兔骨骼肌肌球蛋白热诱导凝胶特性及成胶机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由四个方面的研究内容组成:(1)兔骨骼肌肌球蛋白的提取、纯化和鉴定,及其溶液浊度和溶解度的研究;(2)肌球蛋白热诱导凝胶的硬度、保水性和超微结构研究;(3)肌球蛋白的流变学特性研究;(4)肌球蛋白热凝胶的形成机制研究,并初步提出了成胶机制假设。
     第1章 兔骨骼肌肌球蛋白提纯、鉴定及理化性质:从体重2~2.5kg的3月龄新西兰公兔的兔腰大肌(Pasoas major,PM)和半膜肌(Semimembranosus proprius,SMp)中提取、纯化、鉴定肌球蛋白。肌球蛋白提取率为1%。纯化后的蛋白浓度为20~30mg·mL~(-1)。所得蛋白在SDS-PAGE图谱上出现四条带:肌球蛋白重链(Mw约205kDa)、三条轻链(MW约25.9kDa、17.8kDa、13.8kDa)。肌动蛋白的分子量为40kDa左右。
     以肌球蛋白溶液在340nm的吸光度作为浊度的评价指标和离心后蛋白质浓度的变化作溶解度指标,并测定蛋白质浓度、加热温度、pH值、离子强度(Ionic strength,IS)、磷酸盐、二价金属离子和肌动蛋白因素对PM和SMp肌球蛋白溶液浊度和溶解度的影响。结果表明,肌球蛋白浓度与浊度呈正线性相关(R~2=0.97);PM和SMp肌球蛋白在离子强度为0.6mol·L~(-1)的KCl溶液中pH值为5.5时浊度最大,溶解度在pH值大于5.0时显著上升;离子强度下降,肌球蛋白溶液的浊度会上升,而溶解度下降;温度升高肌球蛋白溶液浊度上升,PM肌球蛋白在55℃(IS 0.6)、60℃(IS
     0.2),SMp肌球蛋白在60℃(IS0.6)、55℃(IS0.2)其浊度达到最大值,温度升高溶解度下降;MgCl_2使肌球蛋白溶液浊度升高,溶解度下降;CaCl_2使肌球蛋白溶液浊度和溶解度均升高;在0.6 mol·L~(-1)KCl时,SPP、TPP使肌球蛋白溶液浊度下降,溶解度上升,而HMP则相反;在0.2mol·L~(-1) KCl时,SPP、TPP和HMP对肌球蛋白溶液浊度、溶解度影响复杂;肌动蛋白的添加使得蛋白溶液浊度上升,溶解度下降。
     第2章 兔骨骼肌肌球蛋白热诱导凝胶的硬度、保水性和超微结构:研究了蛋白质浓度、pH值、离子强度、加热处理、磷酸盐、二价金属离子、非肉蛋白、亲水胶体(多糖)、转谷氨酰胺酶(TGase)、肌动蛋白等因素对肌球蛋白热诱导凝胶硬度、保水性和超微结构的影响。结果显示:凝胶硬度和保水性随蛋白浓度增加而逐渐增大;PM和SMp肌球蛋白凝胶(IS 0.6)在pH6.0和5.5时有最大硬度,pH6.0时保水性最大;硬度随离子强度增大而降低,达最大硬度时离子强度均为0.2,而最佳保水性条件均为0.2和1.0(两者间无差异);PM凝胶硬度程序升温加热10min时大于恒温加热,最大硬度时加热温度均为70℃,但程序升温加热凝胶保水性均优于恒温加热处理,且在50℃时有最大值;SPP和TPP使凝胶硬度下降,HMP则相反;SPP和TPP可降低PM和提高SMp凝胶的保水性,而HMP可增大两者保水性;10和12mmol·L~(-1)的Mg~(2+),8和10mmol·L~(-1)的Ca~(2+)能显著增加凝胶硬度;Mg~(2+)和Ca~(2+)减弱了凝胶的保水性;卡拉胶(Carr)对凝胶硬度和保水性均无影响;0.5%的羧甲基纤维素钠(CMC-Na)、1.0%的海藻酸钠(SA)及黄原胶(XG)显著提高PM肌球蛋白凝胶硬度,仅SA降低了SMp凝胶硬度;XG及0.5%的CMC-Na和SA提高了PM凝胶保水性,而只有XG、0.5%的CMC-Na和1.0%的SA提高了SMp凝胶保水性:TGase增大了凝胶的硬度和保水性,非肉蛋白(SPI、EW、WPC)则相反;肌动蛋白(贮藏和不贮藏)均减小了凝胶硬度和保水性,只有16h贮藏处理时,肌动蛋白提高了PM凝胶的保水性。扫描电子显微镜观察凝胶超微结构发现,PM和SMp肌球蛋白在0.2mol·L~(-1)KCl中均呈现丝状三维网络结构,具有粗和长的丝,而在0.6mol·L~(-1)KCl中则为球状颗粒凝聚交联形成的网络,具有更好的多孔性;凝胶在蛋白
    
    兔骨骼肌肌球蛋白热诱导凝胶特性及成胶机制研究
    等电点(PH<6.0)形成粗糙的结构,多孔性较差,而在PH6.0形成均匀细致的网络,pH
    更高则凝胶结构粗糙且多孔性下降;SPP、TPP使得蛋白凝胶网络中交联轴变长,孔洞
    直径变大,HMP的影响程度要小于前两者;亲水胶体改变了蛋白凝胶的网络结构模式;
    TGase能使凝胶结构更均匀细致,而非肉蛋白则相反,使孔洞变大且分布更为不均一;
    肌球蛋白和肌动蛋白混合蛋白经16h贮藏后,凝胶结构更细致.
     第3章兔骨骼肌肌球蛋白的流变学特性:研究了蛋白浓度、PH值、离子强度、
    磷酸盐、肌动蛋白、金属离子对肌球蛋白流变学特性的影响.结果显示:PM和SMp
    肌球蛋白的G’、G‘随蛋白浓度增大而增大,同时伴随6的变小,但并不改变相变温
    度;两种肌球蛋白相变初始温度均为41 .7℃左右,dG‘/叮显示,第一峰值点43℃,
    第二峰值点47℃左右,第三峰值点56℃左右,分别对应着肌球蛋白分子中的L拟h inge
    region、HMM和L以三个部位;且G‘、G”均在80℃左右有最大值;相位角6变小的
    转折点对应着G’、G‘变化曲线的各转折点.PH显著影响了初始相变温度,且在pH6.O
    时G’、G’有最大值.离子强度并不改变初始相变温度,但改变了相变过程;低离
    子强度(0 .1、0.2)下,G,、俨高于同等温度时高离子强度下的G’、少,而6在
