纯钛及Ti-xAl(x=2,4,6)合金动态变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自二十世纪七十年代以来,随着装甲与反装甲武器系统减重需求的日益增长,以及材料动态性能测试方法的完善和普及,越来越多的研究人员开始关注钛合金的动态性能和动态变形行为。已有研究主要针对Ti-6A1-4V等常用α+β型钛合金以及部分β型钛合金进行宏观动态性能表征、动态性能影响因素分析和绝热剪切带形成后的显微组织观察等,本文则重点关注α型钛合金的动态变形行为,主要包括孪生行为、动态剪切变形失稳现象和相关影响因素分析。
     首先,以Gr.2工业纯钛为研究对象,通过分离式霍普金森压杆实验测量材料在冲击载荷作用下的动态力学响应,并对变形组织进行显微观察。对比Gr.2工业纯钛在准静态(10-3s-1)和动态(6000s-1)压缩变形过程中的应变硬化速率和变形组织中的孪生密度,发现动态变形过程中孪生密度的急剧增加伴随着应变硬化速率的大幅提高。这表明应变速率的提高将影响α钛合金变形组织中的孪生密度,并通过Hall-Petch效应改变宏观应变硬化效果。
     为了分析α钛合金的孪生行为,利用EBSD分析技术标定出Gr.2工业纯钛在εp=0.36准静态压缩变形组织中含有两种类型的孪晶:{1012}型和{1122}型,而在εp=0.22动态压缩变形组织中含有三种类型的孪晶:{10T2}型、{1112}型和{1121}型,而且晶粒中孪晶的类型与晶粒基体受压应力时的晶体取向有关。为解释此相关性本文引入了“孪生Schmid因子”,并通过在α[钛的HCP单胞中定义三维球坐标系计算出上述三类孪生的Schmid因子分布图。将计算结果与EBSD标定出的孪晶类型和晶粒基体欧拉角相结合,证明了孪生Schmid因子是决定孪生系开动与否的重要参数。若进一步考虑材料变形时的应力状态可统计出Gr.2工业纯钛中{1012}型、{1122}型和{1121}型孪晶形核所需的临界分切应力值分别为321-361MPa、367-393MPa、525-538MPa,且受应变速率的影响不明显。此外,单晶纯钛压缩实验表明一种孪生类型对应的六个孪生变体中Schmid因子最大的孪生变体优先开动。
     为了分析α钛合金的动态剪切变形失稳现象,利用本文提出的动态剪切性能测试装置和方法测量出Gr.2工业纯钛在剪切应变速率为18000s-1时的动态剪切抗力为475MPa,临界剪切应变为1.1。为了验证和分析该实验结果,将Johnson-Cook本构方程与绝热温升方程耦合在一起计算出了应变速率在10s至104S-1范围内的绝热剪切应力-应变曲线。若将曲线顶点作为塑性变形失稳时的状态,可知动态剪切失稳时的临界剪切应变范围为0.9-1.3,与之相对应的剪切应力范围为395-480MPa,而且应变速率越高,剪切失稳时的临界应变值越小,对应的应力水平则越高。计算结果符合实验结果,说明本文提出的计算方法能够合理地描述动态剪切过程,适用于分析α钛合金动态剪切失稳的临界条件。在此基础上,通过单独调整计算过程中涉及的Johnson-Cook参数和热转换系数p分析了材料本征特性对动态剪切失稳临界条件的影响,发现提高应变硬化系数B、热软化系数m和热导率是降低α钛合金绝热剪切倾向性的有效途径。
     然后,以具有等轴组织特征的Ti-xAl(x=2,4,6)合金为研究对象,利用上述总结出的动态性能测试方法、变形组织观察方法和数据处理方法,探讨了A1含量对α钛合金动态性能和变形行为的影响。结果表明,Al含量由2wt.%升高至6wt.%会导致等轴Ti-xAl(x=2,4,6)合金的室温热导率降低约58%,室温准静态屈服强度提高约144%,{1012}型孪生临界分切应力提高约100%,εp≈0.07处的室温应变硬化速率降低约50%。这些变化导致Ti-xAl合金的动态剪切失稳临界条件由动态剪切抗力=398MPa,临界剪切应变=2.3~2.7变化至动态剪切抗力=536MPa,临界剪切应变=0.4-0.46。
     最后,以具有不同晶粒尺寸(32μm、119μm、336μm、587μ,)和明显织构特征的多晶纯钛为研究对象,探讨了等轴晶粒尺寸和加载方向对α钛动态性能的影响。结果表明,提高晶粒尺寸不会明显改变α钛的动态剪切抗力,但会显著降低临界剪切应变。当多数晶粒的c轴趋向于垂直剪切载荷方向时,材料具有较优的动态强度和塑性配比。
Since the1970s, with the growing demand for weight-efficient weapon system, more researchers began to focus on the dynamic performance of titanium alloys. Many studies have been performed on Ti-6A1-4V and other a+β type titanium alloys as well as some β type titanium, and attentions have been paid to the performance characterization, influencing factors analysis and microscopic observation of adiabatic shear band etc. The present study then focuses on the dynamic deformation behavior of a type titanium alloy, including twinning behavior, dynamic shear instability and the related influencing factors.
