轧制过程中轧件裂纹和夹杂物演变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着钢铁工业的发展,对钢铁产品质量的要求越来越高,而轧制钢材上裂纹和夹杂物等是影响产品质量的主要因素。因此,本文针对轧制过程中轧件裂纹萌生、扩展与闭合和夹杂物等的演变行为开展模拟与实验研究,论文的主要研究内容和主要进展如下:
     1.提出多道次轧制过程中有限元模拟的几何更新方法。并对多道次立—平轧制过程轧件变形行为进行有限元模拟,分析了立辊孔型等因素对轧制过程中轧件头尾不均匀形状、轧件翻边行为、轧件应变场等的影响,通过轧制实验验证了数值模拟结果,两者吻合很好。
     2.采用几何模型更新方法对多道次立—平轧制过程中轧件角部横向裂纹演变行为进行了有限元模拟。首次采用裂纹表面接触压力分析轧制条件对裂纹闭合程度的影响。获得了轧制过程中裂纹形状、裂纹表面接触压力和裂纹尖端应力等计算结果,分析了立辊孔型、摩擦系数、初始裂纹尺寸等因素对裂纹演变行为的影响,通过轧制实验验证了数值模拟结果的可靠性。同时,应用该方法对多道次立—平轧制过程中轧件边部表面纵向裂纹演变行为进行了模拟研究,分析了裂纹在不同截面的投影形状。在数值模拟结果的基础上,分析了轧件表面裂纹消失的演变行为。
     3.通过对多道次轧制过程中轧件内部纵向裂纹演变行为的三维模拟研究,获得了轧制过程中裂纹形状和表面接触压力等计算结果。分析了不同轧制阶段裂纹形状的演变行为,并分析了立辊孔型、裂纹位置等因素对裂纹扩展与闭合的影响。
     4.通过对热轧过程中轧件内部裂纹愈合行为的轧制实验,分析了不同压下率下裂纹形状、裂纹断口形貌的演变和裂纹愈合区域剪切强度的变化规律。采用热力模拟实验的方法对轧件内部裂纹愈合行为进行模拟,采用扫描电镜分析了不同加热速度、加热温度、保温时间、应变速度、压下率、压下道次等条件下裂纹的形貌,并分析了各因素对裂纹愈合行为的影响。在实验结果的基础上,提出了轧制变形条件下轧件内部裂纹的愈合机理。
     5.利用扫描电镜分析了轧件内部常见的夹杂物形状,通过能谱分析检测了夹杂物的主要化学成份。在此基础上,首次对多道次轧制过程轧件内部微米尺寸的夹杂物演变行为进行了三维数值模拟,获得了不同夹杂物尺寸、位置、工作辊直径等条件下夹杂物形状、夹杂物及其附近区域应变场、夹杂物在轧件中的相对位置,分析了夹杂物变形行为对轧件内部裂纹产生的影响。
     6.轧制过程中,轧件基体围绕夹杂物存在着较大的应变梯度,夹杂物直径增加,对于难变形夹杂物,夹杂物与基体之间应变梯度增加。对夹杂物与轧件基体脱离时夹杂物变形行为进行了二维数值模拟,分析了夹杂物尺寸、形状和位置对轧制过程中夹杂物周围裂纹萌生的影响。
     通过对轧制过程轧件裂纹、夹杂物的演变行为研究,丰富了轧制条件下裂纹和夹杂物的演变行为的理论,同时,研究结果对企业提高轧件质量具有指导作用。
A further requirement is needed to improve the quality of rolled products with the rapid development of steel industry in recently years. And the cracks and the inclusions in rolled steel are the main factors that affect the quality of rolled products. In this thesis, the simulation researches on the initiation, the propagation, and the closure of cracks and the evolution behavior of inclusions in slabs during rolling have been carried out by using the finite element method (FEM) and the experiments. The research contents and results are as follows:
     1. The geometric updating method was proposed for FE simulation of the slab deformation behavior during multi-pass rolling. With this method, the deformation behavior of slabs during multi-pass vertical-horizontal rolling was carried out. The non-uniform shape of the slab head and tail, the metal flow at the slab corner and the strain distribution in slab after every pass during rolling were analyzed under various vertical roll shapes, etc. The numerical results were in good agreement with the physical simulation ones.
     2. The evolution behavior of transversal cracks on slab corner during multi-pass vertical-horizontal rolling was simulated using the geometric updating method. The contact pressure on crack surfaces was firstly used for analyzing the crack closure under various rolling conditions. The crack shape, the contact pressure on crack surfaces, and the crack tip stress during rolling were investigated which were adopted to analyze the influence of the vertical roll shape, the friction coefficient, and the initial crack size on the growth and closure of cracks. The calculated crack shapes after every pass during rolling are in good agreement with that obtained by physical simulation. At the same time, the evolution behavior of longitudinal cracks on the slab surface during multi-pass vertical-horizontal rolling was also simulated with the same method, and the projection of crack shapes in different sections were analyzed. And the evolution mechanism of surface cracks on slabs during rolling was analyzed.
     3. The evolution behavior of internal longitudinal cracks in slabs during vertical-horizontal rolling was simulated with the three-dimensional FEM. The crack shapes at different stages in rolling deformation zone were obtained, and the contact pressure on crack surfaces during rolling were adopted to analyze the effect of the vertical roll shape, and the crack location in slab on the growth and closure of cracks.
