超声—TIG电弧复合焊接方法及电弧行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以解决常规钨极氩弧(TIG)焊接过程中由于电弧能量不集中引起的焊接效率低为目的,提出了以电弧等离子体作为超声载体的超声-TIG复合焊接方法。常规钨极氩弧(TIG)焊适用于高品质焊接,具有电弧稳定、热源易于控制、成形优良和焊缝内部质量高等优点,但其焊接熔深浅和生产效率低等缺点制约了该方法的发展。而功率超声在焊接领域的应用范围越来越广泛,新发展起来的有超声振动辅助钎焊技术、超声辅助电弧焊方法、超声频脉冲焊接技术等。超声的引入改善了焊接过程,并对焊后晶粒大小有明显的细化作用。鉴于将超声和TIG焊接的相关优点结合起来,提出了超声-TIG复合焊接方法。将超声振动施加到TIG焊接电弧空间,其突出特点是引入的超声振动能对TIG焊电弧产生压缩作用并改善电弧特性,进而大幅度增加焊缝熔深和提高接头的机械性能。本文系统研究了U-TIG焊电弧特性、焊缝成形特点、超声对焊缝微观组织及机械性能的影响、阐明超声对电弧作用机制。
     首先在特定使用环境下提出了超声电源总体设计方案,完成了整流滤波电路、逆变电路、驱动电路和匹配电路的设计及计算,实现了超声频交流信号的输出。利用有限元软件对复合焊炬进行了设计及优化,确定了变幅杆辐射端、冷却机构及钨极装夹方式的最佳方案。其次以辐射声压相对强度为研究对象,考察了温度和介质对声场分布的影响,确定了声场谐振模式。实测超声振幅放大倍数与理论计算值接近,验证了变幅杆的优化过程,满足了超声振动系统谐振及焊接的要求。在此基础上搭建了超声-TIG复合焊接系统,焊接试验验证了该系统能满足试验及设计要求。
     发现了超声-TIG复合焊接电弧特性及工艺匹配条件。通过对焊接电弧形态的采集,利用电弧长径比分析了其变化规律,发现电弧收缩状态与超声辐射高度、电弧长度存在匹配关系。对复合焊接电弧压力进行测量结果显示,相同工艺参数下复合电弧压力峰值明显高于常规TIG焊电弧,并且不同电弧长度下复合电弧压力峰值受到辐射端高度的影响。随着焊接电流的增加,超声-TIG复合焊电弧压力增量降低。通过电弧静特性分析,超声-TIG复合焊电弧静特性曲线与常规TIG焊相比整体上移,计算得出弧柱区电压降是电弧静特性整体向上平移的主要原因。
     研究了超声-TIG复合焊接工艺参数对SUS304奥氏体不锈钢焊缝成形影响规律,为该方法实际应用奠定了基础。发现了只有当超声输入功率大于临界值时,焊接过程才得到明显改善;焊缝深宽比及熔化面积受辐射端高度与电弧长度匹配的共同影响。超声-TIG复合焊接过程焊缝热循环显示,复合焊接增大了焊接热输入,热量呈现出定向传递特点,高温停留时间变短。结合等离子流力对熔池表面作用受力分析,超声的引入改变了原有的受力状态。接头微观组织分析结果显示,超声-TIG焊缝中心区域出现了较多的等轴晶,焊缝微观照片也验证了硬度试验的结论。对成形优良的焊缝进行了机械性能测试结果显示,超声-TIG焊接头抗拉强度和延伸率均好于常规TIG焊;接头硬度显示超声-TIG焊热影响区范围更窄,并且焊缝组织均匀化程度明显好于常规TIG焊;疲劳试验中超声-TIG焊表现出更加明显的优势。
     最后通过试验验证及理论计算探讨了超声振动与焊接电弧作用机制。从理想介质状态方程出发,获得了超声场内粒子振动形式,电弧周围介质散热加强和电弧内部质点速度增加使得焊接电弧收缩,并计算了不同条件下的平面声场分布。在高强超声振动作用下,附加了整体向下超声辐射力,常规TIG焊电弧受力发生改变,粒子运动方向向轴线偏移。通过电弧局部光谱分析了电弧微观变化、电弧高速摄像研究了电弧能量分布,进一步证实了超声与焊接电弧之间的作用结果。
In pursuit of increasing of low welding efficiency caused by not so concentrated arc energy during the conventional tungsten inert gas (TIG) welding process, in this paper the ultrasonic TIG hybrid welding method, in which arc plasma is used as the carrier of the ultrasonic, is proposed. Conventional tungsten inert gas arc (TIG) welding is fit for high-quality welding, with the strong points such as arc stability, easiness to control the heat source, forming an excellent pool and high internal quality of weld beam, but its shortcomings, shallow weld penetration and low welding productivity have hampered the development of the method. The power ultrasound are more and more widely used in welding, up with new developments of ultrasonic vibration-assisted brazing technology, ultrasound-assisted welding methods, ultrasonic frequency pulse welding technology etc. The introduction of ultrasonic has improved the welding process, and refined the after welding- grain size significantly. In view of the relevant merits of both the ultrasound and TIG welding, ultrasonic TIG hybrid welding method was proposed. This method, with the ultrasonic vibration applied to the TIG welding arc space, has an outstanding feature that the introduction of the ultrasonic vibration can produce compression effects of TIG welding arc and improve the arc characteristics, and thus increase substantially in weld penetration depth and improve the mechanical properties of joints. The U-TIG welding arc characteristics, weld forming characteristics, ultrasonic influence on weld microstructure and mechanical properties were systematically studied to clarify the mechanism of ultrasound on the arc.