     Firstly, the dynamic mechanical response of Gr.2commercial purity titanium were obtained using split Hopkinson pressure bar by means of compression, and the deformed microstructure were observed by optical microscopic. By contrasting the strain hardening modulus and twinning fraction of quasi-static (10-3S-1) and dynamic (6000s'1) compression deformation process, it was found that a sharp increase in twinning fraction was accompanied by a substantial increase in strain hardening modulus. This indicates that increasing the strain rate will boost the density of twinning and enhance the strain hardening effect through the law of Hall-Petch.
     In order to analyze the twinning behavior, EBSD technique was applied to confirm that quasi-statically deformed structure with εp=0.36consisted of two types of twinning namely{1012} and{1122}, while dynamically deformed structure with εp=0.22consisted of three types of twinning namely{1012},{1122} and{1121}. Twinning type was dependant on the spatial relationship between crystal orientation and compressive direction. Schmid factor of twinning and spherical coordinates in HCP unit cell were induced to calculate the Schmid distribution. By combining the calculated results with twinning type and Euler angles of grain matrix, the Schmid factor was proved to be able to predict the activation of twinning under both quasi-static and dynamic states. With the help of the calculated SF map, the corresponding critical resolved shear stress range was determined to be321-361MPa,367-393MPa and525-538MPa respectively. Moreover, strain rate was found to have a minor effect on the value of CRSS of twinning. In addition, by means of single-crystal titanium compression it has been proved that among the six twinning variants of a specific type the one with the maximum Schmid factor will be activated.
     In order to investigate the phenomenon of plabtic instability in Gr.2titanium a dynamic shear loading system was proposed. According to the pattern of pre-gridded scratch lines on the deformed specimen surface, a critical shear strain of1.1was found to activate plastic localization, while the shear stress was475MPa at a strain rate of18000s-The critical condition can be analyzed by considering the competition between strain hardening and thermal softening. This was realized mathematically by coupling the Johnson-Cook constitute model and temperature rise equation, based on which adiabatic shear stress and strain curve in a strain rate range from10s"1to104S-1was constructed. According to peak points of calculated curves, the critical condition can be determined as0.9-1.3for critical shear strain and395-480MPa for maximum shear stress. The calculated result fits well with the experimental value of1.1and475MPa. The relationship between the critical condition and metallurgical factors were also discussed. In order to lower ASB propensity the most important material parameters are those indicating strain hardening capacity, thermal softening propensity and thermal conductivity.
     Then, the influence of Al on the dynamic performance and deformation behavior of Ti-xAl(x=2,4,6) alloys was explored through the above mentioned methods on dynamic performance test, the deformation microstructure observation and data processing. While Al content increased from2wt.%to6wt.%, the heat conductivity at room temperature was lowered by approximately58%, the quasi-static yield strength was increased by144%, the critical resolved shear stress of{1012} type twinning was increased by100%, and strain hardening modulus at εp-0.07was lowered by50%. These changes directed the dynamic shear instability critical condition of Ti-2A1along the forecasted path to that of Ti-6A1.
