高功率端面泵浦基模固体激光器及光纤相位共轭镜改善光束质量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要内容分为两个部分:高功率端面泵浦基模固体激光器和大口径锥度光纤相位共轭镜及其在高重频大能量MOPA激光系统中的应用。
     端面泵浦结构中,泵浦光采用会聚方式进入晶体,因此在晶体中形成了严重的热透镜效应。本文第二章采用解析方法对晶体内部的温度场进行求解,并通过计算光程差分布得到晶体热透镜焦距。分析了热透镜效应对基模输出功率的限制以及键合晶体在缓解晶体热效应方面所具有的优势。并通过实测热透镜焦距引出了晶体热透镜光焦度的非线性变化效应。
     泵浦耦合系统是端面泵浦方式中不可或缺的一部分,对泵浦光最后在晶体内的束腰位置以及光斑半径大小具有重要影响,我们通过数值方法计算了泵浦耦合系统中各个参量对其最终的成像位置以及光斑半径的影响,对我们的实验工作具有重要指导意义。
     能量传递上转换(ETU)效应作为一种光谱损耗机制,对强泵浦条件下的激光晶体具有重要影响。本文第三章对不考虑ETU效应和考虑ETU效应的端面泵浦固体激光器的速率方程理论进行了对比分析,指出ETU效应能够导致晶体上能级寿命的缩短、上能级反转粒子数的减少、激光器阈值的提升以及热转换系数的增大。将ETU效应与激光晶体内基模光斑半径随泵浦功率的变化关系综合考虑,解释了由ETU效应导致的激光晶体热透镜光焦度的非线性变化效应。最后指出通过选用大泵浦光斑和低掺杂的晶体可以有效地缓解ETU效应,获得更好的激光器输出性能。
     谐振腔作为将泵浦源和激光增益介质联系在一起的纽带,对基模输出功率和效率具有重要的影响。因此,本文第四章的第一部分在对热透镜腔和动态稳定腔的基本理论进行阐述后,结合实验工作,着重对平平非对称腔两臂长的作用、腔镜曲率的作用以及腔内补偿透镜的作用进行了分析。在第二部分中,重点阐述了球差效应的形成过程、度量方法及其对谐振腔输出激光光束质量的影响、对谐振腔本征模的影响、对最大泵浦功率的限制、对频率简并的影响等,并对球差效应的补偿和规避方法进行了归纳。第三部分中,我们在分析球差效应对谐振腔稳定区影响后,发现虽然它对对称平平腔仅影响稳定区的后沿,但是对非对称平平腔,则主要影响其稳定区Ⅰ的前沿,这样就会造成不同阶次横模稳定区的分离,所以我们提出了一种基于“热透镜球差效应+非对称平平谐振腔”致使不同横模稳定区分离的横模选择机制,这也是我们在实验中使用端面泵浦固体激光器获得高功率基模激光输出的理论前提。
     基于以上的理论分析,在实验上制备了:①、基于双端泵浦Nd:GdVO4晶体的36 W基模固体激光器;②、基于双端泵浦尺寸为3×3×(2+11+2)mm3的Nd:YVO4复合晶体的30W量级基模固体激光器,另外结合声光调Q技术可以使其稳定工作在200 kHz重复频率下;③、基于双端泵浦尺寸为3×3×(2+16+2)mm3的Nd:YV04复合晶体的50W量级基模固体激光器,结合声光调Q技术可以使其稳定工作在600 kHz重复频率下。
     优质基频光源的获得,为我们开展非线性光学频率变换方面的工作提供了坚实的基础。作为应用,我们对基于周期性畴极化反转掺镁铌酸锂(PPMgOLN)晶体的中红外光学参量振荡器进行了初步实验,在2.7μm和3.8μm波段均获得了大于3W的激光输出,在4.3μm波段也获得了小功率输出。
     基于受激布里渊散射(SBS)的相位共轭镜具有实时补偿激光放大器热畸变的功效。我们研制了一种可在高重复频率(1000 Hz)、大脉冲能量(40 mJ)条件下稳定工作的大口径锥度光纤相位共轭镜,并能达到最高70%的SBS反射率。实验研究了光纤端面质量以及泵浦脉冲宽度对相位共轭镜反射率的影响。对熔石英棒布里渊放大器从功率、时间、空间三个方面进行了系统实验研究,观察到了布里渊放大器中的增益导引和脉冲展宽两种新现象,并对其进行了解释。完成了一套带有大口径锥度光纤相位共轭镜的高重频、大能量MOPA激光系统。为了进一步扩展相位共轭镜的动态范围和可承受负载能力,设计了一种基于分离双池结构的全固态相位共轭镜系统,解决了以往没有解决的多束激光实现有效光学隔离的问题,并完成验证性实验。
This dissertation is composed of two parts:high power end-pumped TEMoo mode solid state lasers and large aperture tapered fiber conjugator and its application in high repetition rate, large energy MOPA laser system.
