BCC金属的塑性流动行为及其本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二战以来,特别是二十世纪九十年代以来,地域局部战争的爆发,加剧了对各种攻击型武器及其防护结构更高性能的要求。各种武器的战斗部以及战舰、飞行器、地下掩体等材料的性能研究更引起材料、冶金和力学工作者极大的重视。随着人类对太空的不断探索,不仅在太空材料方面,同样要求在国防、航空航天和民用等方面广泛被应用的结构材料能够在各种极端的环境,例如,高速碰撞、高温变形、大的塑性变形等条件下具有良好的性能。这样,一方面要求不断开发性能优异的新材料,另一方面需要深入理解和了解在极端环境下材料的性能,为实际工程应用提供不可缺少的基础。BCC多晶体金属和主要呈现BCC结构特征的合金,由于它们通常具有较高的熔点、良好的热传导性、高的断裂韧性、相对好的抗腐蚀和可焊接性等特性,因而一直得到研究者的关注。但BCC金属的性能强烈的依赖于温度、变形率和自身的微观结构。在本文中通过大量系统的试验研究和分析,意在揭示BCC金属材料在很宽温度范围、很宽应变率范围和大变形下的塑性流动行为。主要内容有:材料动态性能的测试技术、材料在不同温度不同应变率下的塑性流动特征和变形机理、本构关系的研究。其具体研究方法和内容如下:
     (1)材料动态性能的测试技术。基于近年开展的三种多晶体钽(Ta)金属材料、船用Nitronic-50结构钢和三种钨合金动能弹材料的性能研究,和以往积累的大量试验研究,重点开展用分离式Hopkinson压杆实现高温高应变率的耦合试验技术,对低应变率不同温度下的试验是借助电子万能试验机或常规的液压伺服试验机,通过这些综合的试验技术可实现应变率从10~(-4)/s到10~4/s、温度从77K到1100K,应变超过70%的金属材料塑性流动性能的试验研究。
     (2)材料在不同温度不同应变率下的塑性流动特征和变形机理研究。利用(1)中的试验技术,测试三种不同工艺的Ta金属材料、船用Nitronic-50结构钢和三种钨合金动能弹材料在单轴压缩下的性能,然后结合积累的大量试验结果,分析BCC金属材料在应变率从10~(-4)/s到10~4/s、温度从77K到1100K,应变超过50%的塑性流动的规律、所呈现的变形特征。通过金相分析探索BCC金属塑性流动的变形机理。
     (3)本构关系的研究。结合BCC金属材料在不同温度不同应变率下的塑性流动性能,分析塑性流动的规律和所呈现的变形特征,基于位错克服各种障碍和势垒的热激活滑移机制,以及基于位错运动学和动力学概念,建立一个具有物理意义的统一热粘塑性本构关系。介绍这些材料参数的意义,给出BCC金属塑性流动的具体本构模型,介绍试验确定本构关系中参数的方法,通过试验结果与本构关系的对照验证本构关系的准确性。
     通过本文的研究,主要结论和成果为:
     (1)本文所给出具有二次应力波抑制技术的分离式Hopkinson压杆连同本文所建立的气动同步机构,可以测试金属材料应变率最高到约30,000/s、温度可达到1,100K、塑性应变超过70%的材料动态应力应变曲线,应变率和高温的耦合试验测试。
     (2)经对BCC金属大量试验结果分析,本文发现这些BCC金属的塑性流变应力对应变率和温度非常敏感,但加载历史对流变应力的影响较小;在低的应变率下,出现第三类动态应变时效现象,随应变率的增加,动态应变时效应力峰值将移至更高温度区或消失。
     (3)通过分析发现在BCC多晶体及其主要呈现BCC结构特征的合金材料中几乎都发生第三类动态应变时效(DSA)现象,且DSA启动并不需要预先的应变积累。DAS出现的区域取决于温度和变形率两者的共同因素,当应变率增加时,DSA出现的区域会移向更高的区域。这个DSA的产生机理为:当温度和应变率共同达到某一临界条件时,溶质原子沿着大量聚集的林位错通过管扩散在运动位错核迅速的和连续不断的形成溶质气团,对运动位错构成连续不断的牵制或拘留,为了克服这类障碍,导致流动应力曲线随应变增加连续的上升。
     (4)BCC金属在塑性流变中具有的机制和特征有:低应变率下的剪切、高应变率下绝热剪切、变形孪晶的产生,当温度较高温时,BCC材料会呈现粘塑性拖-曳现象。
     (5)推导出适合金属材料塑性流动的统一本构模型,模型的推导结合了固体热力学、材料学、冶金学和力学等学科的知识,物理意义明确。通过试验结果与模型结果的比较,所建立的BCC本构模型与试验结果吻合较好,证明本文所给出的本构模型是合理、可信的。
Since the second World War, especially since 1990's, because the region warshave ever broken out, a variety of high performance attacking weapons andcorresponding shield structures are urgently needed. The material property research ofthe projectile bodies, battle ships, aircrafts, and beneath shield structures have beenattracting the material scientist, metallurgist and mechanical researcher interests. Nowhuman being is increasingly exploring outer space, these structural materials of thespace application, and other materials using in the defence, aviation and astronautictechnique, and civil fields are in extreme work environment, e.g., the impact in highvelocity, the deformation in high temperature, and the larger plastic flow. Thesestructural materials are required to have good performance. Such, while new materials isbeing explore, the material behavior in extreme work environment must also be highlyunderstood in order to construct the base for practice engineering application. BCC(body-centered cubic) polycrystalline metals and those alloys mainly possessing BCCstructure often exhibit higher melting point, favorable heat conductivity, well fracturetoughness, considerably better corrosion resistance and weldability, these metals alwaysget scientist comprehensive interests. But the properties of the BCC metals stronglydepend on the temperatures, the deforming rate and the material microstructures.
     In the present paper, through systematically large amounts of the experimentalstudies and analyses, main purpose is to detect the plastic flow behavior of the BCCmetals and alloys over a wide range of temperatures and strain rates, and largerdeformation. Main content includes: the dynamic measuring technique for the materialproperty; the plastic flow characteristic and deformation mechanism of the materialsunder different temperatures and strain rates; and the constitutive relation study. Thestudy methods and contents are briefly described as following:
