配置不同强度等级钢筋的混凝土框架结构非线性动力反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HRB500级钢筋是一种新型高强高延性的热轧带肋钢筋。在国外500MPa级钢筋已得到广泛的应用。正在修订的《混凝土结构设计规范》拟列入这种钢筋,以便推广应用高强钢筋,从而节约能源、提高环境质量,实现建筑行业的可持续发展。但是,以500MPa级钢筋作为主要受力钢筋的构件的承载力、裂缝、刚度等性能的研究还相对缺乏。因此对高强度钢筋的推广应用尚缺乏足够的试验依据和分析研究成果。受混凝土结构设计规范修订管理组的委托,本文利用非线性动力反应分析对配置HRB500级钢筋的混凝土框架结构的抗震性能进行初步的分析并与配置HRB335、HRB400钢筋的相应框架的抗震性能进行了对比分析。
     本文按照《混凝土结构设计规范》最新修订初稿(第一稿)的意见设计了八度0.3g区的三个民用建筑钢筋混凝土典型框架,分别采用了三种不同强度的钢筋作为纵筋(HRB335、HRB400、HRB500)。然后对这三榀框架分别采用本研究团队已经编制完成并经验证确认可靠的拟三维非线性动力反应分析程序FW-EPA和美国纽约州立大学布法罗分校(State University of New York at Buffalo)和地震工程研究中心(National Center for Earthquake Engineering Research,NCEER)联合研究开发的非线性结构分析程序IDARC5.5进行罕遇水准地震作用下的非线性动力反应分析和比较。得到如下结论:
     ①本文设计的三榀八度0.3g区一级框架的截面尺寸均由最大层间位移角控制。其中以HRB500钢筋作为纵筋的框架梁配筋基本由正常使用状态下的裂缝宽度来控制;而框架柱配筋受最小配筋率影响很大,特别是中间层的纵向钢筋配筋率基本由全截面最小配筋率控制。
     ②三榀八度0.3g区一级框架采用FW-EPA程序在罕遇地震作用下的分析所得地震反应均不大,其中配用HRB500钢筋的框架在输入五条地震波的非线性动力反应分析中其柱端都没有出现塑性铰,结构总体反应表现良好,形成了以梁端塑性铰为主的耗能机构。
     而在采用IDARC5.5程序进行分析时,三榀框架的梁铰和柱铰出现的都较普遍,特别是顶层的柱铰有形成层间侧移机构的趋势。但其层间位移角、顶点最大位移、层间位移等反应相对较小。总体来说在罕遇水准地震作用下结构地震反应基本能达到预期的抗震设防目标。
     ③通过两种非线性程序的分析结果可以发现,虽然不同分析程序在五条地震波的输入下的分析结果有一定的差距,但总体的趋势十分相似。其层间位移角、顶点最大位移、层间位移等反应都随着配筋强度的提高而提高。这正好体现了配置高强度钢筋的构件在屈服后刚度下降较快的特点。
HRB500 is a new type steel bar with high strength and high ductility. This kind of steel bars has been used prevalently in foreign countries. The application of this kind of steel bars is to be incorporated into the code for the Design of concreta structures which is being revised at present. In order to promote the use of high-strength steel to save energy, improve environmental quality and to achieve sustainable development in the construction industry. However there is not enough experiment about the properties of reinforced concrete members reinforced with HRB500 steel bars, such as ultimate bearing capacity, cracks, rigidity etc. Entrusted by the revision administration group of the Code for Design of Concrete Structure Management Construction, we have been conducted the research concrete structural member stress performance.Committee of Ministry of to the HRB500 reinforced.
     In this paper, three representative reinforced concrete public frames were designed according to new revised draft norms, adopted three different strength of reinforcement. And then use the research team has been completed and certified to be a reliable confirmation of two-dimensional nonlinear dynamic response analysis procedure FW-EPA and State University of New York Buffalo State University of New York at Buffalo and the Earthquake Engineering Research Center, National Center forEarthquake Engineering Research NCEER joint research and development program of the non-linear structure IDARC5.5 analysis and comparison of nonlinear dynamic response in rare Earthquake.Theconclusions are as following:
     ①In this paper, the Section size of the three framework at 8 degrees0.3g section By the largest story drift angle control. The frame beam with HRB500 reinforced under normal use by the crack width control.The Frame columns reinforced by a great influence on the minimum reinforcement ratio, In particular, the middle layer of vertical steel reinforcement ratio were basic control by the minimum reinforcement ratio.