     4. The physical simulation was carried out on the healing of internal cracks in slab during hot rolling. The SEM micrographs of the crack shape, the SEM micrographs of crack fracture surface and the shear strength on the crack healing surface zone were analyzed under various rolling reductions. Meanwhile, a series of experiments were carried out for the internal crack healing by using the thermo-mechanical simulator. The SEM micrographs of crack shapes were obtained under different the heating rate, the heating temperature, the holding time, the strain rate, the reduction, and the deformation passes, and the influences of the above-mentioned factors on the crack healing were discussed. The mechanisms of internal crack healing during rolling were proposed based on the experimental results.
     5. The inclusion shape in strips was analyzed by SEM, and the chemical compositions of inclusions were analyzed by the energy spectrum analysis. Based on the experimental results, the evolution behavior of inclusions in strips during multi-pass rolling was carried out with the three-dimensional numerical simulation when the inclusions are combined with the matrix. The inclusion shape, the strain distribution around inclusion and the relative position of inclusions in strips after rolling were obtained considering a variety of inclusion sizes, positions, work roll diameters, etc. The influence of deformation behavior of inclusions on the crack initiation was discussed.
     6. The strain gradient around inclusions gradually increases with increasing the hard inclusions sizes during rolling. The evolution of inclusions and the initiation of cracks during rolling were simulated by using a two-dimensional numerical model when inclusions are separated with the matrix. The influence of inclusion size, shape, and position on the crack initiation around inclusions after rolling was analyzed.
     Analysis of the evolution behavior of cracks and inclusions in slab during rolling is important for understanding the mechanism of defects, and the results are useful for guiding the production.
引文
[1]G. D. Wang, X. H. Liu. Development of steel industry in China [R], The First Australia-China Symposium on Science, Technology and Education,2006, Sydney.
    [2]X. H. Liu, Y. Zhi, H. L. Yu. Rolling technology with reducing resources in China [C], SimPro'2008, Ranchi, India,2008.
    [3]A. S. Malik, R. V. Grandhi. A computational method to predict strip profile in rolling mills [J], Journal of Materials Processing Technology,2008,206(1-3):263-274.
    [4]A. E. Dixon, W. Y. D. Yuen. A physical based method to predict spread and shape during flat rolling for real-time application [J], Steel Research International,2008,19(7):287-296.
    [5]H. Lee, H. J. Koh, C. H. Seo, N. J. Kim. Microstructure and tensile properties of hot-rolled Fe-C-Mn-Si-Cu multiphase steel [J], Scripta Materialia,2008,59(1):83-86.
    [6]X. D. Wang, B. X. Huang, L. Wang, Y. H. Rong. Microstructure and mechanical properties of microalloyed high-strength transformation-induced plasticity steels [J], Metallurgical and Materials Transactions A,2008,39(1):1-7.
    [7]S. A. Rajak, N. V. Reddy. Prediction of internal defects in plane strain rolling [J], Journal of Materials Processing Technology,2005,159(3):409-417.
    [8]S. Z. Li, J. Xu, Y. D. Yin, J. G. Xue, Y. Feng. Mechanism of internal surface crack formation of seamless modified 9Cr1Mo steel tube rolled by mandrel mill and its application [J], Journal of Iron and Steel Research International,2007,14(Suppl.1):273-276.
    [9]Y. Ohba, S. I. Kitade, H. Shimoguchi, I. Takasu. Prevention of surface cracks on billets by refining austenite grain of bloom surface before rolling [J], Tetsu-To-Hagane,2007,93(4): 271-280.
    [10]宋耀华,周佩,张光新,程晓茹,胡衍生.中厚板裂纹影响因素的定量分析与改善途径探讨[J],宽厚板,2006,12(6):32-38.
    [11]国家自然科学基金委员会.金属材料科学学科发展战略研究报告(2006年~2010年)[M],北京:科学出版社,2006.
    [12]刘相华.刚塑性有限元及其在轧制中的应用[M],北京:冶金工业出版社,1994.
    [13]Z. Y. Jiang, X. L. Liu, X. H. Liu, G. D. Wang. Analysis of ribbed-strip rolling by rigid-viscoplastic FEM [J], International Journal of Mechanical Sciences,2000,42:693-703.
    [14]P. V. Marcal, I. P. King. Elastic-plastic analysis of two-dimensional stress systems by the finite element method [J], International Journal of Mechanical Sciences,1967,9(3):143-155.
    [15]S. Chandra, U. S. Dixit. A rigid-plastic finite element analysis of temper rolling process [J], Journal of Materials Processing Technology,2004,152:9-16.
    [16]L. X. Kong, B. Wang, P. D. Hodgson. Prediction of stress-strain behaviors in steels using an integrated constitutive, FEM and ANN model [J], ISIJ International,2001,41:795-800.
    [17]兰勇军,陈祥永,黄成江,李殿中,李依依.带钢热轧过程中温度演变的数值模拟和实验研究[J],金属学报,2001,37(1):99-103.
    [18]S. H. Lee, D. N. Lee. Analysis of deformation textures of asymmetrically rolled steel sheets [J], International Journal of Mechanical Sciences,2001,43:1997-2015.
    [19]S. Torizuka, A. Ohmori, S. V. S. N. Murty, K. Nagai. Effect of strain on the microstructure and mechanical properties of multi-pass warm caliber rolled low carbon steel [J], Scripta Materialia, 2006,54:563-568.
    [20]M. Knapinski. The numerical analysis of roll deflection during plate rolling [J], Journal of Materials Processing Technology,2006,175(1-3):257-265.