     First, in a particular environment, the overall design plan of ultrasonic power supply was made, with completion of design and calculations the rectifier filter circuit, inverter circuit, driver circuit and matching circuit to achieve the ultrasonic frequency AC signal output. Composite welding torch has been designed and optimized using finite element software. The radiating ends of the amplitude transformer, the cooling bodies and the best option of the tungsten fixture were determined. Secondly, the relative intensity of radiation-sound pressure level was researched. The influence of temperature and medium on the distribution of the sound field was investigated to determine the sound field resonant mode. The measured magnification factor of ultrasonic amplitude is closed to the calculated values that the optimization process of the amplitude transformer was verified that met the need of resonance of ultrasonic vibration system and welding requirements. On this basis, the ultrasonic TIG hybrid welding systems has been set up and the welding test proved that the system can meet the testing and designing requirements.
     Finally the arc characteristic of ultrasonic and TIG arc hybrid welding and the matching process conditions were found. Through the collection of shape of the welding arc and an analysis of the length-diameter ratio of used welding arc, we found that there were relational matches between arc contraction and ultrasound irradiation height and the arc length. The results of the composite welding arc pressure measurements showed that the composite arc peak pressure was significantly higher than conventional TIG welding arc under the same process parameters, and the peak pressure value of the composite arc of different length was related to the height of radiation ends of welding arc. As the welding current increases, the increment of arc pressure of ultrasound-TIG arc hybrid welding reduces. Through the analysis of static characteristic of welding arc, ultrasound TIG hybrid welding arc static characteristic curve integrally shifted up compared with the conventional TIG welding. By calculation, we got the main reason for the overall upward shift of the static characteristic curve of the arc was the voltage drop in the arc pole area.
     The study of influence of process parameters of ultrasonic TIG hybrid welding on weld seam forming for SUS304 austenitic stainless steel was made, laying a foundation for the practical application of such a method. We found that the welding process was significantly improved only when the ultrasonic input power is greater than the critical value. Meanwhile, the depth-width ratio of weld and its melting area were the combined effect of the height of radiation-side and the matching of the arc length. The thermal cycle during ultrasonic TIG hybrid welding process shows that hybrid welding increases the welding heat input, heat transfer characteristics shows a directional transferring character and high-temperature residence time became shorter. With the mechanical analysis of plasma flow force on the weld pool surface, the introduction of ultrasound changes in the original stress state. The microstructure of weld joint were compared and analyzed, showing that more equiaxed grains appeared in the ultrasound TIG weld central region, and weld micro photo also verified the conclusions of the hardness test. The test results of the mechanical properties of well formed weld beam show that the tensile strength of ultrasonic TIG welded joints are better than conventional TIG welding and hardness test of joints showed that heat-affected zone of ultrasonic TIG welded joints was much narrower. For ultrasonic TIG welding, microstructure homogenization in weld seam is significantly better than conventional TIG welding and ultrasonic TIG welding fatigue tests showed a more obvious advantage.