     In end-pumping configuration, serious thermal lens effect will be formed because of the pump light's convergent incidence. In Chapter 2, we solve the crystal's temperature field distribution using analytical method and obtain the crystal thermal lens focal length by calculating the OPD. The restriction of thermal lens on TEMoo mode output power and the advantage of composite crystal on alleviating the thermal effect are analyzed. The nonlinear change effect of thermal lens optric power is introduced.
     Pumping coupling system, which has important influence on the pump radius and waist position in crystal, is an indispensable part in end-pumping configuration. Therefore, we calculate the influence of the pumping coupling system's every parameter on the pump radius and waist position. It is meaningful for experiments.
     Energy transfer up-conversion (ETU) effect is a kind of spectral loss mechanism, which has important influence for strong pumped crystal. In Chapter 3, we make a comparative analysis on rate equation theory with and without considering the ETU effect and point out that ETU effect will result in upper state life's shortening, population number's reduction, laser threshold's advance and thermal conversion coefficient's increase. With both on ETU effect and the fact that TEM00 mode radius in crystal will change with the pump power's change considered, the nonlinear thermal lens effect is explained. For better laser performance and relaxing the ETU effect, laege pump radius and low doped crystal are preferred.
     As the link of pump source and gain medium, resonator has important influence on the TEM00 mode output power and efficiency. The first part of Chapter 4 describes the basic principle of thermal-lens resonator and dynamically stale resonator. Considering the experiment, we mainly analyze the functions of plane plane asymmetrical resonator's two arms, cavity-mirror's curvature and in-cavity compensation lens. The second part is focused on the forming and measuring of spherical aberration (SA) and its influence on the beam quality, eigenmode, maximum pump power and frequency degeneracy effect. Methods of SA's compensation and avoidance are summarized. By analyzing the influence of SA on resonator, we find that it will broaden the stable zone's back-edge of the plane-plane symmetrical resonator but separate different transverse mode's stable zone I for plane-plane asymmetrical resonator. Therefore, a new transverse mode differential mechanism based on "SA+ plane-plane asymmetrical resonator" is brought forward, which is also the theoretical precondition for our experiments.
     In experiments, we realized:①a 36 W double-end-pumped Nd:GdVO4 TEM00 mode laser;②a 30 W-class double-end-pumped composite Nd:YVO4 TEM00 mode laser, which could be modulated up to 200 kHz with AO Q-switch③a 50 W-class double-end-pumped composite Nd:YVO4 TEMoo mode laser oscillator, which could be modulated up to 600 kHz with AO Q-switch.
     As an application, we make a PPMgOLN based OPO pumped by abovementioned high quality pump source and obtained more than 3 W output power both at 2.7μm and 3.8μm band, and small power output at 4.3μm band.
     SBS based phase conjugator has the ability of compensating the aberration of laser amplifiers in real-time. We achieved a maximum 70% SBS reflectivity with a large aperture tapered fiber with high repetition rate (1000 Hz) and large energy (40 mJ). The influences of fiber end surface quality and pump pulse width on the SBS reflectivity are experimentally investigated. Fused silica rod Brillouin amplifier is also experimentally investigated and two new phenomena, gain guiding and pulse width broadening, are observed and explained. A high repetition rate, large energy MOPA laser system is prepared with the large aperture tapered fiber conjugator included in. Separated two cell structure based phase conjugator system is designed for further expanding its dynamic range and load-endured ability and verification experiment has been also completed.
引文
1. R. Newman, "Excitation of Nd3+ fluoresence in CaWO4 by recombination radiation in GaAs," J Appl Phys 34,437 (1963).
    2. 姚建铨,徐德刚,全固态激光及非线性光学频率变换技术(科学出版社,2007).
    3. R. Poprawe, P. Loosen, H. D. Hoffmann, "Development trends of new high-power laser sources," in Proc. of SPIE(2005), pp.81-90.
    4. R. Poprawe, A. Gillner, H. D. Hoffmann, S. Kaierle, P. Loosen, W. Meiners. R. Noll. E. Willenborg, "Disk, fiber, rod, slab:new laser concepts open new application perspectives," in Proc. of SPIE(2008), p.713803.