     Finally, polycrystalline pure titanium with different grain size and apparent texture feature was used to discuss the effect of equiaxed grain size and loading direction on the dynamic performance of a titanium. The result shows that increasing the grain size does not significantly change the dynamic shear resistance, however significantly reduces the critical shear strain. When the shear loading direction tends to perpendicular to the c-axis, a titanium will manifest a superior combination of dynamic strength and ductility.
引文
[1]钱九红.航空航天用新型钛合金的研究发展及应用[J].稀有金属,2000,24(3):218-223.
    [2]Shahan A., Taheri A. K.. Adiabatic shear bands in titanium and titanium alloys:a critical review[J]. Materials & Design,1993,14(4):243-250.
    [3]Meyers M. A.. Dynamic behavior of materials[M]. Wiley-Interscience,1994.
    [4]Liao S. C, Duffy J.. Adiabatic shear bands in a TI-6A1-4V titanium alloy[J]. Journal of the Mechanics and Physics of Solids,1998,46(11):2201-2231.
    [5]Peirs J., Tirry W., Amin-Ahmadi B., et al. Microstructure of adiabatic shear bands in Ti6A14V[J]. Materials Characterization,2013,75(0):79-92.
    [6]Yang Y., Jiang F., Zhou B. M., et al. Microstructural characterization and evolution mechanism of adiabatic shear band in a near beta-Ti alloy[J]. Materials Science and Engineering:A,2011,528(6):2787-2794.
    [7]Wu X. H., Zakaria M., Loretto M. H.. The thermal stability of and nature of damage in Ti alloys subject to high-strain-rate deformation[J]. Philosophical Magazine,2004, 84(32):3411-3418.
    [8]谭成文,刘新芹,陈志永,等.Ti-6A1-4V合金绝热剪切敏感性与临界破碎速度关系研究[J].稀有金属材料与工程,2008,(08):1400-1402.
    [9]张静,谭成文,刘新芹,等Ti-6A1-4V合金绝热剪切带的演化[J].稀有金属,2009,(05):648-651.
    [10]孙坤,程兴旺,自兴发,等Ti-5Al-2.5Sn合金绝热剪切带的形成机制[J].稀有金属材料与工程,2010,(12):2173-2176.
    [11]尤振平,米绪军,惠松骁,等Ti5Mo5V2Cr3Al合金中绝热剪切带的微观结构演化[J].稀有金属材料与工程,2011,(07):1184-1187.
    [12]刘新芹,张敏,李淑华.TC4和DT4合金的绝热剪切行为[J].材料科学与工程学报,2009,(05):755-803.
    [13]杨扬,张新明,李正华,等.钛在爆炸复合冲击载荷下的绝热剪切现象[J].中南矿冶学院学报,1994,(04):485-489.
    [14]Peirs J., Verleysen P., Degrieck J., et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6A1-4V[J]. International Journal of Impact Engineering,2010,37(6):703-714.
    [15]徐天平,王礼立,卢维娴.高应变率下钛合金Ti-6Al-4V的热-粘塑性特性和绝热剪切变形[J].爆炸与冲击,1987,(01):1-7.
    [16]Zhang J., Tan C. W., Ren Y., et al. Adiabatic shear fracture in Ti-6A1-4V alloy[J]. Transactions of Nonferrous Metals Society of China,2011,21(11):2396-2401.
    [17]Zener C., Hollomon J.. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944,15(1):22-32.
    [18]Wright T. W., Walter J. W.. On stress collapse in adiabatic shear bands[J]. Journal of the Mechanics and Physics of Solids,1987,35(6):701-720.
    [19]Shawki T. G., Clifton R. J.. Shear band formation in thermal viscoplastic materials[J]. Mechanics of Materials,1989,8(1):13-43.
    [20]Wang X. B.. Quantitative calculation of local shear deformation in adiabatic shear band for Ti-6A1-4V[J]. Transactions of Nonferrous Metals Society of China,2007, 17(4):698-704.
