, Nanometre-size tubes of carbon [J]. Rep. Prog. Phys., 1997, 60: 1025-1061.
    [41] R Saito, M Fujita, G Dresselhaus and M S Dresselhaus. Electronic structure of graphene tubules based on C-60 [J]. Phys Rev. 1992, 46:1804-1809.
    [42] P. M. Ajayan, T. W. Ebbesen, T. Ishihashi, S. Iijima, et al. Opening carbon nanotubes with oxygen and implications for filling [J]. Nature. 1993, 362: 522-524.
    [43] D. Bernaerts, X.B. Zhang, X.F. Zhang, et al., Electron microscopic study of coiled carbon tubules [J]. Phil. Mag. A. 1995, 71: 605- 630.
    [44] Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphite microtubule growth[J]. Nature, 1992, 356: 776-778.
    [45] T.W. Ebbesen, P.M. Ajayan. Large-scale synthesis of carbon nanotubes [J]. Nature, 1992, 358:220-221.
    [46] D.T. Colbert, J. Zhang, S. M. McClure, et al. Growth and sintering of fullerene nanotubes [J]. Science, 1994, 266: 1218-1221.
    [47] M. Jose-Yacaman, M. Miki-yeshida, L. Rendon. Catalytic growth of carbon microtubules with Fullerene structure [J]. Appl. Phys. Lett. 1993, 62: 657-659.
    [48] V. Ivanov, J. B. Nagy, Ph. Lambin, et al. The study of carbon nanotubes produced by catalytic method [J]. Chem. Phys. Lett. 1994,223: 329-334.
    [49] W. Z. Li, S. S. Xie, X. Qian, et al. Large-scale synthesis of aligned carbon nanotubes [J]. Science, 1996, 274: 1701-1702.
    [50] X. Lin, X. K. Wang, V. P. Dravid, et al. Large-Scale Synthesis of Single-Shell Carbon Nanotubes [J]. Appl. Phys. Lett. 1994, 64: 181-182.
    [51] S. C. Tsang, P. J. F. Harris, M.L.H. Green. A simple chemical method of opening and filling carbon nanotubes [J]. Nature. 1993, 362: 520-521.
    [52] D. S. Bethune, C. H. Kiang, M. S. de Vries, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls [J]. Nature, 1993, 363: 605-608.
    [53] Thess A, Lee R, Nikolaev P, et al. Crystaline ropes of metallic carbon nanotubes [J]. Science. 1996, 273:483-487
    [54] C. J. Lee, J. Park. Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition [J]. Appl. Phys. Lett. 2000, 77: 3397-3399
    [55] Che JW, Cagin T, Goddard WA. Thermal conductivity of carbon nanotubes [J]. Nanotechnology. 2000,11:65-69.
    [56] PG Collins, MS Arnold, P Avouris. Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown [J]. Science. 2001,292: 706-709.
    [57] http://www.nanotech.com.cn/nmnews/wz/2.htm
    [58] Peigney A, Laurent Ch, Flahaut E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes [J]. Carbon, 2001, 39: 507-514
    [59] Ajayan, S. Iijima. Capillarity-Induced Filling of Carbon Nanotubes [J]. Nature. 1993,361: 333-333.
    [60] Gao R P, Wang Z L, Bai Z G, et al. Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays[J]. Phys. Rev. Lett., 2000, 85: 622-624.
    [61] Peigney A, Laurent Ch, Rousset A. Synthesis and characterization of alumina matrix nanocomposites containing carbon nanotubes [J]. Key Engineering Materials 1997, 132: 743-746.
    [62] 王淼,李振华,鲁阳等.纳米材料应用技术的新进展[J].材料科学与工程.2000,18:103-104.
    [63] 董树荣,张孝彬.碳纳米管增强铜基合材料的滑动磨损特性研究[J].摩擦学学报.1999,19:1-6.