    5. G. Huber, C. Kr A Nkel, K. Petermann, "Solid-state lasers:status and future," JOSA B 27, B93-B105 (2010).
    6. C. Kannengiesser, V. Ostroumov, V. Pfeufer, W. Seelert, C. Simon, R. von Elm. A. Zuck, "Ten years optically pumped semiconductor lasers:review, state-of-the-art, and future developments," in Proc. of SPIE(2010), p.75780W.
    7. S. C. Tidwell, J. F. Seamans, M. S. Bowers, "Highly efficient 60-W TEM00 cw diode-end-pumped Nd:YAG laser," Opt Lett 18,116-118 (1993).
    8. W. L. Nighan Jr, D. K. Dudley, M. S. Keirstead, A. B. Petersen. "Highly efficient, diode-bar-pumped Nd:YVO4 laser with>13 W TEM00 output." in Advance Solid-State Lasers(1995), pp.270-273.
    9. N. Hodgson, K. D. Griswold, W. A. Jordan, S. L. Knapp, A. A. Peirce, C. C. Pohalski, E. A. Cheng, J. Cole, D. R. Dudley, A. B. Petersen, Others, "High-power TEMoo-mode operation of diode-pumped solid state lasers," in Proc. of SPIE(1999), pp.119-131.
    10. N. Hodgson, D. Dudley, L. Gruber, W. Jordan, H. Hoffman,"Diode end-pumped. TEMoo Nd:YVO4 laser with output power greater than 12 W at 355 nm," in CLEO(2001), pp.389-390.
    11. C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, N. Hodgson. "High-power Q-switched TEMoo mode diode-pumped solid state lasers with>30W output power at 355nm," in Proc. of SPIE (2006), p.610019.
    12. L. McDonagh, R. Wallenstein, R. Knappe, A. Nebel, "High-efficiency 60 W TEMoo Nd:YVO4 oscillator pumped at 888 nm," Opt Lett 31,3297-3299 (2006).
    13. L. McDonagh, R. Wallenstein, R. Knappe, "47 W,6 ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEMoo Nd:YVO4 oscillator," Opt Lett 31,3303-3305 (2006).
    14. L. McDonagh, R. Wallenstein, "Low-noise 62 W CW intracavity-doubled TEMoo Nd:YVO4 green laser pumped at 888 nm," Opt Lett 32,802-804 (2007).
    15. L. McDonagh, R. Wallenstein, A. Nebel, "111 W,110 MHz repetition-rate, passively mode-locked TEMoo Nd:YVO4 master oscillator power amplifier pumped at 888 nm," Opt Lett 32,1259-1261 (2007).
    16. L. McDonagh, R. Knappe, A. Nebel, R. Wallenstein, "888 nm pumping of Nd:YVO4 for high-power high-efficiency TEMoo lasers," (2007), p.64510F.
    17. F. Lenhardt, M. Nittmann, T. Bauer,J. Bartschke, J. A. L Huillier,"High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEMoo mode," Applied Physics B:Lasers and Optics 96,803-807 (2009).
    18. C. Bollig, C. Jacobs, M. J. Esser, E. H. Bernhardi, H. M. von Bergmann, "Power and energy scaling of a diode-end-pumped Nd:YLF laser through gain optimization," Opt Express 18,13993-14003 (2010).
    19. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, K. Danzmann, "High power fundamental mode Nd:YAG laser with efficient birefringence compensation," Opt Express 12.3581-3589 (2004).
    20. M. Frede, R. Wilhelm, D. Kracht, C. Fallnich, "Nd:YAG ring laser with 213 W linearly polarized fundamental mode output power," Opt Express 13,7516-7519 (2005).
    21. Y. F. Chen, Y. P. Lan, S. C. Wang, "Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser with a planar cavity," Opt Lett 25,1016-1018 (2000).
    22. 侯军燕,陈卫标,汪岳峰,”基于LAS-CAD优化设计的高功率高重复频率激光二极管双端抽运Nd:YV04激光器,”中国激光37.1673-1677(2010).
    23. 侯军燕,舒仕江,汪岳峰,陈卫标,黄峰,贾文武,“激光二极管双端抽运高功率高光束质量Z型折叠腔Nd:YV04激光器,”光学学报30,2299-2305(2010).
    24. X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, "A high efficient one-end-pumped TEMoo laser with optimal pump mode," LASER PHYSICS LETTERS 5,185-188 (2008).