     (1) The dynamic measuring technique for the material property. Based on a lot ofexperimental property studies of the metal materials in the foretime years, especially inrecent three years, the present issue mainly emphasizes the split Hopkinson compressive bar technique, and how to achieve the couple methods of testing temperatures and strainrates. These metals include three kinds of tantalum (Ta), vessel steel Nitronic-50, andthree kinds of tungsten (W). The material property under low strain-rate tests arecarried out through electronic-mechanical driving testing machine, and conventionalservohydraulic machine. Combing the spilt Hopkinson bar with quasi-staticservohydraulic machine, Strains over 70% are achieved in these tests over a temperaturerange of 77-1,100K and strain rate of 10~(-4)-10~4/s, these material plastic flow propertyare studied.
     (2) The plastic flow characteristic and deformation mechanism of the materialsunder different temperatures and strain rates. Based on the section (1) techniques, theuniaxial compression mechanical properties of three kinds of tantalum (Ta), vessel steelNitronic-50, and three kinds of tungsten (W) are measured, then relatinmg these resultswith accumulating other materials data of foretime years, the plastic flow characteristicand plastic flow mechanism of BCC metals are systematically analysed over atemperature range of 77-1,100K and strain rate of 10~(-4)-10~4/s.
     (3) The constitutive relation study. In terms of plastic flow characteristic of theseBCC metals under different temperatures and strain rates, and their plastic flowprinciple and deformation behavior, based on the thermal activation glide mechanismthat dislocation overcome various obstacles and potential barriers, a unified constitutivemodel with physical concept are developed. The parameter of the model are defined andexplained. A practice constitutive model describing plastic flow stresses for BCC metalsare presented, the parameters of BCC model are obtained with the help of experiments,To verify the model, the experimental results are compared with the model predictions.
     Based on these systematically studies, main conclusions and achievement are asfollowing:
     1) In the present paper, a special split Hopkinson compressive bar withsynchronization mechanism are developed, this equipment have a trap function ofsecond stress loading pulse, with the help of this Hopkinson technique, the strain rateover 30,000/s and temperature over 1,100K can be obtained to measure plastic flow stress of materials at strain exceeding 70%. A couple testing of temperatures and strainrates can be achieved in this Hopkinson bar technique.
     2) Through a lot of analyses, it is found that, the plastic flow stresses of BCCmetels are very sensitive on strain rates and temperatures. But the loading history hasweak effect on plastic flow stress. The dynamic strain aging occurs at lower strain rates,the peaks in the region of dynamic strain aging will shift higher temperature, ordisappear with increasing strain rates.
     3) It is found that, the third dynamic strain aging happens (DSA) in all BCC(body-centered cubic) polycrystalline metals and these alloys mainly possessing BCCstructure. BCC metals do not have an initial pre-straining strain as the onset of the thirddynamic strain aging. The third DSA occurs in a matching coincidence of thetemperature and strain rate, its temperature region will shift to higher region withincreasing strain rates. Such, the mechanism of third DSA is thought as therapid/continuous formation of the solute atmospheres at the mobile dislocation core bythe pipe diffusion along vast collective forest dislocations to result in a continuous risecurve of flow stress.