    [21]Bai Y. L.. Thermo-plastic instability in simple shear[J]. Journal of the Mechanics and Physics of Solids,1982,30(4):195-207.
    [22]Lutjering G., Williams J. C Titanium[M]. Verlag Berlin Heidelberg:Springer,2007: 15-50.
    [23]Wulf G. L.. HIGH-STRAIN RATE COMPRESSION OF TITANIUM AND SOME TITANIUM-ALLOYS[J]. International Journal of Mechanical Sciences,1979,21(12): 713-718.
    [24]Follansbee P., Gray G.. An analysis of the low temperature, low and high strain-rate deformation of Ti-6A1-4V[J]. Metallurgical and Materials Transactions A,1989, 20(5):863-874.
    [25]Lee W. S., Lin C. F.. High-temperature deformation behaviour of Ti6A14V alloy evaluated by high strain-rate compression tests[J]. Journal of Materials Processing Technology,1998,75(1-3):127-136.
    [26]Rittel D., Wang Z.. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6A14V alloys[J]. Mechanics of Materials,2008,40(8):629-635.
    [27]刘新芹,谭成文,张静,等.应力状态对Ti-6A1-4V绝热剪切敏感性的影响[J].稀有金属材料与工程,2008,(09):1522-1525.
    [28]刘清华,惠松骁,叶文君,等.初生α相含量对TC4 ELI钛合金动态应力—应 变行为的影响[J].中国有色金属学报,2012,22(10):2749-2755.
    [29]刘清华,惠松骁,叶文君,等.不同组织状态TC4ELI钛合金动态力学性能研究[J].稀有金属,2012,36(4):517-517.
    [30]刘清华,惠松骁,叶文君,等.合金元素对TC4钛合金动态力学性能的影响[J].稀有金属材料与工程,2013,42(007):1464-1468.
    [31]Kruger L., Meyer L., Razorenov S., et al. Investigation of dynamic flow and strength properties of Ti-6-22-22S at normal and elevated temperatures[J]. International Journal of Impact Engineering,2003,28(8):877-890.
    [32]卢维娴,王礼立,陆在庆.p-Ti合金在高应变率下的绝热剪切现象[J].金属学报,1986,(04):317-320.
    [33]包合胜,王礼立,卢维娴.钛合金在低温下的高速变形特性和绝热剪切[J].爆炸与冲击,1989,(02):109-119.
    [34]Qiang L., Yongbo X., Bassim M. N.. Dynamic mechanical properties in relation to adiabatic shear band formation in titanium alloy-Ti17[J]. Materials Science and Engineering:A,2003,358(1-2):128-133.
    [35]Zakaria M., Wu X.. Response of titanium alloys to high strain rate deformation[J]. Materials Science and Technology,2005,21(2):225-231.
    [36]李淑华,王富耻,谭成文,等.工业纯钛TA2的损伤特性与断口特征[J].特种铸造及有色合金,2006,(09):542-544.
    [37]李淑华,王富耻,谭成文,等.预变形TA2剪切带中微观组织的演变[J].稀有金属材料与工程,2007,(09):1527-1529.
    [38]李淑华,王富耻,谭成文,等.工业纯钛TA2剪切带中微观组织的演变[J].材料科学与工艺,2009,(04):501-507.
    [39]张磊,胡时胜,吴家俊.α-钛合金TA6的动态力学性能和剪切现象分析[J].实验力学,2005,(04):567-572.
    [40]Chichili D., Ramesh K., Hemker K.. The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling[J]. Acta Materialia,1998,46(3): 1025-1043.
    [41]Osovski S., Rittel D., Landau P., et al. Microstructural effects on adiabatic shear band formation[J]. Scripta Materialia,2012,66(1):9-12.
    [42]Yoo M.. Slip, twinning, and fracture in hexagonal close-packed metals[J]. Metallurgical and Materials Transactions A, 1981,12(3):409-418.