    25. Q. Liu, X. P. Yan, X. Fu, M. L. Gong, D. S. Wang, "183 W TEM00 mode acoustic-optic Q-switched MOPA laser at 850 kHz," Opt Express 17,5636-5644 (2009).
    26. X. Yan, Q. Liu, X. Fu, H. Chen, M. Gong, D. Wang, "High repetition rate dual-rod acousto-optics Q-switched composite Nd:YVO4 laser," Opt Express 17,21956-21968 (2009).
    27. X. Yan, Q. Liu, X. Fu, H. Chen, D. Wang, M. Gong, "Comparative investigation on performance of acousto-optically Q-switched dual-rod Nd:YAG-Nd:YVO4 laser and dual-rod Nd:YVO4-Nd:YVO4 laser," Appl Optics 49,4131-4138 (2010).
    28. X. Li, X. Yu, F. Chen, R. Yan, M. Luo, J. Yu, D. Chen, "Power scaling of directly dual-end-pumped Nd:GdVO4 laser using grown-together composite crystal," Opt Express 18,7407-7414 (2010).
    29. Z. Zhao, Y. Dong, C. Liu, M. Hu, Z. Xiang, J. Ge, J. Chen, "A 15.1 W continuous wave TEMoo mode laser using a YVO4/Nd:YVO4 composite crystal," Laser Phys 19. 2069-2072 (2009).
    30. Z. Zhao, Y. Dong, C. Liu, M. Hu, Z. Xiang, J. Ge. J. Chen. "Diodes-double-end-pumped high efficiency continuous wave 36 W TEM00 mode Nd:GdVO4 laser," Laser Phys 19,2073-2076 (2009).
    31. 赵智刚,董延涛,潘孙强,刘崇,葛剑虹,项震,陈军,毛谦敏,“LD双端抽运YVO4-Nd:YVO4-YVO4复合晶体的高功率调Q基模固体激光器研究,”中国激光39,2409-2414(2010).
    32. 宋小鹿,”二极管泵浦固体激光器若干重要问题的研究,”(西安电子科技大学,西安,2010).
    33. A. Minassian, B. A. Thompson, G. Smith, M. J. Damzen, "High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system," IEEE J Sel Top Quant 11, 621-625(2005).
    34. L. Winkelmann, O. Puncken, C. Veltkamp, R. Kluzik, M. Frede, J. Neumann, D. Kracht, P. We Ss Els, "210 W Single-Frequency Laser with 88% of Output Power in TEMoo Mode for Advanced LIGO," (2009).
    35. J. W. Kim, M. J. Yarrow, W. A. Clarkson, "High power single-frequency continuous-wave Nd:YVO4 master-oscillator power amplifier," Applied Physics B: Lasers and Optics 85,539-543 (2006).
    36. A. Dergachev, P. F. Moulton, "Short-pulse, high-repetition rate, high-power Nd:YLF MOPA system," (2004).
    37. J. Neukum, J. Biesenbach, B. K O Hler, N. Muy, "High-Brightness Diode Lasers and New Wavelengths," Laser Technik Journal 7,45-48 (2010).
    38. K. Price, S. Karlsen, P. Leisher, R. Martinsen, "High-brightness fiber-coupled pump laser development," in Proc. of SPIE(2010), p.758308.
    39. B. K O Hler, H. Kissel. M. Flament, P. Wolf, T. Brand, J. Biesenbach, "High-power diode laser modules from 410 nm to 2200 nm," in Proc. of SPIE(2010), p.75830F.
    40. W. Hu, F. D. Patel, M. L. Osowski, R. M. Lammert, S. W. Oh, C. Panja, V. C. Elarde, L. Vaissi E, J. E. Ungar, "High-spectral brightness pump sources for diode-pumped solid state lasers," in Proc. of SPIE(2009), p.57.
    41. B. K O Hler, T. Brand, M. Haag, J. Biesenbach, "Wavelength stabilized high-power diode laser modules," in Proc. of SPIE(2009), p.719810.
    42. R. Lavi. S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, I. Paiss. "Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level," Appl Optics 38,7382-7385 (1999).
    43. R. Lavi, S. Jackel, "Thermally boosted pumping of neodymium lasers," Appl Optics 39,3093-3098 (2000).
    44. R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, S. Goldring, "885 nm high-power diodes end-pumped Nd:YAG laser," Opt Commun 195,427-430 (2001).