     4) The plastic flow characteristic and mechanism of these BCC metals include that,the shear deformation at lower strain rates, adiabatic shear band occurs in higher strainrates, deformation twinning producing at low temperatures. There is the plasticviscous-drag mechanism in higher temperatures and higher strain rates.
     5) A unified constitutive model with physical concept are developed, this model issuitable to predict the plastic flow of metals. During deducing this model, theknowledge of solid thermal mechanics, material science, metallurgy and mechanics areused, such that, this model has remarkable physical concepts. Through comparing thetesting results with model predictions, the good agreement is obtained. These haveshown that the present model is reasonable and reliable.
引文
1. Anton Puskar, Microplasticity and failure of metallic materials, New York, USA: Elsevier Science Publishing Company, Inc., 1989, 1-34.
    2. Honeycombe R. W. K., The Plastic deformation of metals, London WC1B 3DQ: Edward Arnold (Publishers) Ltd, 1968, 402-459.
    3. Staker M. R., Metals handbook Ninth edition-Introduction, Ohio, USA: American Society for metals, 1980, 187-189.
    4. Follansbee P. S. Metals handbook Ninth edition-High Strain Rate Compression Testing, Ohio, USA: American Society for metals, 1980, 190-207.
    5. Meyers M A, Dynamic Behavior of materials, New York, USA: John Wiley & Sons, Inc. 1994, 296-324.
    6. Nemat-Nasser S., Isaacs J B and Starrett J E. Hopkinson techniques for dynamic recovery experiments. Proc. R. Soc. Lond, 1991, 435(A): 371~391
    7. Nemat-Nasser S, Li Yeou-Fong and Isaacs J B. Experimental/computational evaluation of flow stress at high strain rates with application to adiabatic shear banding. Mech. Mat., 1994, 17: 111~134
    8. Nemat-Nasser S, Isaacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys. Acta Mater., 1996, 45: 907~919
    9. Guo W. G, Nemat-Nasser S., Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures. Mechanics of Materials. 2006, Vol. 38, pp. 1090-1103.
    10.李玉龙,郭伟国,微型Hopkinson杆技术,“爆炸与冲击”2006,26(4):303-308。
    11.郭伟国,高导无氧铜在大变形、不同温度和不同应变率下的流动应力和本构模型,“爆炸与冲击”,2005,25(3):244-250。
    12.郭伟国,高温分离式Hopkinson压杆技术及其应用,“实验力学”2006,21(4),pp.447-453
    13. Nemat-Nasser S. and Guo W. G., Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mechanics of Materials, 2005, 37(2-3): 379-405.
    14.李玉龙,索涛,郭伟国等,确定材料在高温高应变率下动态性能的Hopkinson杆系统。“爆炸与冲击”,2005,25(6):487-492
    15. Nemat-Nasser S., Guo W. G., Nesterenko VF, et al., Dynamic response of conventional and hot isostatically pressed Ti-6AI-4V alloys: experiments and modeling. MECH MATER, 2001, 33(8): 425-439.
    16. Nemat-Nasser S., Guo W. G., Kihl DP, Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures. J MECH PHYS SOLIDS, 2001,49 (8): 1823-1846.
    17. Nemat-Nasser S., Guo W. G., Cheng J. Y., Mechanical properties and deformation mechanisms of a commercially pure titanium. ACTA MATER, 1999, 47 (13): 3705-3720.
    18. Meyers M. A., Vohringer O., and Lubarda V. a., The onset of twinning in metals: A constitutive description, Acta Mater., 2001, Vol. 49: 4025-4039.
    19. Sajjadi S. A., Nategh S., A high temperature deformation mechanism map for the high performace Ni-base superalloy GTD-111, Materials Science and Engineering, 2001, Vol. A307: 158-164.
    20. Mishra R. S., Mukherjee, The rate controlling deformation mechanism in high strain rate superplasticity, Materials Science and Engineering, 1997, A234-236: 1023-1025.
    21. Kim W. J., Chung S. W. Chung C. S., etc, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures, Acta mater., 2001, 49: 3337-3345.
    22. Krauss G. Microstructures, processing, and properties of steel. ASM Handbook, 1990, 1: 126-139.
    23. Weertman J, Weertman J R. Elementary dislocation theory. Oxford University press, New York Oxford, 1992: 1-213.
    