     Finally experiment and theoretical calculation were done to verify the mechanism of action between welding arc and ultrasonic vibration. Starting from The Ideal-Gas Equation, we obtained the vibrating form of particles inside ultrasonic field. The enhancement of heat dissipation of arc surrounding medium and the fiercer movement of internal particle make the welding arc contract. And we calculated the plane sound field distribution under different conditions. Under the action of the high-strength ultrasonic vibration, the overall downward ultrasonic radiating force was attached. Force of conventional TIG welding arc changed and the direction of motion of the particles shift to the axis direction.
     The micro-changes of arc were analyzed by local spectra of the arc and the arc energy distribution was studied by high-speed camera, and the results further confirmed the action between ultrasound and welding arc.
引文
1潘际銮.展望21世纪焊接科研.中国机械工程. 2000. 11(Z1): 21-25.
    2 T.W. Eagar. Welding and Joining Moving from Arc to Science. Welding Journal. 1995. 74(6): 49-55.
    3潘际銮.二十一世纪焊接科学研究的展望.第九次全国焊接会议论文集. 1999: 1-17.
    4杨春利,牛尾诚夫,田中学.表面活性剂对TIG焊电弧现象及焊接熔深的影响.机械工程学报. 2000(12): 43-46.
    5 T. Paskell, C. Lundin. GTAW Flux Increases Weld Joint Penetration. Welding Journal. 1997. 76(4): 57-62.
    6 L. He, M. Wu, L. Li. Ultrasonic Generation by Exciting Electric Arc: A Tool for Grain Refinement in Welding Process. Applied Physics Letters. 2006. 89(13): 1504.
    7 Y.M. Zhang, S.B. Zhang. Double-Sided Arc Welding Increases Weld Joint Penetration. Welding Journal. 1998. 77(6): 57-61.
    8 T. Horiuchi, O. Niwo, M. Morito. Limiting Current Enhancement by Self-Induced Redox Cycling on a Micro-Macro Twin Electrode. Journal of the Electrochemical Society. 1991. 138(12): 3549-3553.
    9 L.M.洛巴诺夫.巴顿焊接研究所在结构焊接及强度领域的最新研究方向.第九届全国焊接会议论文集.黑龙江人民出版社. 1999: 48-52.
    10 J. Tsujino, T. Ueoka, Y. Fujita. Ultrasonic Butt Welding of Aluminum, Copper and Steel Plate Specimens. Japanese Journal of Applied Physics. 1994. 33(5): 3058-3064.
    11 W.W. Zhao, J.C. Yan, W. Yang. Capillary Filling Process during Ultrasonically Brazing of Aluminium Matrix Composites. Science and Technology of Welding and Joining. 2008. 13(1): 66-69.
    12 Z. Xu, J. Yan, W. Chen. Effect of Ultrasonic Vibration on the Grain Refinement and Sic Particle Distribution in Zn-Based Composite Filler Metal. Materials Letters. 2008. 62(17-18): 2615-2618.
    13 P. Praveen, P.K.D.V. Yarlagadda, M.J. Kang. Advancements in Pulse Gas MetalArc Welding. Journal of Materials Processing Technology. 2005. 164-165: 1113-1119.
    14 S.H. Ko, S.K. Choi, C.D. Yoo. Effects of Surface Depression on Pool Convection and Geometry in Stationary GTAW. Welding Journal (Miami, Fla). 2001. 80(2): 39-45.
    15 H.R. Saedi, W. Unkel. Arc and Weld Pool Behavior for Pulsed Current GTAW. Welding Journal (Miami, Fla). 1988. 67(11): 247-255.