    30一40℃间急剧变小.SPP和TPP降低T最大G‘、G‘值,而HMP则提高TG‘、G
    “值.各种磷酸盐均不同程度地降低了蛋白的初始相变温度,改变了转折点的个数及
    温
Four main parts were involved in this thesis: (1) study of the extraction,purification and identification of myosin.and of myosin solution turbidity and solubility; (2) study of hardness.water holding capacity(WHC) and ultramicrostructure of heat-induced gelation of myosin; (3) study of rheological properties of myosin; (4) study of myosin gelling mechanism, and hypothesis of gelling mechanism was supposed.
    Chapter I Extraction, purification, identification and physicochemical properties of myosin from rabbit skeletal muscles: myosin was extracted, purified and identified from male rabbit(3 months old and had weight of 2~2.5kg) Pasoas major (PM) and Semimembranosus proprius (SMp) skeletal muscles. The rate of extraction was about 1% with about 20~30mg.ml-1 purified myosin. Four bands in the purified myosin showed in SDS-PAGE analysis, which were assigned to the myosin heavy chain (MHC) and light chains according to their relative molecular weight 205kDa, 25.9kDa, 17.8kDa and 13.8kDa, respectively.And molecular weight of the purified actin was about 40kDa.
    The absorbance at 340nm was used as the myosin solution turbidity and the rate of myosin concentrations before and after centrifugation as protein solubility. And effects of myosin concentration, pH, ionic strength, heating, phosphates and divalent metal ions, actin on solution turbidity and solubility of myosin were studied. The results showed that the effect of myosin concentration on turbidity was linear(R2=0.97). The turbidity reached its maximum at the pH5.5 in 0.6mol.L-1 KCl. The solubility increased significantly when the pH value was greater than pH 5.0. The turbidity increased and the solubility decreased with the decrease of the ionic strength. The turbidity increased with the increase of temperature, PM and SMp myosin turbidity reached the maximum at 55 C and 60 C(IS 0.6) respectively. The solubility decreased when the temperature increased. The addition of MgCl2 improved the turbidity and decreased the solubility, but CaCl2 improved both of them. In 0.6mol.L-1 KCl, the turbidity increased and sol
    ubility decreased with the increasing of SPP and TPP, but HMP got the opposite result, in 0.2 mol.L-1 KCl, TPP, SPP and HMP at low and high concentration had different effects on the turbidity and solubility of myosin. And myosin with actin had higher solution turbidity and lower solubility.