    45. S. Goldring, R. Lavi. A. Tal, E. Lebiush, Y. Tzuk, S. Jackel, "Characterization of radiative and nonradiative processes in Nd:YAG lasers by comparing direct and band pumping," IEEE J Quantum Elect 40,384-389 (2004).
    46. 何坤娜,魏志义,张治国.高春清,“全固态激光直接抽运技术的发展和研究现状,”中国激光36,1679-1685(2009).
    47. E. Herault, F. Balembois, P. Georges, T. Georges. "1064 nm Nd:YVO4 laser intracavity pumped at 912 nm and sum-frequency mixing for an emission at 491 nm." Opt Lett 33,1632-1634 (2008).
    48. J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang. X. C. Lin, J. M. Li, Q. D. Duanmu, "Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm." Laser Physics Letters 7,579-582(2010).
    49. E. Herault, F. Balembois, P. Georges, T. Georges, "1064 nm oscillation under 914 nm intracavity pumping in Nd:YVO4 and sum-frequency mixing to reach blue range.' (2006).
    50. D. Sangla, M. Castaing, F. Balembois, P. Georges, "Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm," Opt Lett 34,2159-2161 (2009).
    51. D. Sangla, M. Castaing, F. Balembois. P. Georges, "Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm," in Advanced Solid-State Lasers(2010).
    52. Y. F. Lu, J. Xia, X. D. Yin, D. Wang, X. H. Zhang, "1085 nm Nd:YVO4 laser intracavity pumped at 914 nm and sum-frequency mixing to reach cyan laser at 496 nm," Laser Physics Letters 7,11-13 (2010).
    53. Y. F. Lu, X. H. Zhang, J. Xia, "Highly efficient Nd:LuVO4 laser by direct in-band diode pumping at 915 nm," Laser Physics Letters 7,487-490 (2010).
    54. D. Sangla, F. Balembois, P. Georges, "Nd:YAG laser diode-pumped directly into the emitting level at 938 nm," Opt Express 17,10091-10097 (2009).
    55. S. Goldring, R. Lavi, "Nd:YAG laser pumped at 946 nm," Opt Lett 33,669-671 (2008).
    56. Y. F. Lu, J. Xia, X. H. Zhang, "1064 nm Nd:YAG laser intracavity pumped at 946 nm," Laser Phys 20,766-768 (2010).
    57. Y. F. Lu, X. H. Zhang, J. Xia, G. Y. Jin, J. G. Wang. X. D. Yin, A. F. Zhang. "1064 nm Nd:YAG laser intracavity pumped at 946 nm and sum-frequency mixing for an emission at 501 nm," Laser Physics Letters 7,335-338 (2010).
    58. X. DeLen, F. Balembois, O. Musset, P. Georges, "Characteristics of laser operation at 1064 nm in Nd:YVO4 under diode pumping at 808 and 914 nm," JOSA B 28,52-57 (2011).
    59. H. C. Lee, P. L. Brownlie, H. E. Meissner, E. C. Rea Jr, "Diffusion-bonded composites of YAG single crystals," in Proc. of SPIE(1991), pp.2-12.
    60. F. Hanson, "Improved laser performance at 946 and 473 nm from a composite Nd:YAIO rod," Appl Phys Lett 66,3549 (1995).
    61. M. Tsunekane, N. Taguchi, T. Kasamatsu, H. Inaba, "Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry," IEEE J Sel Top Quant 3,9-18 (1997).
    62. M. Tsunekane, N. Taguchi, H. Inaba, "Efficient 946-nm laser operation of a composite Nd:YAG rod with undoped ends," Appl Optics 37,5713-5719 (1998).
    63. M. Tsunekane, N. Taguchi, H. Inaba, "High power operation of diode-end pumped Nd:YVO4 laser using composite rod with undoped end," Electron Lett 32,40-42 (1996).
    64. M. Tsunekane. N. Taguchi, H. Inaba, "Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends," Appl Optics 38 (1999).
    65. A. Ikesue, Y. L. Aung, "Ceramic laser materials," Nature photonics 2,721-727 (2008).
    66. R. Wilhelm, M. Frede, D. Kracht, "Power scaling of end-pumped solid-state rod lasers by longitudinal dopant concentration gradients," IEEE J Quantum Elect 44,232-244 (2008).
    67. M. Ostermeyer, I. Brandenburg, "Simulation of the extraction of near diffraction limited Gaussian beams from side pumped core doped ceramic Nd:YAG and conventional laser rods." Opt Express 13,10145-10156 (2005).
    68. D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, C. Fallnich, "Core-doped ceramic Nd: YAG laser," Opt Express 14,2690-2694 (2006).