    16 N.B. Potluri, P.K. Ghosh, P.C. Gupta. Studies on Weld Metal Characteristics and their Influence on Tensile and Fatigue Properties of Pulsed-Current GMA Welded Al-Zn-Mg Alloy. Welding Journal (Miami, Fla). 1996. 75(2): 62-70.
    17 Y. Sharir, J. Pelleg, A. Grill. Effect of Arc Vibration and Current Pluses on Microstructure and Mechanical Properties of TIG Tantalum Welds. Metals Technology. 1978. 5(6): 190-194.
    18 Y. Livshiz, O. Gafri. Technology and Equipment for Industrial Use of Pulse Magnetic Fields. Digest of Technical Papers-IEEE International Pulsed Power Conference. 1999. 1: 475-478.
    19 X.M. Zeng, J. Lucas, Y.Y. Ren. Welding with High Frequency Square Wave AC Arcs. IEEE Proceedings, Part A: Physical Science, Measurement and Instrumentation, Management and Education, Reviews. 1990. 137(4): 193-198.
    20董红刚. PA-GTA双面电弧焊工艺研究及热过程数值模拟.哈尔滨工业大学博士论文. 2004.
    21 T. Murakami, K. Nakata, H. Tong. Dissimilar Metal Joining of Aluminum to Steel by MIG Arc Brazing Using Flux Cored Wire. ISIJ International. 2003. 43(10): 1596-1602.
    22 R. Lahnsteiner. The T.I.M.E. Process - An Innovative MAG Welding Process. Welding Review International. 1992. 11(1): 17-20.
    23 J. Church. T.I.M.E. Process Produces Fracture-Proof Welds. Welding Design and Fabrication. 2002. 75(5): 32-35.
    24 J. Tusek. Mathematical Model for the Melting Rate in Welding with a Multiple-Wire Electrode. Journal of Physics D: Applied Physics. 1999. 32(14): 1739-1744.
    25 B. Bajcer, M. Hrzenjak, K. Pompe. Improvement of Energy and Materials Efficiencies by Introducing Multiple-Wire Welding. Metalurgija. 2007. 46(1):47-52.
    26 O. Midling, E. Morley, A.O. Kluken. Joining of Aluminium Constructions by Friction Stir Welding. Pergamon Press Ltd. 1994: 423.
    27 C.J. Dawes. Introduction to Friction Stir Welding and its Development. Welding and Metal Fabrication. 1995. 63(1): 3.
    28 L.B. He, L.M. Li, H.W. Hao. Grain Refinement and High Performance of Titanium Alloy Joint Using Arc-Ultrasonic Gas Tungsten Arc Welding. Science and Technology of Welding and Joining. 2006. 11: 72-74.
    29 C.S. Wu, J. Chen, Y.M. Zhang. Numerical Analysis of Both Front- Side and Back-Side Deformation of Fully-Penetrated GTAW Weld Pool Surfaces. Computational Materials Science. 2007. 39(3): 635-642.
    30 H. Flynn. Physics of Acoustic Cavitation in Liquids. Physical Acousties. 1964(1b): 167.
    31林仲茂. 20世纪功率超声在国内外的发展.声学技术. 2000. 19(2): 101-105.
    32 V. Sboros, C.A. Macdonald, S.D.Pye. The Dependence of Ultrasound Contrast Agents Backscatter on Acoustic Pressure: Theory versus Experiment. Ultrasonics. 2002. 40(8): 579-583.
    33 J. De, B. Nico, T.C. Ayache. Contrast Harmonic Imaging. Ultrasonics. 2002. 40(8): 567-573.
    34 M. Alexei, G. Christian, D. Bertrand. Cone-Like Bubble Formation in Ultrasonic Cavitation Field. Ultrasonics Sonochemistry. 2003. 10(4-5): 191-195.
    35李晓谦,刘荣光,蒋日鹏.功率超声对铝熔体作用机理研究.热加工工艺. 2008. 37(3): 9-12.
    36 G.I. Eskin. Broad Prospects for Commercial Application of the Ultrasonic (Cavitation) Melt Treatment of Light Alloys. Ultrasonics Sonochemistry. 2001. 8(3): 319-325.