    Chapter II Hardness , water holding capacity and ultra microstructure of heat-induced gelation properties of myosin from rabbit skeletal muscles: effects of myosin concentration, pH, ionic strength, heating, phosphates, divalent metal ions, polysaccharides, TGase, non-meat proteins, actin on heat-induced gelation properties (Hardness, WHC and ultra microstructure) were studied. Results showed that gel Hardness and WHC increased with higher myosin concentration; the optimal pH forming the hardest gel was 6.0 for PM, 5.5 for SMp (IS 0.6), and was both 6.0 for WHC. At pH 6.0, the gel hardness enhanced with the increasing of ionic strength, had the peak at 1.0(PM) and 0.6(SMp). WHC of gels reached the maximum both at IS 0.2 and 1.0(not significantly different). Only PM myosin from pragram-heating formed harder gel than isothermal-heating, when heating time was 10 minutes. For PM and SMp myosins.the optimal temperature of gel was 70 癈.Program-heating gels had better WHC than isothermal-heating gels at all tempei
    atures.but both had the maximum at 50 C. SPP and TPP decreased the gel hardness and PM gel WHC, but increased SMp gel WHC, while HMP improved the gel hardness and WHC. Gel hardness increased significantly with 10mmol.L-1 Mg2+ or 8mmol.L-1 Ca2+ for PM myosin and 12mmol.L-1 Mg2+ or 10mmol.L-1 Ca2+ for SMp myosin. Both Mg2+ and Ca2+ decreased gel WHC. Carrageenan had no effect on gel hardness and WHC. PM gel hardness increased with XG, 1.0%SA and 0.5%CMC-Na, only SA had decreasing effect on SMp gel hardness. XG, 0.5%CMC-Na and SA increased PM gel WHC, and SMp WHC increased only added with XG,
    
    
    0.5%CMC-Na and 1.0%SA. TGase increased gel hardness and WHC, and non-meat pr
引文
1 罗正仁.肌球蛋白的热凝胶反应机制.食品工业月刊(台湾),1996,3:31~38
    2 周光宏.畜产品加工学.北京:中国农业出版社.2002,35,40,101
    3 Acton J C, Zieger G K, Burge D L. Functionality of muscle constituents in the processing of comminuted meat products. Crit Rev Food Sci Nutr, 1983, 18: 99~121
    4 Foegeding E A. Thermally induced changes in muscle proteins. Food Technol, 1988, 2(6): 58~64
    5 Liu M N, Foegeding E A. Thermally induced gelation of chicken myosim isoforms. J Agric Food Chem, 1996b, 44,1441-1448
    6 杨龙江,南庆贤.肌肉蛋白质的热诱导凝胶特性及其影响因素.肉类工业,2001,(10):39~42
    7 Huxley H E. Electron micrograph studies on the structure of natural and synthetic filaments from striated muscle. J Mol Biol, 1963, 7: 281~308
    8. Liu M N, Foegeding E A. Denaturation and aggregation of chicken myosims. J Agric Food Chem,1996a, 44, 1435~1439
    9 Sano T, Noguchi S F, Matsumto J J, et al. Themal gelation characteristics of myosin subfragments J. of Food Science, 1990, 55(1): 55~70
    10 李里特著.食品物性学.北京:中国农业出版社,1998,19~99
    11. Culioli J, Boyer C, Vignon X, et al. Heat-induced gelation of myosin properties of: influence of purfication and muscle type. Sci Aliments,1993,13,249~255
    12. Xiong Y L, Blanghard.S P. Myofibrillar Protein Relation: Viscoelastic changes Related to Heating Procedures. J of Food Science, 1994, 59(4): 734~738
    13 Smyth A B, Smith D M, Vega-Warner V, et al. Thermal Denaturation and Aggregation of Chicken Breast Muscle Myosin and Subfragments. J Agric Food Chem, 1996, 44: 1005~1010
    14 Bertazzon A, Tsong T Y. High-resolution differential scanning calorimetric study of myosin, functional domains and suprcamolecular structures. Biochemistry, 1989, 28: 9784~9790