    [21]时旭,刘相华,王国栋,李山青.四辊冷轧机轧辊弯曲和压扁变形的有限元分析[J],东北大学学报(自然科学版),2004,25(10):957-960.
    [22]B. J. Li. FEM-an effective tool for development and design in shape rolling [J], Iron and Steel Engineer,1998,75(6):64-65.
    [23]喻海良,赵宪明,刘相华.板带精轧过程轧制力的三维弹塑性有限元分析[J],钢铁研究,2005,1:14-16.
    [24]Z. Y. Jiang, W. P. Hu, X. M. Zhang, X. H. Liu, G. D. Wang. Coupled deformation and temperature analysis of strip rolling with a local perturbation of deformation using a 3D rigid-plastic FEM [J], Scandinavian Journal of Metallurgy,2004,33(1):29-38.
    [25]M. Glowacki, Z. Kedzierski, H. Kusiak, W. Madej, M. Pietrzyk. Simulation of metal flow, heat transfer and structure evolution during hot rolling in square-oval-square series [J], Journal of Materials Processing Technology,1992,34:509-516.
    [26]W. Shin, S. M. Lee, R. Shivpuri and T. Altan. Finite-slab element investigation of square-to-round multi-pass shape rolling [J], Journal of Materials Processing Technology,1992, 33(1-2):141-154.
    [27]K. Komori. Simulation of deformation and temperature in multi-pass caliber rolling [J], Journal of Materials Processing Technology,1997,71:329-336.
    [28]K. Komori. Simulation of deformation and temperature in multi-pass three-roll rolling [J], Journal of Materials Processing Technology,1999,92-93:450-457.
    [29]K. Komori, K. Koumura. Simulation of deformation and temperature in multi-pass H-shape rolling [J], Journal of Materials Processing Technology,2000,105 (1):24-31.
    [30]K. Komori. Simulation of deformation and temperature in multi-pass tube rolling [C], Advances in Engineering Plasticity and its Applications, Pergamon Press, Oxford,1996:747-752.
    [31]J. H. Min, H. C. Kwon, Y. Lee, J. S. Woo, Y. T. Im. Analytical model for prediction of deformed shape in three-roll rolling process [J], Journal of Materials Processing Technology,2003,140: 471-477.
    [32]A. A. Milenin, H. Dyja, S. Mroz. Simulation of metal forming during multi-pass of shape rolling [J], Journal of Materials Processing Technology,2004,153-154:108-114.
    [33]M. Glowacki. The mathematical modeling of thermo-mechanical processing of steel during multi-pass shape rolling [J], Journal of Materials Processing Technology,2005,168:336-343.
    [34]徐旭东.H型钢轧制过程的数值模拟[D],博士学位论文,东北大学,2005.
    [35]原思宇,张立文,廖舒纶.棒线材多道次轧制过程的静力隐式有限元模拟及模型优化[J],塑性工程学报,2005,4:54-57.
    [36]H. L. Yu, X. H. Liu, G. T. Lee. Contact element method with two relative coordinates and its application of prediction of strip profile for a Sendzimir mill [J], ISIJ International,2007,47(7): 996-1005.
    [37]王廷溥.金属塑性加工学(轧制理论与工艺)[M],北京:冶金工业出版社,1998.
    [38]H. L. Yu, X. H. Liu, X. M. Zhao, Y. Kusaba. FEM analysis for V-H rolling process by updating geometric method [J], Journal of Materials Processes Technology,2006,180(1-3):323-327.
    [39]喻海良,刘相华,矫志杰,赵宪明.几何模型更新方法在中厚板平面形状有限元分析中的应用[J],钢铁研究学报,2006,18(2):26-29.
    [40]T. Mastsumiya. Recent topics of research and development in continuous casting [J], ISIJ International,2006,46(12):1800-1804.
    [41]H. V. Atkinson, G. Shi. Characterization of inclusions in clean steels:a review including the statistics of extremes methods [J], Progress in Materials Science,2003,48:457-520.
    [42]J. Mannot, B. Heritier, J. Y. Cogne. Relationship of melting practice, inclusion type, and size with fatigue resistance of bearing steels [J], ASTM Special Technical Publication,1988,987: 149-165.
    [43]S. K. Paul, A. Ray. Influence of inclusion characteristics on the formability and toughness properties of a hot-rolled deep-drawing quality steel [J], Journal of Materials Engineering and Performance,1997,6(1):27-34.
    [44]K. Sei, H. Ikuo, I. Nobuhiko, H. Shigeo, C. Takashi. Fracture behavior of oxide inclusions during rolling and drawing [J], Journal of the Iron and Steel Institute of Japan,2002,88(11): 755-762.
    [45]Z. Liu, Y. Kobayashi, F. Yin, M. Kuwabara, K. Nagai. Nucleation of acicular ferrite on sulfide inclusion during rapid solidification of low carbon steel [J], ISIJ International,2007,47(12), 1781-1788.
    [46]梁高飞,王成全,方圆.AISI304不锈钢熔化过程中夹杂物在固—液糊状区漂移与聚集行为的原位观察[J],金属学报,2006,42(7):708-714.
    [47]H. L. Yu, X. H. Liu, X. W. Li. FE analysis of inclusion deformation and crack generation during cold rolling with a transition layer [J], Materials Letters,2008,62(10-11):1595-1598.
    [48]P. C. Savalia, H. V. Tippur. A study of crack-inclusion interactions and matrix-inclusion debonding using Moire interferometry and finite element method [J], Experimental Mechanics, 2007,47(4):533-547.