    37 C.L. Zhang, M.S. Wu, J.L. Du. Improving Weld Quality by Arc-Excited Ultrasonic Treatment. Tsinghua Science and Technology. 2001. 16(5): 525-528.
    38应崇福,查济璇.超声和它的众多应用.湖南教育出版社. 1999.
    39赵建强.功率超声作用下al-1%Si合金水平连铸实验研究.大连理工大学硕士论文. 2006.
    40 W. Dridi, D. Henry, H.B. Hadid. Influence of Acoustic Streaming on theStability of Melt Flows in Horizontal Bridgman Configurations. Journal of Crystal Growth. 2008. 310(7-9): 1546-1551.
    41 C. Suri. Chaotic Mixing Generated by Acoustic Streaming. Ultrasonics. 2002. 40(1-8): 393-396.
    42冯若.超声手册.南京大学出版社. 1999.
    43解文军,曹崇德,魏炳波.声悬浮的实验研究和数值模拟分析.物理学报. 1999(2): 250-256.
    44解文军.声悬浮优化设计理论及其应用研究.西北工业大学博士论文. 2002.
    45 W.A. Oran, L.H. Berge, H.W. Parker. Parametric Study of an Acoustic Levitation System. Review of Scientific Instruments. 1980. 51(5): 626-631.
    46 W.J. Xie, B. Wei. Parametric Study of Single-Axis Acoustic Levitation. Applied Physics Letters. 2001. 79(6): 881-883.
    47 W.J. Xie, C.D. Cao, Y.J. Lu. Acoustic Method for Levitation of Small Living Animals. Applied Physics Letters. 2006. 89(21): 214102.
    48许肖梅.声学基础.科学出版社. 2003.
    49克洛福德.超声工程.科学出版社. 1959.
    50 A.E. Ansyutina, I.I. Gur'ev, G.I. Eskin. Ultrasonic Treatment of Alloy Metal during Solidification. Metal Science and Heat Treatment. 1972. 14(7-8): 677-679.
    51 M.A. Breazeale, E.A. Hiedemann. The Refraction of Light by Progressive Ultrasonic Waves of Finite Amplitude Naturwissenschaften. 1958. 45(4): 2-27.
    52 S.Y. Sokolov. Ultrasonic Oscillations and Their Applications. Tech. Physica Ussr. 1935. 2: 522.
    53 H. Biloni, B. Chalmers. Origin of the Equiaxed Zone in Small Ingots. Journal of Materials Science. 1967. 3: 139-149.
    54 J.H. Fan, Q.J. Zhai. Effects of Physical Fields on Solidification Structure of Metals. The Chinese Journal of Nonferrous Metals. 2002(S1): 12-17.
    55 T.M. Yue, H.U. Ha, N.J. Musson. Grain Size Effects on the Mechanical Properties of Some Squeeze Cast Light Alloys. Journal of Materials Science. 1995. 30(9): 2277-2283.
    56 V.A. Efimov, A.S. El'darkhanov. Physical Methods of Affecting on the Alloys Solidification Processes. Stal'. 1996(3): 23-24.
    57 A. Prodhan, D. Sanyal. Cooling Curves Analysis of Aluminum Solidifiedwithout and with Magnetic or Electric Field. Journal of Materials Science Letters. 1997. 16(11): 958-961.
    58 A. Prodhan, C.S. Sivaramakrishnan, A.K. Chakrabarti. Solidification of Aluminum in Electric Field. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2001. 32(2): 372-378.
    59 J. Li, S. Li, J. Li. Modification of Solidification Structure by Pulse Electric Discharging. Scripta Metallurgica & Materialia. 1994. 31(12): 1691-1694.
    60 Y. Tsunekawa, M. Okumiya, N. Mohri. Surface Modification of Aluminum by Electrical Discharge Alloying. Materials Science & Engineering A. 1994. 174(2): 193-198.