    43] Jones I. P., Hutchinson W. B.. Stress-state dependence of slip in Titanium-6A1-4V and other H.C.P. metals[J]. Acta Metallurgica 1981,29(6):951-968.
    44] Yapici G. G., Karaman I., Luo Z. P.. Mechanical twinning and texture evolution in severely deformed Ti-6A1-4V at high temperatures[J]. Acta Materialia,2006,54(14): 3755-3771.
    [45]Xu F., Zhang X., Ni H., et al.{11-24} deformation twinning in pure Ti during dynamic plastic deformation[J]. Materials science & engineering A, Structural materials:properties, microstructure and processing,2012,541:190-195.
    [46]Wielewski E., Siviour C. R., Petrinic N.. On the Correlation between Macrozones and Twinning in Ti-6A1-4V at Very High Strain Rates[J]. Scripta Materialia,2012: 229-232.
    [47]Wang H., Sun Q., Xiao L., et al. Effect of grain size on twinning behavior in Ti-2Al-2.5 Zr alloy fatigued at 77K[J]. Materials Science and Engineering:A,2012: 1-7.
    [48]Tirry W., Nixon M., Cazacu O., et al. The importance of secondary and ternary twinning in compressed Ti[J]. Scripta Materialia,2011:840-843.
    [49]Stanford N., Carlson U., Barnett M.. Deformation Twinning and the Hall-Petch Relation in Commercial Purity Ti[J]. Metallurgical and Materials Transactions A, 2008,39(4):934-944.
    [50]Prakash D., Ding R., Moat R., et al. Deformation twinning in Ti-6A1-4V during low strain rate deformation to moderate strains at room temperature[J]. Materials Science and Engineering:A,2010,527(21):5734-5744.
    [51]Murayama Y., Obara K., Ikeda K.. Effect of twinning on deformation of textured commercially-pure Ti sheets under plane stress states[J]. Materials Transactions,1993, 34(9):801-808.
    [52]Xu F., Zhang X., Ni H., et al.{1124} deformation twinning in pure Ti during dynamic plastic deformation[J]. Materials science & engineering A,2012,541: 190-195.
    [53]余永宁.材料科学基础[M].北京:高等教育出版社,2006:560-610.
    [54]Regazzoni G., Kocks U., Follansbee P.. Dislocation kinetics at high strain rates[J]. Acta Metallurgica,1987,35(12):2865-2875.
    [55]Kocks U., Argon A., Ashby M.. Progress in materials science[J]. Thermodynamics and Kinetics of Slip,1975,19:21-30.
    [56]Parameswaran V., Urabe N., Weertman J.. Dislocation mobility in aluminum[J]. Journal of Applied Physics,1972,43(7):2982-2986.
    [57]Gray G., Kaschner G., Mason T.. The influence of interstitial content, temperature, and strain rate on deformation twin formation[J]. Advances in Twinning,1999: 157-170.
    [58]宋维锡.金属学[M].北京:冶金工业出版社,1989:95-150.
    [59]Gray III G.. Deformation twinning:influence of strain rate[R]. Los Alamos National Lab:NM (United States),1993.
    [60]Fressengeas C., Molinari A.. Instability and localization of plastic flow in shear at high strain rates[J]. Journal of the Mechanics and Physics of Solids,1987,35(2): 185-211.
    [61]Oliferuk W., Maj M.. Plastic instability criterion based on energy conversion[J]. Materials Science and Engineering:A,2007,462(1):363-366.
    [62]Wright T. W., Batra R. C. The initiation and growth of adiabatic shear bands[J]. International Journal of Plasticity,1985,1(3):205-212.
    [63]Rogers H. C. Adiabatic plastic deformation [J]. Annual Review of Materials Science, 1979,9(1):283-311.
    [64]Batra R. C., Kim C. H.. Effect of thermal conductivity on the initiation, growth and bandwidth of adiabatic shear bands[J]. International Journal of Engineering Science, 1991,29(8):949-960.
    [65]Dormeval R.. The adiabatic shear phenomenon[M]. Elsevier:London,1987:78-92.