     ②FW-EPA to adopt procedures for nonlinear analysis of intensity in the rare event of an earthquake under the seismic response analysis is not large. In particular with the framework reinforced by HRB500,With five seismic waves input the nonlinear dynamic response analysis there were no plastic hinge in the end column,Good performance of the overall response structure. Formed a beam end plastic hinge energy agency. End beam plastic hinge appears relatively common.
     In the analysis using IDARC5.5 procedures, We have found: The beam hinged and column hinge of three frame structure were appears generally. In particular, the top hinge of the column are formed story displacement agencies. But the story drift angle, the maximum vertex displacement, story drift, such as response to relatively small.The test results show that the frame may form the beam hinged collapse mechanism under lateral cyclic loads, and its deformation capacity, bearing capacity, ductility and energy dissipation may meet the requirement for seismic design of ductile frames.
     ③By analyzing of two non-linear programs, We have found: Although the analysis result of input five seismic waves have a greater gap, But the overall trend is very similar to. story drift angle top maximum displacement and story drift With the reinforcement strength Increase to improve. This reflects when the members configuration of high strength steel after yield the members while stiffness degradation
引文
[1]徐有邻,我国混凝土结构用钢筋的现状及发展. [J]土木工程学报, 1999, 32 (5):4-9.
    [2]裴智,张维汇,王润晓,马向群. HRB500钢筋的发展与设计施工要点[J]施工技术2007.4
    [3] ACI 318-O5 .Building Code Requirements for Structural Concrete[S] .American Concrete Institute. Farminton Hills. Michigan. USA. 2005.
    [4] NZS3101-1995.Concrete Structures Standards[S]. New Zealand. Wellington. 1995.
    [5] Eurocode 8. Design of Structures for Earthquake Resistance. 2003.
    [6]混凝土结构设计规范(GB 50010-2002) [S].北京:中国建筑工业出版社, 2002.10.17, 81-91.
    [7] Hiroyuki Aoyama. Design of Mordern Highrise Reinforced Concrete Structures.张川译.现代高层钢筋混凝土结构设计[M].重庆:重庆大学出版社.2006.
    [8]裴智,工学忠,工庆贤.HRB500钢筋的研究开发与应用[J].建筑结构.2003, (s).
    [9]同济大学课题组.配500MPa钢筋的混凝土梁受弯性能试验方案[R].同济大学.2006.
    [10]天津大学建筑工程学院.使用500MPa钢筋的混凝土梁基本性能试验研究报告[R].天津大学.2006.
    [11]毛达岭,刘立新,范丽. HRB500钢筋粘结锚固性能及设计建议[J].郑州大学学报(工学版), 2004, 25(2): 54-58.
    [12]葛洪亮.配置HRB500钢筋的框架中间层中间节点抗震性能试验研究[D].重庆大学2007.
    [13]王信君.配有500MPa级钢筋的中间层端节点抗震性能试验研究[D].重庆大学.2007
    [14]孟宪布,白宗奇. HRB500钢筋的研制[J].冶金标准化与质量, 2005, 43 (3): 31-34.
    [15]钢筋混凝土用热轧带肋钢筋(GB 1499-1998)[S].中国标准出版社出版社,2003.7
    [16]土丽娟,杨茂麟,杨碧能. HRB500Ⅳ级热轧带肋钢筋开发[J].冶金标准化与质量,2006, 44(2):26-28 .
    [17]孟宪布,白宗奇. HRB500钢筋的研制[J].冶金标准化与质量,2005,43(3):31-34
    [18]王学忠,刘佩明,穆国栋等. HRB500的研制与生产分析[J].山东冶金,2005,27(3):20-22.
    [19] PaulayT.,Priestley M.J.N.Seismic Design of Reinforced Concrete and Masonry Buildings[M].John Wiley&Sons, INC, 1992
    [20] NZS3101:1995 Concrete Structures Standards[S].New Zealand, Wellington, 1995
    [21] CEB-fib.Seismic Design of Reinforced Concrete Structures for Controlled Inelastic Response-Design Concepts[M] Comite Euro-international du Beton,Bulletind' Information No. 240, Thomas Telford Ltd, 1998.
    [22] Andre Filiatrault,Danilo D' Aronco,and Rene Tinawi.Seismic Shear Demand of Ductile Cantiever Wall:a Canadian Code Perspective[J].Canadian Journal of CivilEngineering, Vol. 21(1994):362-375.
    [23] Munshi Javed A. and Ghosh Satyendra K. Analysis of Seismic Performance of a Code Designed Reinforced Concrete Building[J].Engineering Structures, Vol. 20 (1998),No. 7 : 608-616.