    [64] Kwon YK, Tomanek D, Iijima S. Bucky shuttle memory device: synthesis approach and molecular dynamics simulations [J]. Phys Rev Lett. 1999, 82: 1470-1476.
    [65] H W Postma, Teepen, Yao Z, et al. Carbon nanotube single-Electron transistor at room temperature [J]. Science. 2001, 293: 76-79.
    [66] J. J. Kong, Flanklin NR, Zhou C, et al. Nanotube Molecular Wires as Chemical Sensors [J]. Science. 2000, 287: 622-624.
    [67] J. J. Zhao, A Buldum, J Han, et al. Gas molecule adsorption in carbon nanotubes and nanotube bundles [J]. Nanotechnology, 2002, 13: 195-200.
    [68] P. Kim, Lieber CM. Nanotube Nanotweezers [J], Science. 1999, 286: 2148-2150.
    [69] 刘畅,成会明.电弧放电法制备碳纳米管[J].新型炭材料.2001,16:67-71.
    [70] Y. Ando, X. Zhao, H. Kataura, et al. Multiwalled carbon nanotubes prepared by hydrogen arc [J]. Diamond and Related Materials. 2000, 9: 847-851.
    [71] Y. Ando, S. Iijima. Preparation of carbon nanotubes by arc-discharge evaporation [J]. Japanese Journal of Applied Physics. 1993, 32: 107-111.
    [72] P J F Harris, S C Tsang, J B Claridge, et al. High-resolution electron microscopy studies of a microporous carbon produced by arc-evaporation, J Chem Soc, 1994, 90: 2799-2782.
    [73] X. Zhao, M. Ohkohchi, M. Wang, et al. Preparation of high-grade carbon nanotubes by hydrogen arc discharge [J]. Carbon. 1997, 35: 775-779.
    [74] X. Zhao, Y. Ando. Raman spectra and X-ray diffraction patterns of carbon nanotubes prepared by hydrogen are discharge [J]. Japanese Journal of Applied Physics. 1998, 37, 4846-4850.
    [75] K. Suenaga, F. Willaime, A. Loiseau, et al. Organisation of carbon and boron nitride layers in mixed nanoparticles and nanotubes synthesised by arc-discharge [J]. Applied Physics A. 1999, 68: 301-316.
    [76] Y. Ando, X. Zhao. Carbonaceous products by hydrogen arc discharge [J]. Crystal Research and Technology [J]. 1999, 34: 597-601.
    [77] Dai H, Wong W, Lu Y, et al. Synthesis and characterization of carbide nanorods [J]. Nature, 1995, 375: 769-771.
    [78] Yacama M J, Yoshida M M, Rendon L. Catalytic growth of carbon microtubes with fullerene structure [J]. Appl Phys Lett, 1993, 62: 202-206.
    [79] Endo M, Takeuchi K, Kroto H, et al. The production and structure of pyrolytic carbon nanotubes [J]. J Phys Chem Solid, 1993, 54: 1841-1846.
    [80] 杨子芹,沈曾民,陈晓红,等.Co催化热分解制备弯曲状碳纳米管的研究[J].新型炭材料,2000,15:34-38.
    [81] K. Suenaga, M. Yudasaka, C. Colliex, et al. Radially modulated nitrogen distribution in CN_x nano-tubular structures prepared by CVD using Ni phthalocyanine [J]. Chemical Physics Letters. 2000, 316: 365-370.
    [82] L. C. Qin. CVD synthesis of carbon nanotubes [J]. Journal of Materials Science Letters. 1997, 16: 457-461.
    [83] 陈萍,张鸿斌,林国栋等.有机气体催化热解CH_4或CO制备碳纳米管结构性能的谱学表征[J].高等学校化学学报.1998,5:19-22.
    [84] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, et al. Gas-phase Catalytic Growth of Single-Walled Carbon Nanotubes from Carbon Monoxide [J]. Chem. Phys. Lett. 1999, 313: 91-97.