    24. Conrad H, Hayes W. Thermally activated deformation of the bcc metals at low temperatures. Transactions of the ASM, 1963,56: 249-262.
    
    25. Conrad H, Hayes W. Correlation of the thermal component of the yield stress of the Bcc metals. Transactions of the ASM, 1963, 56: 125-134.
    
    26. Nakada y, Keh A S. Serration flow in Ni-C alloys[J]. Acta Metallurgica, 1970, 18:437-443.
    
    27. Cuddy L J, Leslie WC. Some aspects of serrated yielding in substitutional solid solutions of iron. Acta Metallurgica, 1972,20: 1157-1167.
    
    28. Beukel A V D. Theory of the effect of dynamic strain aging on mechanical properties[J]. Phys. Stat. Sol. 1975, 30: 197-206.
    
    29. Donoso J R, Watson P G, Reed-Hill RE. The effect of dynamic annealing on dynamic strain aging phenomena in commercial purity titanium. Metallurgical transactions A, 1979, 10A: 11651171.
    
    30. Beukel A V D, Kocks U F. The strain dependence of static and dynamic strain-aging. Acta Metallurgica, 1982,30: 1027-1034.
    
    31. Reed-Hill R E, Park S C, Beckerman L P. Application of a model for strain aging under stress to Niobium. Acta Metallurgica, 1983,31(10): 1715-1720.
    
    32. Kocks U F, Cook R E, Mulford R A. Strain aging and strain harddening in Ni-C alloys. Acta Metallurgica, 1985, 33(4): 623-638.
    
    33. Reed-Hill R E, Kaufman M J. On evaluating the flow stress in Nionium of commercial purity. Acta Metall. Mater., 43(5): 1731-1739.
    
    34. Cho Sang-Hyun, Yoo Yeon-Chul, Jonas J J. Static and dynamic strain aging in 304 austenitic stainless steel at elevated temperature. J. Mat. Sci. letters, 2000, 19: 2019-2022.
    
    35. Nemat-Nasser S, Guo W G. 2003, Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures. Mechanics of Materials, 35: 1023-104.
    
    36. Nemat-Nasser S, Guo W G. 2005, Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mechanics of Materials, 37: 379-405.
    
    37. Regazzoni G, Kocks U F, Follansbee P S. Dislocation kinetics at high strain rates[J]. Acta Metallurgica, 1987, 35:2865-2875.
    
    38. Follansbee P S, Weertman J. On the question of flow stress at high strain rates controlled by dislocation viscous flow. Mechanics of Materials, 1982, 1: 345-350.
    
    39. Zerilli F J, Armstrong R W. The effect of dislocation drag on the stress-strain behavior of fcc metals. Acta Metall. Mater., 1992, 40: 1803-1808.
    
    40. Chiem C Y. Material deformation at high strain rates - in shock-wave and high-strain-rate phenomena in materials, edited by Meyers, M., Murr, L. and Staudhammer, K.. Marcel Dekker, Inc., 1992, 69-85.
    
    41. Nemat-Nasser S, Isaacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys. Acta Materialia, 1997, 45: 907-919.
    
    42. Nemat-Nasser S, Guo W G, Liu M Q. Experimentally-based micromechanical modeling of dynamic response of molybdenum. Scripta Mat., 1999, 40: 859-872.
    
    43. Nemat-Nasser S, Guo W G. Flow stress of commercially pure niobium over a broad range of temperatures and strain rates. Mat. Sci. Eng. A, 1999,284: 202-210.
    
    44. Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. International Journal of Plasticity, 1999,15:963-980.
    
    45. Dhua S K, Mukerjee D, Sarma D S. Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plate[J]. Metall. Trans. A, 2001,32A: 2259-2270.
    
    46. Meyers M A. Dynamic behavior of Materials. America: John Wiley & Sons Incoporation, 1994: 323-381.
    
    47. Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh International Symposium on Ballistic, The Netherlands: The Hague, 1983: 541-547.
    
    48. Khan A S, Liang R Q. Behavior of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling. International Journal of Plasticity, 1999, 15: 1089-1109.
    
    49. Rule W K, Jones S E. A rivised form for the Johnson-Cook strength model, Int. J. Impact Engng, 1998,21(8): 609-624.
    
    50. Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics caculations. J. Appl. Phys., 1987, 61(5): 1816-1825.
    
    51. Zerilli F J, Armstrong R W.Description of Tantalum deformation behavior by dislocation mechanics based constitutive relations. J. Appl. Phys., 1990, 68(4): 1580-1591.
    
    52. Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for constitutive model constants. J. Appl. Phys., 1988, 64(8): 3901-3910.
    
    53. Follansbee P S, Kocks U F. A constitutive description of the deformation of copper besed on the use of the mechanical threshold stress as an internal state variable. Acta Metallurgica, 1988, 36(1): 81-93.
    
    54. Nemat-Nasser S, Guo W G. High strain-rate response of commercially pure vanadium. Mechanics of Materials, 2000, 32 (4): 243-260.
    55.陈志永,张新明,周卓平。{110}<111>,{112)<111>和{123}<111>多滑移的屈服应力状态。金属学报,2003,39(1):17-21。
    56.胡昌明,贺红亮,胡时胜。45号钢的动态力学性能研究。爆炸与冲击,2003,23(2):188-192。
    57.程国强,李守新。金属材料在高应变率下的热粘塑性本构关系。弹道学报,2004,16(4):18-22。
    58.郭伟国,一种新型奥氏体不锈钢的塑性流变行为研究。西北工业大学学报,2001,19(3):476-479。
    59.彭建祥,李大红。温度与应变率对钽流变应力的影响。高压物理学报,2001,15(2):146-150。
    60.程经毅,周光泉。基于物理变量的热粘塑性本构模型。爆炸与冲击,1996,16(3):218-231。
    61.郭扬波,唐志平,程经毅。一种基于位错机制的动态应变时效模型。固体力学学报,2002,23(3):249-256。
    1. Dorn J. E., Rajnak S., Nucleation of kink pairs and the peierls mechanism of plastic deformation, Transction of the Metallurgical Society of AIME, 1964, 230: 1052-1064.
    