    15 Samejima K, Ishioroshi M, Yasui T. Scanning calorimetric studies on thermal denatruation of myosin and its subfragments. Agric boil Chem, 1983,47: 2373~2389
    16 Weeds A G, Lowey S. Substructure of the myosin molecule. Ⅱ The light chains of myosin. J Mol. Biol. 1971(61): 701~725
    17 Sano t, Satoshi F, Noguchi F, et al. Effect of ionic strength on dynamic viscoelastic behavior of myosin during thermal gelation. J Food Sci, 1990, 55: 51~54
    18 Nayak R, Kenney P R, Slider S. Protein extractability of turkey breast and thigh muscle with varying sodium chloride solutions as affected by calcium, magnesium and zinc chloride. J Food Sci, 1996, 61: 1149~1154
    
    
    19 Siegel D G, Church K E, Schmid G R. Gel structure of nonmeat proteins as related to their ability to bind meat pieces. J Food Sci, 1979, 44: 1276~1279, 1284
    20 Siegel D G, Schmidt G R. Ionic strength, pH, and temperature effects on the binding ability of myosin. J Food Sci, 1979, 44: 1686~1689
    21 Samejima K,Hashimoto Y, Yasui T, et al. Heat gelling properties of myosin,actin, actomyosin and myosin-subunits in s saline model system. J Food Sci, 1969, 34: 242~250
    22 Xiong Y L, Brekke C J. Changes in protein solubility and gelation properties of chicken myofibrils during storage. J Food Sci, 1989, 54: 1141~1144
    23 Samejima K, Lee N H, Ishioroshi M. Protein extractability and thermal gel formability of myofibrils isolated from skeletal and cardiac muscles and different post-mortem periods. J Sci Food Agric, 1992, 58: 385~393
    24 Xiong L Y, Brekke C J. Protein extractability and thermally induced gelation properties of myofibrils isolated from pro- and post-rigor chicken muscles. J Food Sci, 1991,56: 210~215
    25 Parsons N, Knight P. Origin of variable extraction of myosin from myofibrils treated with salt and pyrophosphate. J Sci Food Agric, 1990, 51: 71~90
    26 Camou J P, Sebranek J G. Gelation characteristics of muscle proteins from pale soft exudative(PSE) pork. Meat Sci, 1991, 30: 207~220
    27 Ferry J D. Protein gels. Adv Prot Chem, 1948, 4: 2
    28 Egelandsdal B, Fretheim K, Samejima K. Dynamic rheological measurements on heat-induced myosin gel: Effect of ionic strength, protein concentration and addition of adenosine triphosphate or pyrophosphate. J Sci Food Agric, 1986, 37, 915~926
    29 Tagchi T, Ishizaka, Tanaka M, et al. Protein-protein interaction of fish myosin in fragments. J Food Sci, 1987, 52: 1103~1104.
    30 Siegel D G, Schmid G R. Ionic strength, pH, and temperature effects on the binding ability of myosin. J Food Sci, 1979, 44: 1686~1689
    31 Sharp A, Offer G. The mechanism of formation of gels from myosin molecules. J Sci Food Agric, 1992, 58: 63~73
    32 Benjakul S, Visessanguan W, Ishizaki S. et al. Differences in gelation characteristics of natural actomyosin from two species of bigeye snappr, Priacathus tayenus and priacanthus macracanthus. J Food Sci, 2001, 66: 1311~1318
    33 Liu Y M, Lin T S, Lanier T C. Thermal denaturation and aggregation of actomyosin from Atlantic croaker. J Food Sci, 1982, 50: 1034~1037
    34 Samejima K, Ishioroshi M, Yasui T. Relative roles of the heat and tails portions of molecule in the heat-induced gelation of myosin. J Food Sci, 1981, 46: 1412~1418.