    61 K.H. Chen, L.P. Huang, H.W. Hu. Effect of Ultrasonic Melt Pretreatment on Structure and Properties of High Strength 7055 Aluminum Alloy. Journal of Central South University. 2005. 36(3): 354-357.
    62 X.T. Li, T.J. Li, X.M. Li. Study of Ultrasonic Melt Treatment on the Quality of Horizontal Continuously Cast Al-1%Si Alloy. Ultrasonics Sonochemistry. 2006. 13(2): 121-125.
    63 J.W. Li, T. Momono, Y. Fu. Effect of Ultrasonic Stirring on Temperature Distribution and Grain Refinement in Al-1.65%Si Alloy Melt. Transactions of Nonferrous Metals Society of China. 2007. 17(4): 691-697.
    64 T.V. Atamanenko, D.G. Eskin, L. Katgerman. Experimental Study of Grain Growth in Aluminium Melts under the Nfluence of Ultrasonic Melt Treatment. Trans Tech Publications Ltd. 2007: 987-990.
    65 G.I. Eskin. Improving the Process of Continuous Casting of Light Alloy Ingots by Means of Ultrasonic Treatment of the Melt. Tsvetnye Metally. 1976(12): 45-47.
    66 G.I. Eskin. Influence of Cavitation Treatment of Melts on the Processes of Nucleation and Growth of Crystals during Solidification of Ingots and Castings from Light Alloys. Ultrasonics Sonochemistry. 1994. 1(1): 59-63.
    67 G.I. Eskin. Principles of Ultrasonic Treatment: Application for Light Alloys Melts. Advanced Performance Materials. 1997. 4(2): 223-232.
    68 X. Jian, H. Xu, T.T. Meek. Effect of Power Ultrasound on Solidification of Aluminum A356 Alloy. Materials Letters. 2005. 59(2-3): 190-193.
    69 G.I. Eskin, D.G. Eskin. Production of Natural and Synthesized Aluminum-BasedComposite Materials with the Aid of Ultrasonic (Cavitation) Treatment of the Melt. Ultrasonics Sonochemistry. 2003. 10(4-5): 297-301.
    70 K.S. Suslick. Sonochemistry. Science. 1990. 247: 1439-1445.
    71 A. Moussatov, C. Granger, B. Dubus. Cone-Like Bubble Formation in Ultrasonic Cavitation Field. Ultrasonics Sonochemistry. 2003. 10(4-5): 191-195.
    72 J. Campbell. Effects of Vibration during Solidification. International Metals Reviews. 1981. 26(2): 71-108.
    73 J. Campbell. Grain Refinement of Solidifying Metals by Vibration: A Review. Metals Soc. 1983: 61-64.
    74陈辉,强颖怀,葛长路.超声波空化及其应用.新技术新工艺. 2006(7): 62-65.
    75 M. Abdel-Reihim, W. Reif. Practical Applications for Solidification of Metals and Alloys under Ultrasonic Vibrations. Metall. 1984. 38(12): 1156-1160.
    76 T. Matsunaga, K. Ogata, T. Hatayama. Formation Behavior of Acoustic Cavitation in Molten Aluminum Alloys under Ultrasonic Vibration. Journal of Japan Institute of Light Metals. 2006. 56(4): 214-220.
    77 R.H. Nilson, S.K. Griffiths. Enhanced Transport by Acoustic Streaming in Deep Trench-Like Cavities. Journal of the Electrochemical Society. 2002. 149(4): 286-296.
    78 P. Pocwiardowski, H. Lasota, C. Ravn. Near Boundary Acoustic Streaming in Ni-Fe Alloy Electrodeposition Control. Acta Acustica United with Acustica. 2005. 91(2): 365-371.
    79 A. Nowicki, T. Kowalewski, W. Secomski. Estimation of Acoustical Streaming: Theoretical Model. European Journal of Ultrasound. 1998. 7(1): 73-81.
    80胡玉景.超声振动-磨削-脉冲放电复合加工技术及其智能控制的研究.山东大学博士论文. 2006.
    81 Z.J. Pei, G.R. Fisher, M. Bhagavat. A Grinding-Based Manufacturing Method for Silicon Wafers: An Experimental Investigation. International Journal of Machine Tools and Manufacture. 2005. 45(10): 1140-1151.