    2. Guyot P., Dorn J. E., Acritical review of the peierls mechanism, Canadian Journal of Physics, 1967,45:983-1016.
    
    3. Fleischer R. L., Solution hardening, Acta Metallurgia, 1961,: 996-1000.
    
    4. Fleischer R. L., Substitutional solution harding, Acta Metallurgia, 1963, 11: 203-209.
    
    5. Fleischer R. L., The flow stress of bcc metals: inherent lattice hardening or solution hradening, Acta Metallurgia, 1967, 15: 1513-1519.
    
    6. Weertman J, Weertman J R. Elementary dislocation theory. Oxford University press, New York Oxford, 1992: 1-213.
    
    7. Mitchell T. E., Spitzig W. E., Three stage harding in Ta single crystals, Acta Metallurgica ,1965, 13:1169-1179.
    
    8. Spitzig W. A., Mitchell T. E., Dislocation arrangements in Ta single crystals deformed in tension at 373K, Acta Metallurgica, 1966, 14: 1311-1323.
    
    9. Christian J. W., Some surprising features of the plastic deformation of BCC metals and alloys, Metallurgical Transactions A, 1983, 14A: 1237-1256.
    
    10. Puskar A., Microplasticity and failure of metallic materials, Amsterdam Oxford, Elsevier, 1989, 166-202.
    
    11. Suzuki T., Takeuchi S., Yoshinaga H., Dislocation dynamics and plasticity, Berlin Heideberg New York, Springer-verlag, 1990, 131-135.
    1. Hopkinson B., A method of measuring the pressure produced in the detonation of explosives or by the impact of bullets. Philos. Trans. A, 1914, A213: 437~452.
    2. Davies, R. M., A critical study of Hopkinson pressure bar. Phil. Trans R. Soc. A240, 1948, 375-457.
    3. Kolsky H., An investigation of the mechanical properties of materials at very high rates of loading. Proc. R. Soc. (London) B, 1949, B62: 676~700.
    4. Harding, J., Wood, E. D. and Campbell, J. D., Tensile testing of materials at impact rate of strain. J. Mech. Engng Sic. 1960, 2: 1-96.
    5. Harding, J. and Welsh L. M., A tensile testing technique for fibre-reinforced composites at impact rates of strain. J. Mater. Sci. 1983, 18: 10-1826.
    6. Baker W E, Yew C H., Strain-rate effects in the propagation of torsional plastic wave. J Appl Mech, 1996, 33: 917.
    7. Campbell J D, Dowling A R., The behaviour of materials subjected to dynamic incremental shear loading. J. Mech Phys Solids. 1970, 18: 43.
    8. Duffy, J., Campbell, J. D. and Hawley, R. H., On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminium. J. Appl. Mech. 1971, 38: 83-91.
    9. Nemat-Nasser S., Plasticity: A treatise on the finite deformation of heterogeneous inelastic materials, San Diego, USA, in press, 2004, 661-711.
    10. Nemat-Nasser S., Isaacs J B and Starrett J E. Hopkinson techniques for dynamic recovery experiments. Proc. R. Soc. Lond, 1991, 435(A): 371~391.
    11. Nemat-Nasser S, Li Yeou-Fong and Isaacs J B. Experimental/computational evaluation of flow stress at high strain rates with application to adiabatic shear banding. Mech. Mat., 1994, 17: 111~134.
    12. Nemat-Nasser S, 1saacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys. Acta Mater., 1996, 45: 907~919.
    13. Kapoor R, Nemat-Nasser S. Determination of temperature rise during high strain rate deformation. Mech. Mat., 1998, 27: 1~12.
    14. Nemat-Nasser S, Guo W G, Liu M Q. Experimentally-based micromechanical modeling of dynamic response of molybdenum. Scripta Mat., 1999, 40: 859~872.
    15. Nemat-Nasser S, Guo W G. Flow stress of commercially pure niobium over a broad range of temperatures and strain rates. Mat. Sci. Eng. A, 1999, 284: 202~210.
    16. Nemat-Nasser S, Guo W G, Kihl D P. Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures. J. Mech. Phys. Solids., 2001, 49: 1823~1846.
    17. Nemat-Nasser S, Guo W G. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures. Mech. Mat., 2003, 35: 1023~104.
    18. Nemat-Nasser S, Guo W G. Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mech. Mat., 2005, 37: 379~405.
    19.郭伟国,高温分离式Hopkinson压杆技术及其应用,“实验力学”,2006,21(4):447-453。
    20.郭伟国,PVDF压电薄膜有于Hopkinson压杆测量泡沫金属的动态性能。“实验力学”,2005,20(4):635-639。
    21 陈德兴,胡时胜,张守保等.大尺寸Hopkinson压杆及其应用.实验力学,2005,20(3):398~402。
    22. Lermon A M, Ramesh K T. A technique for measuring the dynamic behavior of materilas at high temperatures. Int. J. Plasticity, 1998, 14 (12): 1279~1292.
    23. Seo S, Min O, Yang H. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J]. Int. J. Impact Engng., 2005, 31: 735~754.
    24. nJohnson G R, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]. Proceedings of the Seventh International Symposium on Ballistic., The Hague, The Netherlands,, 1983, 541~547.
    1. Krauss G. Microstructures, processing, and properties of steel. ASM Handbook, 1990, 1: 126-139.
    2. Militzer M, Hawbolt E B, Meadowcroft T R. Microstructural model for hot strip rolling of High-Strength Low-Alloy steels. Metall. Trans. A, 2000, 31A: 1247-1259.