    [24] Peter Linde.Evaluation of Structural Walls Designed to According to Eurocode 8 and SIA160[J]. Earthquake Engineering and Structural Dynamic,Vo1.27(1998):793-809.
    [25] Dooley Kara L. and Bracci Joseph M.Seismic Evaluation of Column-to-Beam Strength Ratios in Reinforced Concrete Frames[J].ACI Structural Journal,Nov.Dec.2001, Vol. 98, No. 6,pp. 843-851.
    [26]韦锋,杨红,白绍良,对我国不同烈度区钢筋混凝上框架现行抗震规定的初步验证[J],重庆建筑大学学报,第23卷第6期,2001.12
    [27]韦锋.钢筋混凝上框架和框架一剪力墙结构非弹性地震反应性态的识别[D],重庆大学博士学位论文,2005
    [28]徐风波. HRB500级钢筋混凝土梁正截面受力性能试验及理论研究[D].湖南大学.2007
    [29]杨红.基于细化杆模型的钢筋混凝土抗震框架非线性动力反应规律研究[D].重庆:重庆建筑大学,2000.
    [30]李刚强.抗震设计的R-μ基本准则及钢筋混凝土典型框架结构超强特征分析[D].重庆:重庆大学, 2006.
    [31] Fib (CEB-FIP). Bulletin 25. Displacement-Based Seismic Design of Reinforced Concrete Buildings[R]. Sprint-Digital-Druck. Stuttgart. 2003.
    [32] Fib (CEB-FIP). Bulletin 25.白绍良译.钢筋混凝土建筑结构基于位移的抗震设计[R].重庆大学土木工程学院.2004.
    [33] T.B. Panagiotakos and M.N. Fardis. Deformations of Reinforced Concrete Members at Yielding and Ultimate[J]. ACI Structural Journal. 2001, 98(2): 135-148.
    [34] T. Paulay and M.J.N. Priestley著.戴瑞同,陈世鸣等译.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社.1999.
    [35]王敏.抗震钢筋混凝土柱的破坏准则及截面混凝土纤维的损伤累积性能研究[D].重庆:重庆大学, 2005.
    [36] Kanaan, A. E. and Powell, G.H. (1973). DRAIN2D-A General Purpose Computer Program for Dynamic Analysis of Inelastic Plane Structures .[R]University of California Berkeley:Reports No. UCB/EERC/73/06 and 73/22.
    [37]王光远等.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版社,1999, 64.
    [38] R. E. Valles, A. M. Reinhorn. Idrac55 Report. Technical Report NCEER-96-0010 2002.
    [39] Kunnath, S. K.,Reinhorn,A.M.and Abel, J. F..A Computational Tool for Seismic Performance of Reinforced Concrete Buildings .Computers and Structures: 1992, 41(1): 157一173.
    [40] Kunnath, S. K., Reinhorn, A. M. and Lobo, R. F., IDARC Version 3.0: A Program for the Inelastic Damage Analysis of Reinforced Concrete Structures. State University of New York at Buffalo:Report No. NCEER-92-0022, National Center for Ear thquake Engineering Research.
    [41] Park, R. and Paulay, T. . Reinforced Concrete Structures. John Wiley: 1975.
    [42] Kent, D. C. and Park,R., Flexural Members with Confined Concrete. Journal of Structural Division ASCE, 1971,97(7): 1969一1990.
    [43] Paik, Y. J.,Reinhorn, A. M. and Kunnath S .K. ,IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame-Shear-Wall Structures.State University of New York at Buffalo: Technical Report NCEER-87-0008, 1987.
    [44] GB 50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2001.
    [45] GB50009-2001.建筑结构荷载规范[S].北京:中国建筑工业出版社, 2001.
    [46]杨溥,李英民,赖明.结构时程分析法输入下地震波的选择控制指标[J]土木工程学报. 2000.12. 33(6).33-37.
    [47]林学鹏.地震动特性对框架结构非线性响应的影响分析[D].重庆:重庆大学, 2006.
    [48]安自辉.结构在罕遇地震下的强震记录选择[D].西安.西安建筑科技大学. 2004.
    [49]张治勇,孙柏涛,宋天舒,新抗震规范地震动功率谱模型参数的研究[J].世界地震工程2000
    [50]李英民.工程地震动的模型化研究[D].重庆:重庆建筑大学,2000.
    [51]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用. [M]上海同济大学出版社,1997, 6: 109-139.
    [52]林学鹏.地震动特性对框架结构非线性响应的影响分析[D].重庆:重庆大学, 2006.
    [53]赵金宝.主余震作用下钢筋混凝土框架结构的破坏评估[D].中国地震局地球物理研究所. 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700