    69. D. Kracht, R. Wilhelm, M. Frede, K. Dupr E, L. Ackermann, "407 W end-pumped multi-segmented Nd:YAG laser," Opt Express 13,10140-10144 (2005).
    70. R. Wilhelm, D. Freiburg, M. Frede, D. Kracht, C. Fallnich, "Design and comparison of composite rod crystals for power scaling of diode end-pumped Nd:YAG lasers," Opt Express 17,8229-8236 (2009).
    71. A. Ikesue, Y. L. Aung, "Synthesis and performance of advanced ceramic lasers," J Am Ceram Soc 89,1936-1944 (2006).
    72. V. Magni, "Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability," Appl Optics 25.107-117 (1986).
    73. S. De Silvestri, P. Laporta, V. Magni. "Misalignment sensitivity of solid-state laser resonators with thermal lensing," Opt Commun 59,43-48 (1986).
    74. S. De Silvestri, P. Laporta, V. Magni, "The role of the rod position in single-mode solid state laser resonators:Optimization of a cw mode-locked Nd:YAG laser," Opt Commun 57,339-344 (1986).
    75. S. De Silvestri, P. Laporta, V. Magni, "14-W continuous-wave mode-locked Nd:YAG laser," Opt Lett 11,785-787 (1986).
    76. S. De Silvestri, P. Laporta, V. Magni, "Novel stability diagrams for continuous-wave solid-state laser resonators," Opt Lett 11,513-515 (1986).
    77. V. Magni, G. Valentini, S. Silvestri, "Recent developments in laser resonator design." in Proc. of SPIE(1991), pp.1105-1134.
    78. G. Cerullo, S. De Silvestri, V. Magni, "High efficiency,40 W cw Nd:YLF laser with large TEM00 mode," Opt Commun 93,77-81 (1992).
    79. G. Cerullo, S. Silvestri, V. Magni, O. Svelto, "Output power limitations in CW single transverse mode Nd:YAG lasers with a rod of large cross-section," Opt Quant Electron 25.489-500 (1993).
    80. 刘崇,葛剑虹,项震,陈军,“热透镜的球差效应对大基模体积激光谐振腔模式的影响,”物理学报57,1704-1708(2008).
    81. 刘崇,“大功率高亮度固体激光器及其谐波产生研究.”(浙江大学,杭州.2007).
    82. H. J. Eichler, J. Kunde, B. Liu, "Quartz fibre phase conjugators with high fidelity and reflectivity," Opt Commun 139.327-334 (1997).
    83. T. RIESBECK, E. E. RISSE, "Pulsed solid-state laser system with fiber phase conjugation and 315 W average output power," Appl. Phys. B 73,847-849 (2001).
    84. A. Heuer, R. Menzel, "Phase-conjugating stimulated Brillouin scattering mirror for low powers and reflectivities above 90% in an internally tapered optical fiber," Opt Lett 23,834-836(1998).
    85. H. Yoshida, H. Fujita, M. Nakatsuka, K. Yoshida, "Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser-induced damage," Opt Eng 36,2557 (1997).
    86. H. Yoshida, H. Fujita, M. Nakatsuka, A. Fujinoki, K. Yoshida, "Fused-quartz glass with low optical quality as a high damage-resistant stimulated Brillouin-scattering phase-conjugation mirror," Opt Commun 222,257-267 (2003).
    87. H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, A. Fujinoki, "Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength," Laser Part Beams 25, 481-488(2007).
    88. T. Imaizumi, M. Goto, Y. Ojima, T. Omatsu, "6 W diffraction-limited pico-second output from a phase conjugate Nd:YVO4 amplifier," in CLEO(2004), p.2.
    89. Y. Ojima, K. Nawata, T. Omatsu, "Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror," Opt. Express 13,8993-8998 (2005).
    90. K. Nawata, Y. Ojima, M. Okida, T. Ogawa, T. Omatsu, "Power scaling of a pico-second Nd:YVO4 master-oscillator power amplifier with a phase-conjugate mirror," Opt Express 14,10657-10662 (2006).
    91. T. Omatsu, K. Nawata, M. Okida, K. Furuki, "MW ps pulse generation at sub-MHz repetition rates from a phase conjugate Nd:YVO4 bounce amplifier," Opt Express 15. 9123-9128 (2007).
    92. N. Shiba, Y. Morimoto, K. Furuki, Y. Tanaka, K. Nawata, M. Okida, T. Omatsu, "Picosecond master-oscillator, power-amplifier system based on a mixed vanadate phase conjugate bounce amplifier," Opt Express 16,16382-16389 (2008).