    35 Smyth A B, Smith D M, O'Nill E. Disulfide bonds influence the heat-induced gel properties of
    
    chicken breast muscle myosin. J Food Sci, 1998, 63: 584~588
    36. Foegeding E A, Dayton W R, Allen C A. Evaluation of molecular interactions in myosin fibrinogen and myosin fibrinogen gels. J Agric Food Chem, 1987, 35: 559-563
    37 Lan Y H, Novakofski J, McCusker R H, et al. Thermal gelation of myofibrils from pork, beef, fish, chicken and turkey. J Food Sci, 1995, 60: 941~945
    38 Wicher Y L, Lanier T C, Hamann D D, et al. Thermal transitions in myosin-ANS fluorescence and gel rigidity. J Food Sci, 1986, 51: 1540~1543
    39 Chan J K, Gll T A, Paulson A T. The dynamics of thermal denaturtion of fish myoins. Food Res Int, 1992, 25: 117~123
    40 Chan J K, Gll T A, Paulson A T. Thermal aggregation of myosin subfragments from cod and herring J Food Sci, 1993, 58: 1057~1069
    41 Morita J I, Choe I S, Yamamoto K, et al Heat-induced gelation from leg and breast muscles of chicken. Agric. Biol Chem, 1987, 51(11), 2895~2900
    42 Asghar A, Morita J I, Samejima K, et al. Biochemical and functional characteristics of myosin from red and white muscle of chicken as influenced by nutritional stress. Agric Biol Chem, 1984,48(9): 2217~2224
    43 Choe I S, Morita J I, Yamamoto K, et al. Heat-induced gelation of myosin/subfragments from chicken leg and breast muscle at high ionic strength and low pH. J Food Sci, 1991, 56(4): 884~890
    44 Samejima K, Hara S, Yamamoto K, et al. physicochemical properties and heat-induced gelling of cardical myosin in model system. Agric Biol Chem, 1985, 49(49): 2975
    45 Samejima K, Kuwagama K, Yamomoto K, et al. Influence of reconstituted dark and light chicken muscle myosin of filaments on the morphology and strength of heat-induced gels. J Food Sci, 1989,54: 1158
    46 Northcutt J K, Vavelle C L, Foegeding E. A. Gelation of turkey breast and thigh myofibrils: changes during isolation of myofibrils. J Food Sci, 1993,58: 983~986
    47 Yasui T, Ishioroshi M, Samijima K. Effect of Actomyosin on Heat-induced Gelation of myosin, Agric Biol Chem, 1982, 46(4), 1049~1059
    48 Ishioroshi M, Samejima K, Arie Y, et al. Effect of blocking the myosin-actin interaction in heat-induced gelation of myosin in presence of actin. Agric Biol Chem, 1980, 44(9): 2185~2194
    49 Yasui T, Ishiorshi M. Effect of actomyosin on heat-induced gelation of myosin. Agric Biol Chem, 1982, 46(4): 1049~1059
    50 Samejima K, Oka Y, Kastuhiro K, et al. Effect of temperature, actin-myosin ration, pH and salt and protein concentration on heat-induced gelling of cardiac myosin and reconstituted actomyosin. Agric Biol Chem, 1986, 50(8): 2101-2110
    51 Morita J I, Sugigama H, Kondo K. Heat-induced gelation of chicken gizzardmyosin. Food Sci,
    
    1994,59(4): 720~724
    52 Wang S F, Smith D M. Gelation of chicken breast muscle actomyosin as influenced by weight ratio of actin to myosin. J Agric Food Chem, 1995, 43: 331~336
    53 Yamamoto K, Samejima K, Yasui T. The structure of myosin filaments and the properties of heat-induced gel in the presence and absence of C-protein. Agric Biol Chem, 1987, 51: 197~203
    54 Boyer C, Joandel S, Ouali A, et al. Ionic strength effects on heat-induced gelation of myofibrils and myosin from fast-and slow-twitch rabbit muscles, J Food Sci, 1996, 61: 1143~1148
    55 Hermansson A M, Harbitz O, Langton M. Formation of two types of gels from bovine myosin. J Sci Food Agric, 1986, 37: 69~84
    56 林勉,刘通讯,赵谋明.磷酸盐在食品工业中的应用.食品工业,1999,3:25~26
    57 Nauss K M, Kitagawa S, Gergely J. Pyrophosphate binding to and adenosine triphosphatase activity of myosin and its proteolytic fragments. J Biol Chem, 1969, 244(3): 755~765