    [85] K. Suenaga, M. Yudasaka, C. Colliex, et al. Radially modulated nitrogen distribution in CNx nano-tubular structures prepared by CVD using Ni phthalocyanine [J]. Chemical Physics Letters. 2000, 316: 365-369.
    [86] L. C. Qin, D. Zhou, A. R. Krauss, D. M. Gruen, Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition [J]. Applied Physics Letters 1998, 72: 3437-3442
    [87] Sinnott S B, Andrews R, Qian D, et al. Model of Carbon Nanotube Growth Through Chemical Vapor Deposition [J]. Chem. Phys. Lett. 1999, 315: 25-30.
    [88] M. Yudasaka, F. Kokai, K. Takahashi, et al. Formation of single-wall carbon nanotubes: Comparison of CO_2 laser ablation and Nd: YAG laser ablation. The Journal of Physical Chemistry [J]. 1999, 103: 3576-3580.
    [89] C. D. Scott, S. Arepalli, P. Nikolaev, et al. Growth mechanisms for single-wall carbon nanotubesin a laser-ablation process [J]. Appl. Phys. A. 2001, 72: 573-577.
    [90] L. C. Qin, S. Iijima, Structure and formation of raft-like bundles of single-walled helical carbon nanotubes produced by laser evaporation [J]. Chemical Physics Letters. 1997, 269: 65-69.
    [91] Y. Zhang, H. Gu, K. Suenaga, S. Iijima, Heterogeneious growth of laser ablated B-C-N nanotubes [J]. Chemical Physics Letters. 1997, 279, 264-270.
    [92] M. Yudasaka, T. Ichihashi, S. Iijima, Roles of laser light and heat in formation of single-wall carbon nanotubes by pulsed laser ablation of C_xNi_yCo_y targets at high temperature [J]. The Journal of Physical Chemistry B. 1998, 102: 10207-10211.
    [93] M. Yudasaka, M. zhang, S. Iijima. Porous target enhances production of single-wall carbon nanotubes by laser ablation [J]. Chemical Physics Letters. 2000, 323: 549-553.
    [94] F. Kokai, K. Takahashi, M. Yudasaka, et al. Laser ablation of graphite-Co/Ni and growth of single-wall carbon nanotubes in vortexes formation in an Ar atmosphere [J]. The Journal of Physical Chemistry B. 2000, 104, 677-6781.
    [95] Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporiztion [J]. Chem Phys Lett, 1995, 243: 49-53.
    [96] Hatta N, Murata K. Very long graphitic nanotubules synthesized by plasma decomposition of benzene [J]. Chem Phys Lett, 1994, 217: 398-401.
    [97] Ge M, Sattler K. Vapor condensation generation and STM analysis of fullerene tubes [J]. Science, 1993, 260: 515-519.
    [98] Hsu W K, Terrones M, Hare J P, et al. Electrolytic formation of carbon nanostructures [J]. Chem Phys Lett, 1996, 262: 161.
    [99] 朱宏伟,慈立杰,梁吉,等.浮游催化法半连续制取碳纳米管的研究[J].新型炭材料,2000,15:48-51
    [100] 潘春旭,Liming Yuan,Kozo Saito.扩散火焰合成碳纳米管研究[J].新型炭材料,2001,16:24-27.
    [101] Xianbao Wang, Zhigang Wang, Yun qi Liu, et al. Ring formation and fracture of a carbon nanotube [J]. Chemical Physics Letters. 2001, 339: 36-40.
    [102] S. Iijima, T. Ishihashi, Y. Ando. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature. 1993, 363: 603-604.
    [103] Liu C, Cong H T, Li F, et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method[J]. Carbon, 1999, 37: 1865-1868.
    [104] Dai H, Rinzler AG, Nikolaev, et al. Singe-wall carbon nanotubes produced by metal-catalyzed disproportionation of carbon momoxide [J]. Chem Phys Lett. 1996, 260: 471-474.