    3. Krauss G. Microstructures, processing, and properties of steel. ASM Handbook, 1990. 1: 126-139.
    4. Nemat-Nasser S, Isaacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys. Acta Materialia, 1997, 45: 907-919.
    5. Nemat-Nasser S, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments. Proc. R. Soc. Lond, 1991, 435(A): 371-391.
    6. Krauss G., Microstructures, processing, and properties of steel, ASM handbook 1, 1990, 126-139.
    7.郭伟国,高导无氧铜在大变形、不同温度和不同应变率下的流变应力和本构模型。爆炸与冲击,2005,25(3):244-250。
    8. Nemat-Nasser S, Guo W G, Cheng J Y. Mechanical properties and deformation mechanisms a commercially pure titanium. Acta Materialia, 1999, 47(3): 3705-3720.
    9. Nemat-Nasser S, Guo W G, Liu M Q. Experimentally-based micromechanical modeling of dynamic response of molybdenum. Scripta Mat., 1999, 40: 859-872.
    10. Nemat-Nasser S, Guo W G. Flow stress of commercially pure niobium over a broad range of temperatures and strain rates. Mat. Sci. Eng. A, 1999, 284: 202-210.
    11. Nemat-Nasser S, Guo W G., Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mechanics of Materials, 2005, 37: 379-405.
    1. Guo W. G.,, Dynamics strain aging during the plastic flow of metals. Key Engineering Materials. 2007, 340-341: 823-828.
    2. Shewmon P., Diffusion in solids, Warrendale Pennsylvania USA, A Publication of The Minerals, Metals & Materials Society, 1989, 68-91.
    3. Cheng J. Y., Nemat-Nasser S., and Guo W. G., Auified constitutive model for strain-rate and temperature dependent behavior of Molybdenum, Mechanics of Materials, 2001, 33: 603-616.
    4. L. P. Kubin, Y. Estrin and C. Perrier: Acta Metall. 1992, 40: 1037.
    5. F.B. Klose, A. Ziegenbein, J. Weidenmuller, H. Neuhauser and P. Hahner: Computational Materials Science, 2003, 26: 80.
    6.钱匡武,李效琦,萧林钢,陈文哲,张好国,彭开萍。金属和合金中的动态应变时效现象,福州大学学报(自然科学版),2001,29(6):8-23。
    7. Kubin L P, Estrin Y, Perrier C. 1992, On static strain aging. Acta Metall., Vol. 40, pp. 1037-1044.
    8. Beukel A V D, Kocks U F., The strain dependence of static and dynamic strain-aging. Acta Metall., 1982, 30: 1027-1034.
    9. Nakada Y, Keh A S., Serrated flow in Ni-C alloys. Acta Metall., 1970, 18: 437-443.
    10. Cho Sang-Hyun, Yoo Yeon-Chul, Jonas J J., Static and dynamic strain aging in 304 austenitic stainless steel at elevated temperature. J. of Mat. Sci. letters., 2000, 19: 2019-2022.
    11. A. V. D. Beukel U. F. Kocks: Acta Metall. 1982, 30: 1027.
    12. S. G. Hong, K. O. Lee and S. B. Lee: International Journal of Fatigue, 2005, 27: 1420.
    13. Y. Nakada A. S. Keh: Acta Metall. 1970, 18: 437.
    14. K. P. Peng, W.Z. Chen, K. W. Qian: Materials Science and Engineering A, 2006, 415: 53.
    15. J. Y. Cheng, S. Nemat-Nasser: Acta mater. 2000, 48: 3131.
    1.葛庭燧,固体内耗理论基础:晶界驰豫与晶界结构,科学出版社,2000,300-395。
    2 Conrad, H. and Hayes, W., Thermallly activated deformation of the bcc metals at low temperatures. Transaction of the ASM, 1963b, 56: 249-262.
    3. Conrad, H. and Hayes, W., Correlation of the thermal component of the yield stress pof the bcc metals. Transaction of the ASM, 1963a, 56:125-134.
    4 Wang, C. T. and Bainbridge, D. W., The deformation mechanism for high-purity vanadium at low temperature. Metallurgical Transactions, 1972, 3:3161-3165.
    5. Reed-Hill, R. E., Iswaran, C. V. and Kaufman, M. T., A power law model for the flow stress and strain-rate sensitivity in CP-titanium, Scripta Metallurgica et Material, 1995, 33:157-162.
    6. Dieter, G. E., Mechanical Metallurgy, McGraw-Hill, Inc., 1976, 132-203.
    7. Courtney, T. H., Mechanical Behavior of Materials, New York: McGraw-Hill, 1990, 309-315
    8. Conrad, H., Effect of interstitial solutes on the strength and ductility of titanium, Progress in Materials Science, 1981, 26:123-403.
    9. Meyers M. A., Dynamic behavior of materials, A Wiley-interscience publication, John Wiley & Sons, Inc, New York, 1994, 338-339.
    10. Nemat-nasser s., Micromechanics: overall properties of heterogeneous materials, TAmsterdan, the Netherlands, Elsevier Science B. V., 1999, 172-200.
    11. Nemat-Nasser S, Guo W G, Kihl D P., Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures. J. Mech. Phys. Solids., 2001, 49:1823-1846.
    12. Meyers M. A., Mechanical behavior of materials, New Jersey, USA, Prentice-Hall, inc, 1999, 182-287.
    13. Vohringer O., In deformation bahior of metallic materials, ed. C. Y. Chiem, International Summer School on Dynamic behavior of materialsm ENSM, Nantes, Sept. 11-15, 1989, p7.
    14. Nakada y, Keh A S. Serration flow in Ni-C alloys[J]. Acta Metallurgica, 1970, 18: 437-443.
    15. Cuddy L J, Leslie WC. Some aspects of serrated yielding in substitutional solid solutions of iron. Acta Metallurgica, 1972, 20:1157-1167.
    16. Beukel A V D. Theory of the effect of dynamic strain aging on mechanical properties[J]. Phys. Stat. Sol. 1975,30: 197-206.
    