    [49]S. B. Hosseini, C. Temmel, B. Karlsson, N. G. Ingesten. An in-situ scanning electron microscopy study of the bonding between MnS inclusions and the matrix during tensile deformation of hot-rolled steels [J], Metallurgical and Materials Transactions A.2007,38(5):982-989.
    [50]T. Ohashi. Three dimensional structures of the geometrically necessary dislocations in matrix-inclusion systems under uniaxial tensile loading [J], International Journal of Plasticity, 2004,42(8-9):849-860.
    [51]娄德春,崔昆,吴晓春,周风云.硫化锰夹杂物的热变形行为[J],钢铁研究学报,1996,8(6):11-14.
    [52]V. Vignal, R. Oltra, C. Josse. Local analysis of the mechanical behaviour of inclusions-containing stainless steels under straining conditions [J], Scripta Materialia.2003,49: 779-784.
    [53]E. Ervasti, U. Stahlberg. Void initiation close to a macro-inclusion during single pass reductions in the hot rolling of steel slabs:A numerical study [J], Journal of Materials Processing Technology,2005,170:142-150.
    [54]C. Luo, U. Stahlberg. Evolution of voids close to an inclusion in hot deformation of metals [J], Computational Materials Science,2001,21(3):360-374.
    [55]C. Luo, U. Stahlberg. Deformation of inclusions during hot rolling of steels [J], Journal of Materials Processing Technology,2001,114:87-97.
    [56]A. Melander. A finite element study of short cracks with different inclusion types under rolling contact fatigue load [J], International Journal of Fatigue.1997,19(1):13-24.
    [57]Y. M. Hwang, D. C. Chen. Analysis of the deformation mechanism of void generation and development around inclusions inside the sheet during sheet rolling process [J], Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2003, 217(10):1373-1381.
    [58]王习术,梁锋,曾燕屏,谢锡善.夹杂物对超高强度钢低周疲劳裂纹萌生及扩展影响的原 位观测[J],金属学报,2005,41:1272-1276.
    [59]蔡开科,韩传基,孙彦辉.连铸坯裂纹控制[C],板坯连铸技术交流会论文集.中国金属学会连铸分会,南京,2006,1-15.
    [60]焦国华,吴光亮,孙彦辉,成小军,周春泉.CSP热轧板卷边部裂纹成因及控制[J],钢铁,2006,41(6):27-31.
    [61]Y. N. Malinochka, T. I. Makagonova, V. A. Maslennikov, E. P. Ionts, Y. S. Shmelev. Determining characteristics of surface cracks in primary rolled products [J], Steel in the USSR,1984,14(12): 597-601.
    [62]车彦民,朱涛,章华明,董梅,陈其安.CSP板卷及冷轧镀锌板表面缺陷分析[J],钢铁,2006,42(2):63-66.
    [63]A. Ray. Electron-probe microanalysis:some revelations in the investigation of defects in steel products [J], Materials Science Forum,2005,492-493:627-634.
    [64]O. B. Isaev, V. V. Emelyanov, V. V. Kislitsa, Y. I. Matrosov, L. S. Lepikhov. Effect of the carbon content of low-alloy steels on the surface quality of continuous-cast semifinished products and rolled plates [J], Metallurgist,2004,48(5-6):210-213.
    [65]王大宝,刘东夫.中厚板表面微裂纹成因分析[J],炼铁,2000,16(2):15-18.
    [66]李永清,孙云虎,宋泽启.控制中厚板连铸坯裂纹的实践[J],特殊钢,2004,25(5):54-55.
    [67]朱国森,王新华,于会香,王万军.连铸板坯三角区裂纹的影响因素[J],北京科技大学学报,2004,26(1):42-44.
    [68]付勇涛,邱长生,刘武群,时捷.35CrNiMoV钢铸坯断裂原因分析[J],钢铁,2006,41(9):78-81.
    [69]戚国平,陆斌,徐军,张昧茗,张晓兵,王龙妹.10PCuRE耐候钢连铸坯表面纵裂纹成因分析[J],稀土,2003,24(5):33-37.
    [70]周有预,罗德信.连铸板坯表面纵向裂纹的形成原因[J],钢铁研究学报,2004,16(5):75-78.
    [71]张立,徐国栋,王新华,朱志远.集装箱用钢连铸坯表面纵裂纹的研究[J],钢铁,2002,37(1):19-21+26.
    [72]王谦,王雨,迟景灏,谢兵,何宇明,朱斌,屈毅,孙毅杰.连铸保护渣结晶性能与16Mn铸坯表面微裂纹的关系[J],钢铁,2003,38(4):24-26.
    [73]何宇明,朱斌,陈文满,孙毅杰,周宏.中厚板表面微裂纹成因及影响因素研究[J],钢铁,2006,41(1):36-38.
    [74]刘新生,梁福彬.连铸坯角部凹陷及纵向裂纹的研究[J],铸造技术,2005,26(8):714-716.
    [75]尹合壁,姚曼,罗庆梅,方大成.连铸坯表面裂纹预测研究的现状[J],钢铁研究学报,2004,16(1):1-5.
    [76]A Griffith. Phenomena of rupture and flow in solids [J], Philosophical Transactions of Royal Society of London, Series A,1920,221(4):163~198.
    [77]K. Yamamoto. Study on surface defects of coated sheets caused by the surface condition of a hot roughing mill roll [J], SEAISI Quarterly (South East Asia Iron and Steel Institute),2007,36 (3): 54-58.