    [105] Pan ZW, Xie SS, Chang BH, e al. Direct growth of aligned open carbon nanotubes by chemical vapor deposition [J]. Chem Phys Lett. 1999, 299: 97-101.
    [106] Colomer JF, Bister G, Willems J, et al. Synthesis of single-wall carbon nanotubes by catalytic decomposition of hydrocarbons [J]. Chem Commun. 1999: 1343-1343.
    [107] Y. Zhang, S. Iijima. Controllable method for fabricating single-wall carbon nanotube tips [J]. Applied Physics Letters. 2000, 77: 966-979.
    [108] F. Kokai, K. Takahashi, M. Yudasaka, et al. Growth dynamics of single-wall carbon nanotubes synthesized by CO_2 laser vaporization [J]. The Journal of Physical Chemistry B. 1999, 103: 4346-4349.
    [109] Laplaze D., Bernier P., Maser W. K, et al. Carbon nanotubes: the solar approach [J]. Carbon, 1998, 36: 685-688.
    [110] Journet C, Bernier P. Production of carbon nanotubes [J]. Appl. Phys. A. 1998, 67: 1-9.
    [111] Ishigami M, Cumings J, Zettl A, et al. A simple method for the continuous production of carbon nanotubes [J]. Chem Phys Lett., 2000, 319: 457-459
    [112] Tohji K, Goto T, Takahashi H, et al. Purifying single-walled carbon nanotubes[J]. Nature, 1996, 383: 679-680.
    [113] Duesberg GS, Blau W, Byme HJ, et al. Chromatography of carbon nanotubes[J]. Synth Metal. 1999, 103: 2484-2484.
    [114] Bonard JM, Stora, Salvetat JP, et al. Purification and size-selection of carbon nanotubes[J]. Adv Mater., 1997, 9: 827-829.
    [115] Ebbesen TW, Ajiyan PM, Hiura H, et al. Role of sp~3 structures in graphite and carbon nanotubes [J]. Nature. 1994, 367: 148-151.
    [116] Bandow, Asaka S, Zhao X, et al. Purification and magnetic properties of carbon nanotubes [J]. Apply Phys A. 1998, 67: 23-27.
    [117] S. Bandow, A. M. Rao, K. A. Williams, et al. Purification of single-wall carbon nanotubes by microfiltration [J]. Journal of Physical Chemistry B. 1997, 101, 8839-8841.
    [118] S C Tsang, Y K Chen, P J F Harris, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature, 1994, 372: 159.
    [119] Y. Ando, X. Zhao, M. Ohkohchi. Sponge of purified carbon nanotubes [J]. Japanese Journal of Applied Physics. 1998, 37, 61-63.
    [120] Ikazaki F, Ohshima S, Uchida K, et al. Chemical purification of carbon nanotubes by use of graphite intercalation compounds [J]. Carbon. 1994, 32, 1539-1541.
    [121] Ebbesen T W. Wetting, Filling and decorating carbon nanotubes [J]. J Phys Chem Solids, 1996, 57: 951-953
    [122] P. X. Hou, S. Bai, Q. H. Yang, et al. Multi-step purification of carbon nanotubes [J]. Carbon, 2002, 40: 81-85.
    [123] 成会明编著.碳纳米管·制备、结构、物性及应用[M].北京:化学工业出版社,2002.
    [124] Cheng H M, Li F, Su G, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. App. Phys. Lett., 1998, 289: 602-610.
    [125] http://www.cutech.edu.cn/chanyehua/000012.asp
    [126] http://www.casnano.ac.cn/gb/xinwen/yaowen/yw241.htm.
    [127] http://www.cas.ac.cn/html/Dir/2001/11/23/4318.html.