    58 Owen R Fennema著,王璋,许时婴等译.食品化学.北京:中国轻工业出版社,2003,173~180,674,798
    59 Hermansson A M. Aggregation and denaturation involved in gel formation functionality and protein structure. A Pour-El Ed, ACS Symp Series, Am Chem Soc, Washington, DC, 1979,92,181
    60 Foggeding E A, Allen G E, Dayton W RW. Effect of heating rate on thermally formed myosin, fibrinogen and albumin gels. J Food Sci, 1986, 51(1): 104~108, 112
    61.Foegedin E A, Lanier T. C. The contribution of nonmusle protein foods, in: Protein Quality and the Effects of Processing. R. D. Philips ad J. W. Finely, Ed. New York, NY: Marcel Dekker, Inc, 1989, 331
    62 Hung T Y, Smith D M. Dynamic rheoloical properties and microstructure of partially insolubilized whey protein gels. J Agric Food Chem, 1993, 41: 1372~1378
    63 Liu Gang and Xiong Y L.Thermal transitions and dynamic gelling properties of oxidatively modified myosin, β-lactogobulin, soy 7s globulin and their mixtures. J Sci Food Agric, 2000, 80: 1728~1734
    64 Hongsprabhs P, Barbut S. Use of cod-set whey protein gelation to improve poultry meat batters. Poultry Science, 1999, 78: 1074~1078
    65 江波 周红霞.谷氨酰胺转胺酶对大豆7S蛋白质及肌球蛋白质胶凝性质的影响.无锡轻工业大学学报,2001,20(2):122~127
    66 Arake H, Seki N. Comparison of reactivity of tranglutamianse to various fish actomyosin. Nippon Suisan Gakkaishi, 1993, 59(4): 711~716)。
    67 Benjakual S, Chantarasuwan C, Visessanguan W. Effect of medium temperature setting on gelling characteristics of surimi from some tropical fish. 2003. Food Chemistry. Online on Elsevier, Article in Press
    68 詹晓北主编.食用胶的生产、性能与应用.北京:中国轻工业出版社,2003
    69 Ramirez J C, Xiong Y L. Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures. Meat Sci, 2003, Online on Elsevier. Article in Press
    
    
    70 Zeynep U, Xiong Y L, et al. Forces Involved in Mixed Pork Myofibrillar Protein and calcium alginate Gels. J Agri Food Chem, 1994, 41: 436~442
    71 Motoki M, Secure K. Transglutaminase and its use for food processing. Trends in Food Sci and Tech, 1998, 9: 204~210
    72 Ota M, Sawa A, Niv N, et al. Enzymatic ligation for synthesis of sing-chair analogue of monellin by transglutaminase. Biopolymers, 1999, 50(2): 198~200
    73 Furukawa T, Ohta S, Yamamoto A. Texture-structure relationships in heat-induced soy protein gels. J Texture, 1979, 10: 133
    74 Kang K, Matsumura Y, Ikura K, et al. Gelation and gel properties of soybean glycinin in stransglutaminase-catalyzed system. J Agric Food Chem, 1994, 42: 159~165
    75 Tsukasama Y, Sate K, Imai C, et al. ε-(γ-glutamyl) lysine crosslink formation in sardine myofibril sol during setting at 25℃. J Food Sci, 1993, 59: 785
    76 Joandel S, Roussilhes V, Culioli J, et al. Heat-induced gelation of myofibriilar proteins and myosin from fast-and slow-twitch rabbit muscles, J Food Sci, 1996, 61(6): 1138~1142
    77 Lesiów T, Xiong Y L. Mechanism of rheological changes in poultry myofibrillar proteins during gelation. Avian and poultry biology reviews, 2001, 12(4): 137~149
    78 Wu J Q, Hamann D D, Foegeding E A. Myosin gelation kinetic study based on theological measurements. J Agric Food Chem, 1991, 39: 229
    79 Xiong Y L. A comparison of the theological characteristics of different fractions of chicken myofibrillar proteins. J Food Biochem, 1993, 16: 217
    80 Liu M N, Xiong Y L. Gelation of chicken muscle myofibrillar proteins treated with protease inhibitors and phosphates. J Agric Food Chem, 1997, 45: 3437
    81 Egelandsdal B, Fretheim K, Samejima K. Dynamic rheological measurements on heat-induced myosin gels: effect of ionic strength, protein concentration and addition of adenosine triphosphate or pyrophoaphate. J Sci Food Agric, 1986, 37: 915~926

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700