    [78]H. Riedel, F. Andrieux, T. Walde, K.-F. Karhausen. The formation of edge cracks during rolling of metal sheet [J], Steel Research International,2007,78 (10-11):818-824.
    [79]C. Temmel, B. Karlsson, N. Ingesten. Fatigue anisotropy in cross-rolled, hardened medium carbon steel resulting from MnS inclusions [J], Metallurgical and Materials Transactions A, 2006,37(10):2995-3007.
    [80]李法兴,兰新哲,宋永辉,孙永喜.260 mm ×300 mm连铸坯内裂纹的分析和改进工艺实践[J],特殊钢,2007,28(1):53-54.
    [81]D. C. Ko, S. H. Lee, D. H. Kim, S. M. Byon,H. D. Park, B. M. Kim. Design of sizing press anvil for decrease of defect in hot strip [J], Journal of Materials Processing Technology,2007, 187-188:738-742.
    [82]M. Tercelj, R. Turk, G. Kugler, L. Perus. Neural network analysis of the influence of chemical composition on surface cracking during hot rolling of AISI D2 tool steel [J], Computational Materials Science,2008,42(4):625-637.
    [83]赵晓鹏,周本濂,罗春荣,王景华,刘建伟.具有自修复行为的智能材料模型[J],材料研究学报,1996,10(1):101-104.
    [84]S. R. White, N. R. Sottos, P. H Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan. Autonomic healing of polymer composites [J], Nature,2001,409 (6822): 794-797.
    [85]T. A. Plaisted, S. N. Nasser. Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer [J], Acta Materialia,2007,55:5684-5696.
    [86]B. J. D. Rule, E. N. Brown, Nancy R. Sottos, S. R. White, J. S. Moore. Wax-protected catalyst microspheres for efficient self-healing materials [J], Advanced Materials,2005,17(2):205-208.
    [87]K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, S. R. White. Self-healing materials with microvascular networks [J], Nature Materials,2007,6 (8):581-585.
    [88]M. W. Keller, S. R. White, N. R. Sottos. Torsion fatigue response of self-healing poly(dimethylsiloxane) elastomers [J], Polymer,2008,49(13-14):3136-3145.
    [89]D. Tzetzis, P. J. Hogg. The influence of surface morphology on the interfacial adhesion and fracture behavior of vacuum infused carbon fiber reinforced polymeric repairs [J], Polymer Composites,2008,29(1):92-108.
    [90]G. Lykotrafitis, A. J. Rosakis, G. Ravichandran. Self-healing pulse-like shear ruptures in the laboratory [J], Science,2006,313 (5794):1765-1768.
    [91]K. Takahashi, K. Ando, H. Murase, S. Nakayama, S. Saito. Threshold stress for crack-healing of Si3N4/SiC and resultant cyclic fatigue strength at the healing temperature [J], Journal of American Ceramic Society,2005,88(3):645-651.
    [92]G. M. Song, Y. T. Pei, W. G. Sloof, S. B. Li, J. Th. M. De Hosson, S. Zwaag. Oxidation-induced crack healing in Ti3AlC2 ceramics [J], Scripta Materialia,2008,58:13-16.
    [93]M. Sahmaran. Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar [J], Journal of Materials Science,2007,42:9131-9136.
    [94]H. S. Kim, M. K. Kim, S. B. Kang, S. H. Ahn, K. W. Nam. Bending strength and crack-healing behavior of Al2O3/SiC composites ceramics [J], Materials Science and Engineering A,2008, 483-484(1-2C):672-675.
    [95]W. H. Wu, J. L. Zhang, H. W. Zhou, Y. N. Huang, L. Zhang, X. N. Ying. A method to study the crack healing process of glassformers [J], Applied Physics Letters,2008,92(1):Article.011928.
    [96]Y. Li, G. C. Weatherly, M. Niewczas. Crack healing during molecular-beam-epitaxy growth of GaP/GaAs thin films [J], Journal of Applied Physics,2005,98:Article.013522.
    [97]O. A. Idowu, O. A. Ojo, M. C. Chaturvedi. Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy [J], Materials Science and Engineering A,2007, 454-455:389-397.
    [98]Suyitno, D. G. Eskin, L. Katgerman. Structure observations related to hot tearing of Al-Cu billets produced by direct-chill casting [J], Materials Science and Engineering A,2006,420(1-2): 1-7.
    [99]F. Mompiou, D. Caillard. Plasticity of single-grain icosahedral Al-Pd-Mn quasi-crystals deformed at room temperature [J], Acta Materialia,2004,52(12):3613-1619.
    [100]周亦胄,周本濂,郭晓楠,何冠虎,张弗天.脉冲电流对45钢损伤的恢复作用[J],材料研究学报,2000,14(1):29-36.
    [101]Y. Z. Zhou, R. S. Qin, S. H. Xiao, G. H. He, B. L. Zhou. Reversing effect of electropulsing on damage of 1045 steel [J], Journal of Materials Research,2000,15(5):1056-1061
    [102]周亦胄,肖素红,甘阳,高明,何冠虎,周本濂.脉冲电流作用下碳钢淬火裂纹的愈合[J],金属学报,2000,36(1):43-45.
    [103]R. Qin, S. Su. Thermodynamics of crack healing under electropulsing [J], Journal of Materials Research,2002,17(8):2048-2052.
    [104]郑丽娟,付宇明,白象忠,田振国.带有裂纹的金属薄板构件裂尖处电热应力的数值分析[J],机械工程学报,2002,38(3):90-93.