    [128] http://www.nanotech.com.cn/nmnews/01-11-30/1.htm
    [124] De Vos R M, Verweij H. High-selectivity, high-flux silica membranes for gas separation[J]. Science, 1998, 279: 1710-1711.
    [125] Morris C A, Anderson M L, Stroud R M. Silica sol as a nanoglue: flexible synthesis of composite aerogles[J]. Science, 1999, 284: 622-623.
    [126] 吴刚主编.材料结构表征及应用[M].北京:化学工业出版社,2001.
    [127] M. Yudasaka, Y. Kasuya, F. Kokai, et al. Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes [J]. Appl. Phys. A. 2002, 74, 377-384.
    [128] 赵惠忠,计道珺,汪厚植等.纳米NiO/SiO_2催化剂的制备及其在碳纳米管合成中的应用[J].武汉科技大学学报(自然科学版),2001,24(4):334-337.
    [129] 赵惠忠,胡守天,汪厚植.超临界流体干燥技术制备NiO-SiO_2二元纳米材料及其结构特征[J].硅酸盐学报,2002,30(Supplement):12-17
    [130] Rodriguez N M, Chamers A, Baker R. Catalytic engineering of carbon nanostructures, Langmuir, 1995, 41 11: 3862
    [131] 陈一民,谢凯,盘毅等.含镍硅酸乙酯的Sol-Gel过程制备金属/SiO_2复合气凝胶[J].无机材料学报,1998,13(5):721~723.
    [132] 李颖,李轩科,刘朗等.裂解温度对碳纳米管制备的影响[J].新型炭材料,2002,17(4):53-56.
    [133] Alstmp L, Taveres M T. Kinetics of carbon formation from CH_4+H_2 on silica-supported nickel and nickel-copper catalysts[J], J Catal, 1993, 139: 513
    [134] Ivanov V, Fonseca A, Nagy J B, et al. Catalyst production and purification of nanotubes having fullerence-scale diameters [J]. Carbon, 1995, 33: 1727-1738.
    [135] 黄惠忠等.纳米材料分析[M].北京:化学工业出版社,2002.
    [136] 王玉芳,曹学伟,李国华.碳纳米管晶格振动模及拉曼光谱的研究进展[J].光谱学与光谱分析,2000,20:180-183.
    [137] Saito R, Takeya T, Kimura T, et al. Raman intensity of single-wall carbon nanotubes. Phys. Rev. B. 1998. 57: 4145-4152.
    [138] 雷中兴,刘静,李轩科等.催化剂结构与形态对碳纳米管生长的影响.新型炭材料,2003,18(4):271-275
    [139] 刘吉平,孙洪强编著.碳纳米材料[M].北京:科学出版社,2004.
    [140] 孟广耀编著.化学气相沉积与无机新材料[M].北京:科学出版社,1983.
    [141] C. J. Jameson, A. K. Jameson, H. M. Lim. Competitive adsorption of xenon and argon in zeolite NaA.
    [142] 夏少武.活化能及其计算[M].北京:高等教育出版社,1992.
    [143] Iijima S. Growth of carbon nanotubes. Mater Sci Eng B, 1993, 19: 172-180.
    [144] 孔祥林.有机化学[M].北京:人民教育出版社,1997.
    [145] 汪巩.有机化学[M].北京:高等教育出版社,1985.
    [146] 计道珺,李轩科,汪厚植.不同碳源气制备碳纳米管的研究[J].光散射学报,2003,15:27-31.
    [147] 李颖,李轩科,刘朗.不同原料气催化热解法制备碳纳米管的研究[J].新型炭材料, 2004,19:298-301.
    [148] 白朔,侯鹏翔,范月英等.一种新型储氢材料—纳米炭纤维的制备及其储氢特性[J].材料研究学报,2001,15:77-82.
    [149] 侯鹏翔,白朔,范月英等.气体流动状态对纳米碳纤维制备的影响[J].新型碳材料, 2000,15(4):17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700