    82 J.J. Boy, M. Aiguillé, A. Boulouize. Developments in Micro Ultrasonic Machining (MUSM). 4M 2006 - Second International Conference on Multi-Material Micro Manufacture. 2006: 123-126.
    83 S. Rupinder, J.S. Khamba. Ultrasonic Machining of Titanium and its Alloys: A Review. Journal of Materials Processing Technology. 2006. 173(2): 125-135.
    84增泽隆久.采用工件加振方式的微细超声加工特性的研究.电加工与模具. 2000. 3: 29-32.
    85 M.Huerta, S.Malkin. The Mechanics of the Process Transaction of the ASME. Journal of Engineering for Industry. 1976. 8(2): 459-473.
    86 G.Spur. Ultrasonic Assisted Grinding of Ceramics. Industrial Ceramics. 2001. 21(3): 177-181.
    87 Mlnehara. Magnetic Fluid Grinding of Advanced Ceramic Bails. Wear. 1996. 200: 48-53.
    88斋藤長男.超声波振動利用にとゐ放電加工.耭械と工具. 1998. 32(1): 199-202.
    89曹凤国,张勤俭.超声加工技术的研究现状及其发展趋势.电加工与模具. 2005(S1): 27-33.
    90杨凌平,郑传彬.电火花超声复合抛光.模具制造. 2002(4): 44-46.
    91王爱玲,祝锡晶,吴秀玲.功率超声振动加工技术.国防工业出版社. 2007.
    92荣烈润.超精密研磨抛光方法.航空精密制造技术. 2005(2): 14-18.
    93周忆,米林,廖强.基于超声研磨的超精密加工.航空精密制造技术. 2003(1): 1-4.
    94 W. Land. Ultrasonic Welding. Deutscher Verlag Fuer Schweisstechnik Gmbh. 1983: 34-38.
    95 A. Summo. Ultrasonic Welding of Dissimilar Materials. Society of Plastics Engineers. 2006: 38-42.
    96 W.F. Walker. Ultrasonic Welding and Brazing. Mass Production. 1970. 46(1): 13-14, 16-19.
    97 G. Flood. Ultrasonic Energy Welds Copper to Aluminum. Welding Journal (Miami, Fla). 1997. 76(1): 43-45.
    98 B.R. B. Ultrasonics-a New Technique for Welding Thermoplastics. Ultrasonics. 1965. 3(2): 1.
    99张云电.超声加工及其应用.国防工业出版社. 1995.
    100 F. Wang, L. Han, J. Zhong. Effect of Ultrasonic Power on the Wire Bonding Strength. Chinese Journal of Mechanical Engineering. 2007. 43(3): 107-111.
    101 J. Tsujino, H. Yoshihara, T. Itoh. Temperature Rise and Welding Characteristicsof Ultrasonic Wire Bonding Using 190 kHz Linear, Circular and Square Vibration Loci and 600 kHz Linear Vibration Locus Welding Tips. Japanese Journal of Applied Physics. 1998. 37(5b): 3009-3012.
    102 J. Tsujino, T. Sano, H. Ogata. Complex Vibration Ultrasonic Welding Systems with Large Area Welding Tips. Ultrasonics. 2002. 40(1-8): 361-364.
    103 J. Tsujino, T. Uchida, K. Yamano. Welding Characteristics of Ultrasonic Plastic Welding Using Two-Vibration-System of 90 kHz and 27 or 20 kHz and Complex Vibration Systems. Ultrasonics. 1998. 36(1-5): 67-74.
    104 H. Tsujino, T. Mori, K. Hasegawa. Welding Characteristics of Ultrasonic Wire Bonding Using High-Frequency Vibration Systems. Japanese Journal of Applied Physics. 1994. 33(5b): 3048-3053.
    105 H. Tsujino, M. Hongoh, M. Yoshikuni. Welding Characteristics of 27, 40 and 67 kHz Ultrasonic Plastic Welding Systems Using Fundamental- and Higher-Resonance Frequencies. Ultrasonics. 2004. 42(1-9): 131-137.