    93. K. Nawata, M. Okida, K. Furuki, K. Miyamoto, T. Omatsu, "Sub-100 W picosecond output from a phase-conjugate Nd:YVO4 bounce amplifier," Opt Express 17, 20816-20823(2009).
    94. K. Nawata, M. Okida, K. Miyamoto, T. Omatsu, "105 W pico-second Nd:YVO4 bounce amplifier system with a photorefractive phase conjugate mirror," in CLEO(2010),pp.1-2.
    95. 周涛,陈军,唐淳,高清松,庞毓,童立新,卓有福,“LD抽运高重复频率四通放大MOPA系统中的光纤相位共轭研究,”中国激光31,441-444(2004).
    96. 周涛,陈军,唐淳,庞毓,”主振荡功率放大激光器中锥度光纤相位共轭镜的实验研究,”中国激光32,471-474(2005).
    97. 童立新,高清松,陈晓琳,陈军,唐淳.刘芳,”高重复频率融石英棒受激布里渊散射相位共轭实验研究,”in 第十七届全国激光学术会议(四川绵阳,2005),pp.144-146.
    98. 汪莎,陈军,童立新,高清松,刘崇,唐淳,“熔石英棒和光纤构成的新型复合型相位共轭镜,”中国激光34,1212-1216(2007).
    99. H. Kiriyama, K. Yamakawa, "Development of high-repetition-rate LD pumped Nd: YAG laser and its application," Laser Phys 16,666-672 (2006).
    100. H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, M. Nakatsuka, "360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate," Opt Lett 28,1671-1673 (2003).
    101. H. Kiriyama, K. Yamakawa, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, M. Nakatsuka, "Design and Operation of High-Energy and High-Average-Power Diode-Pumped Single Nd:YAG Amplifier with Stimulated-Brillouion-Scattering Phase Conjugate Mirror," Japanese Journal of Applied Physics 44,7464-7471 (2005).
    102. S. Chenais, F. Druon, S. Forget, F. Balembois. P. Georges, "On thermal effects in solid-state lasers:The case of ytterbium-doped materials," Prog Quant Electron 30, 89-153 (2006).
    103. M. Sabaeian, H. Nadgaran, L. Mousave, "Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser." Appl Optics 47.2317-2325 (2008).
    104. G. Huber, C. Kr A Nkel, K. Petermann, "Solid-state lasers:status and future," JOSA B 27,B93-B105(2010).
    105. 张文平,于欣,高静,李旭东,于俊华,“多通道及钢封技术改善晶体热效应,”中国激光35,41-44(2008).
    106. N. Hodgson, H. Weber. Laser resonators and beam propagation:fundamentals, advanced concepts and applications (Springer Verlag,2005).
    107. S. K. Sudheer, V. P. M. Pillai, V. U. Nayar, "Set temperature dependence of fractional thermal loading and effective stimulated emission cross section of a diode double end pumped TEMoo Nd:YAG laser for micromachining application," Laser Physics Letters 3,244-248 (2006).
    108. 亓岩,宫武鹏,李欢,颜博霞,房涛,郑光,梅东滨,毕勇,”耦合系统的成像质量对端面抽运固体激光器的影响,”中国激光36,47-50(2009).
    109. P. J. Hardman, "Power-scaling of diode-end-pumped solid-state lasers,"9英国南安普顿大学,1999).
    110. K. Kopczynski, Z. Jankiewicz, Z. Mierczyk, M. Kwasny, M. Borecki, "Nonlinear optical effects in diode-pumped active media," (SPIE-INT SOC OPTICAL ENGINEERING, BELLINGHAM,1999), pp.149-153.
    111. T. M. J. Kendall, "Powers scaling and nonlinear frequency conversion of single-frequency lasers based on Nd:YLF,"(英国南安普顿大学,2004).
    112. M. J. Yarrow, "Power scaling of laser oscillators and amplifiers based on Nd:YVO4,'(英国南安普顿大学,2006).
    113. Y. F. Chen, "Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers," J Opt Soc Am B 17,1835-1840 (2000).
    114. Y. P. Lan, Y. F. Chen, S. C. Wang, "Repetition-rate dependence of thermal loading in diode-end-pumped Q-switched lasers:influence of energy-transfer upconversion," Appl Phys B-Lasers O 71,27-31 (2000).