    17.Donoso J R, Watson P G, Reed-Hill RE. The effect of dynamic annealing on dynamic strain aging phenomena in commercial purity titanium[J]. Metallurgical transactions A, 1979, 10A: 1165-1171.
    
    18. Beukel A V D, Kocks U F. The strain dependence of static and dynamic strain-aging. Acta Metallurgica, 1982, 30: 1027-1034.
    
    19. Reed-Hill R E, Park S C, Beckerman L P. Application of a model for strain aging under stress to Niobium[J]. Acta Metallurgica, 1983,31(10): 1715-1720.
    
    20. Kocks U F, Cook R E, Mulford R A. Strain aging and strain harddening in Ni-C alloys[J]. Acta Metallurgica, 1985, 33(4): 623-638.
    
    21. Reed-Hill R E, Kaufman M J. On evaluating the flow stress in Nionium of commercial purity[J]. Acta Metall. Mater., 43 (5): 1731-1739.
    
    22. Cho Sang-Hyun, Yoo Yeon-Chul, Jonas J J. Static and dynamic strain aging in 304 austenitic stainless steel at elevated temperature. J. Mat. Sci. letters, 2000,19: 2019-2022.
    
    23. Nemat-Nasser S, Guo W G. 2003, Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures. Mechanics of Materials, 35: 1023-104.
    
    24. Nemat-Nasser S, Guo W G, Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mechanics of Materials, 2005, 37: 379-405.
    
    25. Regazzoni G, Kocks U F, Follansbee P S. Dislocation kinetics at high strain rates. Acta Metallurgica, 1987, 35: 2865-2875.
    
    26. Follansbee P S, Weertman J. On the question of flow stress at high strain rates controlled by dislocation viscous flow[J]. Mechanics of Materials, 1982, 1: 345-350.
    
    27. Zerilli F J, Armstrong R W.. The effect of dislocation drag on the stress-strain behavior of fcc metals[J]. Acta Metall. Mater., 1992, 40: 1803-1808.
    
    28. Chiem C Y. Material deformation at high strain rates - in shock-wave and high-strain-rate phenomena in materials, edited by Meyers, M., Murr, L. and Staudhammer, K.. Marcel Dekker, Inc., 1992,69-85.
    