    [105]郑丽娟,付宇明,白象忠.含多裂纹的金属凹模脉冲放电止裂瞬间绕流屏蔽效应的数值分析[J],塑性工程学报,2008,15(1):155-157.
    [106]韩静涛,赵钢,曹起骧.20MnMo钢内裂纹修复规律的研究[J],中国科学(E辑),1997,27(1):23-27.
    [107]韩静涛,赵钢,曹起镶.20MnMo钢内裂纹修复现象的发现及其金属组织的变化[J],金属学报,1996,32(7):724-729.
    [108]韩静涛,赵钢,曹起骧,马喜腾.温度及时间对20MnMo钢内裂纹修复作用的SAM研究[J],中国机械工程,1997,8(3):88-91.
    [109]钟志平.大型简体锻件组织性能控制与高温裂纹修复实验研究[D],博士学位论文,清华大学,1998.
    [110]V. L. Kolmogorov, S. V.Smirnov. The restoration of the margin of metal plasticity after cold deformation [J], Journal of Material Processing Technology,1998,74 (1):83-88.
    [111]X. G. Li, C. F. Dong, H. Chen. Healing of hydrogen attack in austenite stainless steel under heat treatment [J], Acta Metallurgica Sinica (English Letters),2002,15(4):385-390.
    [112]董超芳,徐璟瑾,李晓刚,诸武扬.用高温显微镜观察氢腐蚀裂纹愈合过程[J],中国腐蚀与防护学报,2003,23(3):179-182.
    [113]D. Wei, J. Han, Z. Y. Jiang, C. Lu, A. K. Tieu. A study on crack healing in 1045 steel [J], Journal of Materials Processing Technology,2006,177:233-237
    [114]韦东滨,韩静涛,谢建新,胡海萍,贺毓辛.金属材料内部损伤愈合研究进展[J],材料导报,1999,13(6):10-11.
    [115]韦东滨,韩静涛,谢建新,付晨光,王连忠,贺毓辛.真空环境中金属材料裂纹高温愈合的研究[J],金属学报,2000,36(7):713-717.
    [116]韦东滨,韩静涛,谢建新,胡海萍,陈军,贺毓辛.金属材料内部裂纹高温愈合的实验研究[J],北京科技大学学报,2000,22(3):245-248.[117]郭从盛,龙妹明,缝小明,张会.W6Mo5Cr4V2钢内部裂纹愈合过程中碳化物的生长现象[J],热加工工程,2007,36(14):30-32.
    [118]H. L. Zhang, L. Gao, J. Sun. Density changes of iron during morphological healing evolution of internal fatigue microcracks [J], Metallurgical and Materials Transactions A,2003,34(12), 2925-2933.
    [119]张海龙,杨君刚,孙军.工业纯铁内部穿晶疲劳微裂纹的扩散愈合过程[J],金属学报,2002,38(10):1015-1020.
    [120]H. L. Zhang, P. Z. Huang, J. Sun, H. Gao. Morphological healing evolution of penny-shaped fatigue microcracks in pure iron at elevated temperatures [J], Applied Physics Letters,2004, 85(7):1143-1145.
    [121]张永军.金属材料内部裂纹愈合形态演化过程的扩散热力学分析[J],塑性工程学报,2008,2:122-125.
    [122]韦东滨,韩静涛,谢建新,付晨光,王连忠,贺毓辛.热塑性条件下钢内部裂纹愈合的实验研究[J],金属学报,2000,36(6):622-625.
    [123]袁朝龙,钟约先.高温塑性变形中孔隙性缺陷自修复机理[J],塑性工程学报,2006,13(1):53-57.
    [124]S. Li, K. Y. Gao, L. J. Qiao, F. X. Zhou, W. Y. Chu. Molecular dynamics simulation of microcrack healing in copper [J], Computational Materials Science,2001,20:143-150.
    [125]M. Li, W. Y. Chu, K. W. Gao, L. J. Qiao. Molecular dynamics simulation of healing of an ellipsoid crack in copper under compressive stress [J], Materials Letters,2004,58:543-546.
    [126]李明,诸武扬,高克玮,宿彦京,乔利杰.Cu晶体内椭球裂纹愈合的三维分子动力学模拟[J],金属学报,2004,40(5):449-451.
    [127]D. B. Wei, J. T. Han, A. K. Tieu, Z. Y. Jiang. Simulation of crack healing in BCC Fe [J], Scripta Materialia,2004,51:583-587.
    [128]P. Vashishta, P. K. Kalia, A. Nakano. Multimillion atom simulations of dynamics of wing cracks and nanoscale damage in glass, and hypervelocity impact damage in ceramics [J], Computer Physics Communication,2007,177(1-2):202-205.
    [129]K. W. Gao, S. Li, L. J. Qiao, W. Y. Chu. Molecular dynamics simulation and in situ TEM study of crack healing [J], Materials Science and Technology.2002,18(10):1109-1114.
    [130]D. S. Burton, X. Gao, L. C. Brinson. Finite element simulation of a self-healing shape memory alloy composite [J], Mechanics of Materials,2006,38:525-537.
    [131]A. Wang, P. F. Thomson, P. D. Hodgson. A study of pore closure and welding in hot rolling process [J], Journal of Materials Processing Technology,1996,60:95-102.
    [132]M. Awais, H. W. Lee, Y. T. Im, H. C. Kwon, S. M. Byon, H. D. Park. Plastic work approach for surface defect prediction in the hot bar rolling process [J], Journal of Materials Processing Technology,2008,201(1-3):73-78.