    106 J. Tsujino, T. Ueoka. Characteristics of Large Capacity Ultrasonic Complex Vibration Sources with Stepped Complex Transverse Vibration Rods. Elsevier. 2004: 93-97.
    107 J. Tsujino, T. Ueoka, T. Kashino. Ultrasonic Butt Welding of Aluminum and Stainless Steel Specimens Using a 15 kHz Welding System. Japanese Journal of Applied Physics. 1999. 38(7a): 4254-4255.
    108 Z. Xu, J. Yan, G. Wu. Interface Structure and Strength of Ultrasonic Vibration Liquid Phase Bonded Joints of Al2O3/6061Al Composites. Scripta Materialia. 2005. 53(7): 835-839.
    109 W.A. Baeslack, W.F. Savage, J.C. Lippold. Unmixed Zone Formation in Austenitic Stainless Steel Weldments. Welding Journal (Miami, Fla). 1979. 58(6): 168-176.
    110 J. Lukkari, T. Moisio. Effect of the Welding Method on the Unmixed Zone of the Weld. Microstructural Science. 1979. 7: 333-344.
    111 Y. Cui, C.L. Xu, Q. Han. Effect of Ultrasonic Vibration on Unmixed Zone Formation. Scripta Materialia. 2006. 55(11): 975-978.
    112 J.F. Lancaster. Metallurgy of Welding. William Andrew Publishing. 1999.
    113 W.L. Dai. Effects of High-Intensity Ultrasonic-Wave Emission on the Weldability of Aluminum Alloy 7075-T6 Materials Letters. 2002. 57(16-17):2447-2454
    114邱灵.高频脉冲变极性电弧特性及其对焊接接头性能的影响.哈尔滨工业大学博士论文. 2007.
    115 A. Ramos, P.T. Sanz, A. Ruiz. Evaluation of Impedance Matching Schemes for Pulse-Echo Ultrasonic Piezoelectric Transducers. Ferroelectrics. 2007(1): 297-302.
    116贺西平,高洁.超声变幅杆设计方法研究.声学技术. 2006. 25(1): 82-86.
    117刘国庆,杨庆东. ANSYS工程应用教程-机械篇.中国铁道出版社. 2003.
    118冯冬菊,赵福令,徐占国.超声波加工工具对复合变幅杆谐振性能影响.大连理工大学学报. 2009. 44(5): 685-688.
    119解文军,魏炳波.声悬浮研究新进展.物理. 2002(9): 551-554.
    120范红刚,史耀武,黄勇. TIG焊电弧压力影响因素的试验分析.焊接技术. 1995(5): 3-5.
    121石德珂,金志浩.材料力学性能.西安交通大学出版社. 1998.
    122王仁智,吴培远.疲劳失效分析.机械工业出版社. 1987.
    123 J.C. Lippold, D.J. Kotecki,陈剑虹译.不锈钢焊接冶金学及焊接性.机械工业出版社. 2008.
    124齐铂金,许海鹰,张伟. 0Cr18Ni9Ti超音频脉冲TIG焊接头组织与性能.北京航空航天大学学报. 2009. 35(2): 132-136.
    125张文钺.焊接冶金学(基本原理).机械工业出版社. 2006: 185.
    126崔忠圻,刘北兴.金属学与热处理原理.哈尔滨工业大学出版社. 1998.
    127 E.H. Brandt. Levitation in Physics. Science. 1989. 243: 349-355.
    128贾昌申,肖克民,殷咸青.焊接电弧的等离子流力.焊接学报. 1994. 2(2): 100-105.
    129贾昌申,肖克民,殷咸青.焊接电弧的等离子流力研究.西安交通大学学报. 1994. 28(1): 23-28.
    130 L.V. King. On the Acoustic Radiation Pressure on Spheres. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1934. 147(861): 212-240.
    131 M. E. Glicksman, R. J. Schaefer. Investigation of Solid Liquid Interface Temperatures via Isenthalpic Solidification. Journal of Crystal Growth. 1967. 1(5): 297-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700