    [66]Bai Y. L., Dodd B.. Adiabatic shear localization:occurrence, theories and applications[M]. Pergamon Press,1992:101-115.
    [67]Recht R.. Catastrophic thermoplastic shear[J]. J appl Mech,1964,31(2):186-193.
    [68]Johnson G. R., Cook W. H.. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Proceedings of the Seventh International Symposium on Ballistic,1983:541-547.
    [69]Staker M.. The relation between adiabatic shear instability strain and material properties[J]. Acta Metallurgica 1981,29(4):683-689.
    [70]Marchand A., Duffy J., An experimental study of the formation process of adiabatic shear bands in a structural steel[J]. Journal of the Mechanics and Physics of Solids, 1988,36(3):251-283.
    [71]Meyers M., Subhash G., Kad B., et al. Evolution of microstructure and shear-band formation in [alpha]-hcp titanium[J]. Mechanics of Materials,1994,17(2-3):175-193.
    [72]Mishra A., Martin M., Thadhani N. N., et al. High-strain-rate response of ultra-fine-grained copper[J]. Acta Materialia,2008,56(12):2770-2783.
    [73]Timothy S., The structure of adiabatic shear bands in metals:a critical review[J]. Acta Metallurgica,1987,35(2):301-306.
    [74]Timothy S., Hutchings I., The structure of adiabatic shear bands in a titanium alloy[J]. Acta Metallurgica,1985,33(4):667-676.
    [75]ASTM B348-10, Standard Specification for Titanium and Titanium Alloy Bars and Billets [S]. American Society for Testing Material,2010.
    [76]Randle V., Engler O., Introduction to texture analysis:macrotexture, microtexture and orientation mapping[M]. CRC Press,2000:121-150.
    [77]GBT-1423-1996, 贵金属及其合金密度测试方法[S].北京:国家技术监督局, 1996.
    [78]ASTM E1461-01, Test Method for Thermal Diffusivity of Solids by the Flash Method [S]. American Society for Testing Material,1992.
    [79]孙巧艳,朱蕊花,刘翠萍,等.工业纯钛机械孪晶演化及其对纯钛低温力学性能的影响[J].中国有色金属学报,2006,16(004):592-598.
    [80]Salem A. A., Kalidindi S. R., Doherty R. D., Strain hardening of titanium:role of deformation twinning[J]. Acta Materialia,2003,51(14):4225-4237.
    [81]Park S. H., Hong S. G., Lee J. H., et al. Multiple twinning modes in rolled Mg-3Al-lZn alloy and their selection mechanism[J]. Materials Science and Engineering:A,2011:401-406.
    [82]Godet S., Jiang L., Luo A., et al. Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes[J]. Scripta Materialia,2006,55(11): 1055-1058.
    [83]Sawai T., Hishinuma A.. Twin intersection in tensile deformed γ-TiAl intermetallic compounds[J]. Journal of Physics and Chemistry of Solids,2005,66(2):335-338.
    [84]Bracke L., Kestens L., Penning J.. Direct observation of the twinning mechanism in an austenitic Fe-Mn-C steel[J]. Scripta Materialia,2009,61(2):220-222.
    [85]Bertrand E., Castany P., Peron I., et al. Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis[J]. Scripta Materialia,2011,64(12): 1110-1113.
    [86]Kapoor R., Nemat-Nasser S.. Determination of temperature rise during high strain rate deformation[J]. Mechanics of Materials,1998,27(1):1-12.
    [87]Mason J., Rosakis A., Ravichandran G.. On the strain and strain rate dependence of the fraction of plastic work converted to heat:an experimental study using high speed infrared detectors and the Kolsky bar[J]. Mechanics of Materials,1994,17(2-3): 135-145.
    [88]Wang S. H., Liu Z. Y., Wang G. D., et al. Effects of Twin-Dislocation and Twin-Twin Interactions on the Strain Hardening Behavior of TWIP Steels[J]. journal of iron and steel research, international,2010,17(12):70-74.
    [89]Salem A. A., Kalidindi S. R., Doherty R. D., et al. Strain hardening due to deformation twinning in a-titanium:Mechanisms [J]. Metallurgical and Materials Transactions A,2006,37(1):259-268.