    [133]I. H. Son, H. D. Lee, S. Choi, D. L. Lee, Y. T. Im. Deformation behavior of the surface defects of low carbon steel in wire rod rolling [J], Journal of Materials Processing Technology,2008, 201(1-3):91-96.
    [134]H. Y. Kim, H. C. Kwon, H. W. Lee, Y. T. Im, S. M. Byon, H. D. Park. Processing map approach for surface defect prediction in hot bar rolling [J], Journal of Materials Processing Technology,2008,205(1-3):70-80.
    [135]E. Ervasti, U. Stahlberg. Behavior of longitudinal surface cracks in the hot rolling of steel slabs [J], Journal of Material Processing Technology,1999,94(2):141-150.
    [136]E. Ervasti, U. Stahlberg. Transversal cracks and their behavior in hot rolling of steel slabs [J], Journal of Material Processing Technology,2000,101(1):312-321.
    [137]N. Yukawa, T. Ishikawa, Y. Yoshida, A. Koyachi. Influence of rolling condition on deformation of surface micro-defect in plate rolling [J], Tetsu-to-Hagane,2005,91(12): 861-867.
    [138]T. Ishikawa, N. Yukawa, Y. Yoshida, Y. Tozawa. Analytical approach to elimination of surface micro-defects in forging [J], CIRP Annals-Manufacturing Technology,2005,54(1):249-252.
    [139]N. Yukawa, Y. Yoshida, T. Ishikawa. Deformation analysis of longitudinal surface micro-defects in flat rolling [J], Tetsu-to-Hagane,2006,92(11):661-666.
    [140]M. Fukumura, M. Fujikake, F. Fujita. Elastic-plastic finite element simulation of the flat rolling process by dynamic explicit method [J], NKK Technical Review,1998,79:8-14.
    [141]T. Iguchi, D. R. J. Owen, G. Q. Liu. Analysis of rolling processes by dynamic explicit elasto-plastic finite element method [C], Proceedings of the 7th International Conference on Steel Rolling. Chiba:The Iron and Steel Institute of Japan,1998:266-271.
    [142]A. C. W. Lau, R. Shivpuri, P. C. Chou. Explicit time integration elastic-plastic finite element algorithm for analysis of high speed rolling [J], International Journal of Mechanical Sciences, 1989,31(7):483-497.
    [143]刘立忠,刘相华,姜正义.利用显式动力学有限元方法模拟平板轧制过程[J],塑性工程学报,2001,8(1):51-54.
    [144]谢红飙,肖宏,张国民,刘积成.用显式动力学有限元法分析压下率对板带轧制压力分布的影响[J],钢铁研究学报,2002,14(6):33-35.
    [145]M. Wang, H. Yang, Z. C. Sun, L. G. Guo, X. Z. Ou. Dynamic explicit FE modeling of hot ring rolling process [J], Transactions of Nonferrous Metals Society of China (English Edition), 2006,16(6):69-72.
    [146]S. Urankar, M. Lovell, C. Morrow, Q. Li, K. Kawada. Development of a critical friction model for cross wedge rolling hollow shafts [J], Journal of Materials Processing Technology, 2006,177(1-3):539-544.
    [147]C. Xie, X. Dong, S. Li, S. Huang. Rigid-viscoplastic dynamic explicit FEA of the ring rolling process [J], International Journal of Machine Tools and Manufacture,2000,40(1):81-93.
    [148]E. T. Harpell, M. J. Worswick, M. Finn, M. Jain, P. Martin. Numerical prediction of the limiting draw ratio for aluminum alloy sheet [J], Journal of Materials Processing Technology, 2000,100(1):131-141.
    [149]W. K. Chung, S. K. Choi, P. F. Thomson. Three-dimensional simulation of the edge rolling process by the explicit finite element method [J], Journal of Materials Processing Technology, 1993,38(1-2):85-101.
    [150]李尚健.金属塑性成形过程模拟[M],北京:机械工业出版社,1999.
    [151]王勖成,邵敏.有限单元法基本原理和数值方法[M],北京:清华大学出版社,1997,443-454.
    [152]汪凌云,刘静安.计算金属成形力学及应用[M],重庆:重庆大学出版社,1991,211-236.
    [153]ANSYS/LS-DYNA Theoretical Manual.1998.
    [154]徐旭东,刘相华,吴迪.轧制过程中H型钢轧制压力的变化情况分析[J],塑性工程学报,2004,11(6):70-74.
    [155]乔端,钱仁根.非线性有限元法及其在塑性加工中的应用[M],北京:冶金工业出版社,1990,24-27.
    [156]凌道盛,徐兴.非线性有限元及程序[M],杭州:浙江大学出版社,2004.
    [157]C. J. Park, I. C. Hwang. Width control systems with roll force automatic width control and finishing vertical mill automatic width control in hot strip mill [J], Journal of Materials Processing Technology,2008,206:143-151.
    [158]M. R. Forouzan, I. Salehi, A. H. Adibi-sedeh. A comparative study of slab deformation under heavy width reduction by sizing press and vertical rolling using FE analysis [J], Journal of Materials Processing Technology, doi:10.1016/j. jmatprotec.2008.02.06.
    [159]K. Mori, K. Osakada. Simulation of three-dimensional rolling by the rigid-plastic finite element method [C], Proceedings of the International Conference on Numerical Methods in Industrial Forming Processes, Pineridge Press, Swansea,1982,747~756.