    115. J. Steffen, J. Lortscher, G. Herziger, "Fundamental Mode Radiation With Solid-state Lasers," IEEE J Quantum Elect 8,239-245 (1972).
    116. F. Salin, J. Squier, "Gain guiding in solid state lasers," Opt Lett 17,1352-1354 (1992).
    117. F. Estable, E. Mottay, F. Salin, "High-energy gain-guided Ti:Al2O3 oscillator," Opt Lett 18.711-713 (1993).
    118. C. Le Blanc, P. Curley, F. Salin, "High Energy Regenerative Amplification of Femtosecond Pulses using Gain Guiding," in Proccedings on Advanccd Solid-State Laser(1995),pp.314-316.
    119. K. A. Elsayed, R. J. DeYoung, L. B. Petway, W. C. Edwards, J. C. Barnes, H. E. Elsayed-Ali, "Compact high-pulse-energy ultraviolet laser source for ozone lidar measurements," Appl Optics 42,6650-6660 (2003).
    120. A. Stein, "Thermooptically perturbed resonators," IEEE J Quantum Elect 10.427-434 (1974).
    121. C. Kennedy, "Helicoid modal analysis of laser oscillators with spherical aberration." Appl Optics 41,6991-6999 (2002).
    122. Y. Lumer, I. Moshe, S. Jackel, A. Meir,"Use of phase corrector plates to increase the power of radially polarized oscillators,"J Opt Soc Am B 27,1337-1342 (2010).
    123. A. Caprara, "Aberration Insensitive Resonators for OPS lasers.," (SPIE-INT SOC OPTICAL ENGINEERING, BELLINGHAM,2009).
    124. A. E. Siegman, "Analysis of laser beam quality degradation caused by quartic phase aberraitons," Appl Optics 32,5893-5901 (1993).
    125. W. A. Clarkson, "Thermal effects and their mitigation in end-pumped solid-state lasers," J Phys D Appl Phys 34,2381-2395 (2001).
    126. J. Song, A. P. Liu, K. Okino, K. Ueda, "Control of the thermal lensing effect with different pump light distributions," Appl Optics 36,8051-8055 (1997).
    127. J. Song, A. P. Liu, D. Y. Shen, K. Ueda, "High optical-to-optical efficiency of LD pumped cw Nd:YAG laser under pumping distribution control," APPLIED PHYSICS B 66.539-542(1998).
    128. E. Leibush, S. Jackel, S. Goldring, I. Moshe, Y. Tzuk, A. Meir, "Elimination of spherical aberration in multi-kW, Nd:YAG,rod pump-chambers by pump-distribution control," in ASSP(2005).
    129. J. J. Kasinski, R. L. Burnham, "Near-diffraction-limited, high-energy, high-power, diode-pumped laser using thermal aberration correction with aspheric diamond-turned optics," Appl Optics 35,5949-5954 (1996).
    130. A. M. Bonnefois, M. Gilbert, P. Y. Thro. D. Farcage, J. M. Weulersse, "Novel method to improve the performance of Nd:YAG high-power, low divergence lasers using a passive compensation of the spherical aberration inside the resonator," (SPIE-INT SOC OPTICAL ENGINEERING, BELLINGHAM,2005),pp.362-369.
    131. Y. Lumer, I. Moshe, S. Jackel, A. Meir, "Use of phase corrector plates to increase the power of radially polarized oscillators," J Opt Soc Am B 27,1337-1342 (2010).
    132. I. Moshe, S. Jackel, A. Meir, "Correction of spherical and azimuthal aberrations in radially polarized beams from strongly pumped laser rods," Appl Optics 44. 7823-7827 (2005).
    133. S. Z. Fan, X. Y. Zhang, Q. P. Wang, S. T. Li, S. H. Ding, F. F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt Commun 266,620-626 (2006).
    134. J. Xu, Q. Lou, "Gain-guiding effects in transient Raman amplifiers," J. Opt. Soc. Am. B 16,961-965(1999).
    135. X. P. Yan, Q. Liu, X. Fu, D. S. Wang, M. L. Gong, "Gain guiding effect in end-pumped Nd:YVO4 MOPA lasers," J Opt Soc Am B 27,1286-1290 (2010).
    136. A. V. Smith, B. T. Do, "Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm," Appl Optics 47,4812-4832 (2008).
    137. 周涛,“光纤相位共轭技术的理论与实验研究,”(浙江大学,杭州,2003).
    138. 王雨雷,吕志伟,何伟明,张袆,“一种大能量受激布里渊散射相位共轭镜的研究,”物理学报56,883-888(2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700