    [90]Christian J. W., Mahajan S.. Deformation twinning[J]. Progress in Materials Science, 1995,39(1):1-157.
    [91]Park S. H., Hong S. G., Lee C. S.. Activation mode dependent{10-12} twinning characteristics in a polycrystalline magnesium alloy [J]. Scripta Materialia,2010, 62(4):202-205.
    [92]Herrmann B., Venkert A., Kimmel G., et al. Formation and morphology of twinning in titanium under high strain rate deformation [A]. Shock Compression of Condensed Matter-2001[C]. Atlanta:American Physical Society,2002:623-626.
    [93]Yu Q., Shan Z. W., Li J., et al. Strong crystal size effect on deformation twinning[J]. Nature,2010,463(7279):335-338.
    [94]胡时胜.霍普金森压杆技术[J].兵器材料科学与工程,1991,(11):40-47.
    [95]晓青.冲击动力学[M].北京:北京理工大学出版社,1992:25-42.
    [96]Meyers M. A., Pak H. R.. Observation of an adiabatic shear band in titanium by high-voltage transmission electron microscopy[J]. Acta Metaliurgica, 1986,34(12): 2493-2499.
    [97]Murr L., Ramirez A., Gaytan S., et al. Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6A1-4V targets[J]. Materials Science and Engineering:A,2009,516(1-2):205-216.
    [98]Kurtaran H., Buyuk M., Eskandarian A.. Ballistic impact simulation of GT model vehicle door using finite element method[J]. Theoretical and Applied Fracture Mechanics,2003,40(2):113-121.
    [99]Kang W. J., Cho S. S., Huh H., et al. Modified Johnson-Cook model for vehicle body crashworthiness simulation[J]. International Journal of Vehicle Design,1999,21(4-5): 424-435.
    [100]Umbrello D., M'saoubi R., Outeiro J. C The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel[J]. International Journal of Machine Tools & Manufacture,2007,47(3-4):462-470.
    [101]Mandal S., Rice J., Elmustafa A. A.. Experimental and numerical investigation of the plunge stage in friction stir welding[J]. Journal of Materials Processing Technology, 2008,203(1-3):411-419.
    [102]Lifshitz J., Leber H. Data processing in the split Hopkinson pressure bar tests[J]. International Journal of Impact Engineering,1994,15(6):723-733.
    [103]Hodowany J., Ravichandran G., Rosakis A., et al. Partition of plastic work into heat and stored energy in metals[J]. Experimental Mechanics,2000,40(2):113-123.
    [104]Backman M. E., Goldsmith W.. The mechanics of penetration of projectiles into targets[J]. International Journal of Engineering Science,1978,16(1):1-99.
    [105]李淑华,沈大为,孙凯,等Ti-6Al-4V合金弹着点及其周围组织变化与损[J].稀 有金属材料与工程,2013, (08):1703-1706.
    [106]Dikshit S., Kutumbarao V., Sundararajan G.. The influence of plate hardness on the ballistic penetration of thick steel plates [J]. International Journal of Impact Engineering,1995,16(2):293-320.
    [107]Wang Y. M., Huang J. Y., Jiao T., et al. Abnormal strain hardening in nanostructured titanium at high strain rates and large strains[J]. Journal of Materials Science,2007, 42(5):1751-1756.
    [108]Salem A. A., Kalidindi S. R., Semiatin S. L.. Strain hardening due to deformation twinning in a-titanium:Constitutive relations and crystal-plasticity modeling[J]. Acta Materialia,2005,53(12):3495-3502.
    [109]Salem A. A., Kalidindi S. R., Doherty R. D.. Strain hardening regimes and microstructure evolution during large strain compression of high purity titanium [J]. Scripta Materialia,2002,46(6):419-423.
    [110]Yadav S., Repetto E., Ravichandran G., et al. A computational study of the influence of thermal softening on ballistic penetration in metals[J]. International Journal of Impact Engineering,2001,25(8):787-803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700