    [160]H. Nikaido, T. Naoi, K. Shibata, T. Kondo, K. Osakada. Numerical simulation of width spread of dog-bone slab in non-steady horizontal rolling [J], Journal of the Japan Society for Technology of Plasticity,1984,25(277):129~135.
    [161]C. David, C. Bertrand, J. L. Chenot, P. Buessler. A transient 3D FEM analysis of hot rolling of thick slabs [C], Proceedings of Numiform'86, Balkema, Gothenburg,1986,219~224.
    [162]W. K. Chung, S. K. Choi, P. F. Thomson. Three-dimensional simulation of the edge rolling process by the explicit finite-element method [J], Journal of Materials Processing Technology, 1993,38:85~102.
    [163]S. W. Xiong, X. H. Liu, G. D. Wang, Q. Zhang. A three-dimensional finite element simulation of the vertical-horizontal rolling process in the width reduction of slab [J], Journal of Materials Processing Technology,2000,101,146~151.
    [164]S. W. Xiong, G. F. Zheng, X. H. Liu, G. D. Wang. Analysis of the non-steady state vertical-horizontal rolling process in roughing trains by the three-dimensional finite element method [J], Journal of Materials Processing Technology,2002,120,53~61.
    [165]赵宪明,王国栋,朴海斗,崔承甲.立辊形状对粗轧板坯侧弯的影响[J],东北大学学报,2002,23(12):1174~1176.
    [166]刘慧,高彩茹,王国栋,刘相华.立辊形状对板坯断面形状的影响[J],塑性工程学报,2003,10(5):86~88.
    [167]祝夫文,胡贤磊,赵忠,刘相华.中厚板轧件舌形缺陷的分析[J],钢铁,2008,43(5):61-65.
    [168]刘惠,王国栋,刘相华.轧制工艺参数对钢板平面形状的影响[J],东北大学学报(自然科学版),2004,25(7):674-677.
    [169]喻海良,刘相华,赵宪明,司良英,牛海山,草场芳昭.多道次立-平轧制立辊孔型对轧件头尾形状影响的有限元分析[J],钢铁研究学报,2007,19(1):26-30.
    [170]吴迪,赵宪明,董学新,徐震.初轧机无孔型轧制工艺研究及生产应用[J],轧钢,2004,21(4):1-3.
    [171]韦东滨,程鼎,吴迪,白光润.无孔型轧制轧件角部尖化变形的实验研究[J],钢铁,1999,34(1):27-30.
    [172]喻海良,刘相华,李长生.立辊孔型内倒角半径对轧件变形的影响[J],钢铁,2006,41(6):47-51.
    [173]喻海良,刘相华,李长生.多道次立-平轧制轧件角部金属流动状态有限元分析[J],东北大学学报(自然科学版),2005,26(10):982-985.
    [174]H. L. Yu, X. H. Liu, C. S. Li, X. M. Zhao, Y. Kusaba. Influences on the plastic strain distribution of slab of vertical roll shape during multi-pass V-H rolling process [J], Acta Metallurgical Sinica. (English Letters),2006,19(1):51-56.
    [175]姚若浩.金属压力加工中的摩擦与润滑[M],北京:冶金工业出版社,1990.
    [176]A. F. M. Arif, O. Khan, A. K. Sheikh. Roll deformation and stress distribution under thermo-mechanical loading in cold rolling [J], Journal of Materials Processing Technology, 2004,147:255-267.
    [177]H. L. Yu, X. H. Liu. Thermal-mechanical FE analysis of evolution behavior of slab surface cracks during hot rolling [J], Materials and Manufacturing Processes,2009,24(5), in publish.
    [178]程娴,英哲,陈礼清,张磊,刘文忠.热固树脂—K08Al钢层状复合板的成形性及减振性[J],金属学报,1995,31(11):499-504.
    [179]高艳涛.大型锻件孔隙性缺陷修复的力学条件及冷却自愈合研究[D],博士学位论文,燕山大学,2007.
    [180]徐永东,张文兴,柴东朗.材料裂纹型损伤愈合过程观测[J],宇航材料工艺,2001,7(3):37-41.
    [181]袁朝龙,钟约先,马庆贤,曹起骧.孔隙性缺陷拟生自修复机制研究[J],中国科学(E 辑),2002,32(6):747-753.
    [182]刘新生,赵定国,崔成业.冷轧薄板中分层现象的研究[J],钢铁,2008,43(5):40-43.
    [183]J. C. Pandey, P. N. Choubey, M. Raj. Study of inclusion bands in continuously cast steel billets for rolling thermomechanically treated rebars [J], Metallurgical and Materials Transactions A,2008,39(7):1727-1737.
    [184]季灯平,毕洪运.304不锈钢中夹杂物及其冷轧变形行为[J],宝钢技术,2008,3:48-51.
    [185]K. D. Schmidt, F. Friedel, K. P. Imlau, W. Jager, K. T. Muller. Consequent improvement of surface quality by systematic analysis of slabs [J], Steel Research International,2003, 74(11-12):659-666.
    [186]薛正良,翁宇庆,李正邦.“零夹杂”钢及其氧化物夹杂物行为[J],世界钢铁,2008,8(7):17-20.
    [187]罗高强,唐萍,文光华,陈志平,倪修华.梅山2号板坯连铸低碳钢铸坯质量的研究[J],钢铁,2007,42(8):36-40.
    [188]张少棠.钢铁材料手册—不锈钢[M],北京:中国标准出版社,2001.
    [189]李荣久.陶瓷—金属复合材料[M],北京:冶金工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700