    29. Wang C T, Bainbridge DW. The deformation mechanism for high-purity vanadium at low temperature. Metall. Trans., 1972, 3: 3161-3165.
    1. Johnson, G. R., and Cook, W. H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh International Symposium on Ballistic., The Hague, The Netherlands, 1983, 541-547.
    2. Liang, R. Q., and Khan, A. S., A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int. J. of Plasticity, 1999, 15: 963-980.
    3. Rule W. K., and Jones S. E., A revised form for the Johnson-Cook strength model, Int. J. Impact Engng, 1998, 21 (8): 609-624.
    4. Zerilli F. J, and Armstrong R. W., Dislocation-mechanics-based constitutive relations for material dynamics calculations, J. Appl. Phys., 1987, 61 (5): 1816-1825.
    5. Follansbee R S., and Kocks U. F., A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metall. 1988, 36 (1): 81-93.
    6. Kocks, U. E, Argon, A. S., and Ashby, M. F., Thermodynamics and kinetics of slip. Progress in Materials Science, 1975, Vol. 19, Pergamon Press, NewYork, 1-271.
    7. Bodner S. R., and Partom Y. A., A large deformation elastic-viscoplastic anayisis of a thick-walled spherical shell. ASME J. of Applied Mechanics. 1972, 39 (9): 75-757.
    8. Bodner S. R., and Partom Y. A., Constitutive equations for elastic-viscoplastic strain hardening materilas. ASME J. of Applied Mechanics. 1975, 42 (6): 385-389.
    9. Shi D. Q., Yang X. G., Wang Y. R., Constitutive modeling of hardening and creep response of a Nickel-based superalloy Udimet 720Li, Chinese Journal of Aeronautics, 2003, 16 (3): 117-192.
    10. Meyers M. A., Benson D. J., etc., Constitutive description of dynamic deformation: physically-based mechanisms. Materials Science and Engineering. 2002, A322:194-216.
    11.冯瑞等著。金属物理学,科学出版社,1999年,367-372。
    12. Burgahn F., Vohringer O., and Macherauch E., Modeling of flow stress as a function of strain rate and temperature. "Shock-wave and high-strain-rate phenomena in materials/edited by Meyers etc, Marcell Dekker, inc, New York" 1992, 171-179.
    13. Gordon R, Principles of phase diagrams in materials systems, McGraw-Hill series in materials science and engineering, McGraw-Hill Book Compant, New York, 1968, 5-40.
    14. Weertman J. And, Weertman J. R., Elementary dislocation theory, New York Oxford: Oxford University press, 1992, 72-79.
    14. Nemat-Nasser, S., and Li, Y. L., Flow stress of fcc polycrystals with application to OFHC Cu. Acta Mater., 1998, 46: 565-577.
    15.郭伟国,高导无氧铜在大变形、不同温度和不同应变率下的流动应力和本构模型。爆炸与冲击,2005.25:244-250。
    16. Wei-Guo Guo, Sia Nemat-Nasser, Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures. Mechanics of Materials. 2006, Vol. 38, pp. 1090-1103.
    17. Nemat-Nasser S., Guo W. G., Nesterenko VF, et al., Dynamic response of conventional and hot isostatically pressed Ti-6A1-4V alloys: experiments and modeling. MECH MATER,2001, 33 (8): 425-439.
    
    18. Nemat-Nasser S., Guo W. G., Kihl DP, Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures. J MECH PHYS SOLIDS, 2001, 49 (8): 1823-1846.
    
    19. Nemat-Nasser S., Guo W. G., Cheng J. Y., Mechanical properties and deformation mechanisms of a commercially pure titanium. ACTA MATER, 2000,47 (13): 3705-3720.
    
    20. Conrad, H., Hayes, W., Thermally activated deformation of the bcc metals at low temperatures. Trans. ASM, 1963, 56: 249-262.
    1. Kapoor R, Nemat-Nasser S. Determination of temperature rise during high strain rate deformation. Mech. Mat., 1998, 27: 1-12.
    2. Nemat-Nasser S, Guo W G, Kihl D P. Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures[J]. J. Mech. Phys. Solids., 2001, 49: 1823~1846.
    3. Nemat-Nasser S, Guo W G. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures. Mech. Mat., 2003, 35:1023~104.
    4. Nemat-Nasser S, Guo W G. Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mech. Mat., 2005, 37: 379~405.
    5. Kocks, U. F., Argon, A. S., and Ashby, M. F., 1975. Thermodynamics and kinetics of slip. Progress in Materials Science, Vol. 19, Pergamon Press, New York, 1-271.
    6. Conrad, H., Hayes, W., Thermally activated deformation of the bcc metals at low temperatures. Trans. ASM, 1963, 56: 249-262,
    7. Kocks, U. F., Argon, A. S., and Ashby, M. F., 1975. Thermodynamics and kinetics of slip. Progress in Materials Science, Vol. 19, Pergamon Press, NewYork, 1-271.
    8.郭伟国,锻造钽的性能及动态流动本构关系,“稀有金属材料与工程”,2007,36(1):23-27。
    9. Nemat-Nasser S., Guo W. G., High strain-rate response of commercially pure vanadium. Mech. Mat., 2000, 32 (4): 243-260.
    10. Nemat-Nasser S., Guo W. G., Flow stress of commercially pure niobium over a broad range of temperatures and strain rates. MAT SCI ENG A-STRUCT, Vol. 2000, 284 (1-2): 202-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700