铝合金汽车部件的变形及损伤行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能和环保是当今社会发展的主题,汽车轻量化正是满足了这一需求。铝合金的比强度超过钢,但比刚度较差。由于铝合金具有较好的延展性,通过挤压、冲压、压铸、焊接等工艺能得到复杂截面的构件及空间框架结构,与传统的钢制半壳型结构相比,不仅减轻了重量,而且保证这种车身具有最佳的刚度,并在此基础上采用先进的组合框架方法将是未来交通工具发展的方向。本文结合试验和数值计算,研究铝合金部件重点研究复杂截面挤压部件在轴向载荷作用下的变形及损伤行为和T型管焊接部件在平面弯曲载荷作用下的变形和损伤行为。
     首先对6000系列车用铝合金材料进行力学性能表征。主要对AA6014、6061、6063三种材料进行表征。考虑挤压所造成的材料的各向异性以及应力状态、应变速率的影响,并对6061和6063的断口进行观察。在对母材进行材料表征时要综合考虑以下几个因素:不同应力状态、应变速率、材料各向异性。在选择损伤模型时要考虑到应力状态的影响,在三向应力度较低的情况下Johnson-cook损伤模型能够很好的预测材料的损伤行为,在三向应力度较高的情况下,Gurson模型得到较好的结果。模拟时的损伤参数还与网格尺寸有关,随着网格尺寸的增加,损伤参数减小。宏观试验结果表明:三种材料平板拉伸时的断裂应变大于缺口拉伸时的断裂应变,而平板拉伸时的屈服应力小于缺口拉伸时的屈服应力,在剪切时材料的剪切断裂应变远大于平板拉伸时的断裂应变。对于6063和6061两种材料断口观察发现,随着三向应力度的增大,韧窝断裂机制增加,剪切断裂机制减小。缺口拉伸断口主要以韧窝为主,而剪切断口是以大型剪切韧窝和剪切面为主。平板拉伸试样宏观断口为剪切断裂和正拉伸断裂两种混合方式,最终的断裂以剪切断裂为主,宏观上表现为或者沿宽度方向剪断,或者沿厚度方向剪断;缺口拉伸试样主要以拉伸断裂为主。针对6063平板拉伸试验所遇到的关于断裂路径的问题应用UMAT对断裂路径进行了预测。
     对复杂截面异厚度的均质部件在轴向载荷作用下的变形及损伤行为进行了研究。以AA6014为研究对象,部件由德国奔驰公司提供。对部件进行轴向压缩试验,并应用前面得到的材料力学性能参数及损伤参数对部件在轴向载荷作用下的变形及损伤行为进行预测。结果表明通过仿真与试验相结合的方法可以得到合适的变形及损伤参数;损伤模型与三向应力度有关,因此要选择合适的损伤模型模拟不同载荷作用下的材料的变形及损伤行为;因为损伤参数与网格尺寸相关,模拟部件时网格尺寸比模拟试样时粗大,因此需要根据网格尺寸调整损伤参数,本文对比了不同网格尺寸模拟的结果。在部件模拟中将试样设置为均质,为得到更精确的仿真结果,与制造工艺过程相结合的仿真应该是未来仿真发展的方向。
     对铝合金焊接接头局部材料进行了力学性能表征。提出了一种双孔微剪切试验方法,无需制备小试样,在被测试样区域打两个通孔,直接进行剪切试验,测定了焊接接头各区域的局部强度及局部材料的剪切变形和损伤行为。并通过改变两孔之间的距离及孔的半径来实现局部材料在不同应力状态下的变形及损伤行为。应用TIG (Tungsten inert Gas)焊制备铝合金焊接接头,其中对接接头母材为6061和6063,T型板接头及T型管接头母材为6063。焊接对接接头时,通过多次试验发现,焊缝预留间隙对焊缝成形影响较大,焊接薄板时,预留合适间隙0.5-1mm时有利于焊缝双面成形,间隙过大易发生焊缝烧穿,间隙太小需要较大的热输入才能保证焊缝成形,但这样会增加热影响区的宽度从而降低接头的强度。在焊接T型接头角焊缝时,由于板薄焊接电流相对较小,因此角焊缝的熔深也很小,焊缝预留间隙和开坡口对增加焊缝的熔深几乎没有效果,反而会出现焊缝塌陷和形成冷搭接现象。因此文中所有角焊缝的熔深在强度计算时忽略不计,有限元模型中也不考虑角焊缝熔深。金相观察及硬度分析可以发现,焊接接头的焊缝及热影响区与母材在组织结构与力学性能上存在一定的差别,因此要想准确表征焊接接头的性能必须要考虑焊接接头的力学性能不均匀性。针对铝合金对接焊接接头及T型焊接接头进行了双孔微剪切试验,并结合有限元反推法,获得了不同焊接接头各区域的真应力应变曲线及损伤参数。
     在前面研究的基础上,对平板对接接头进行了拉伸试验及有限元模拟。选用成形良好的焊接接头,主要研究熔化焊对接接头在动载荷及静载荷作用下的变形及损伤行为。并且基于Gurson和Johnson-cook损伤模型结合有限元模拟研究低匹配和高匹配焊接接头及不同匹配情况下焊缝相对宽度对接头性能的影响。同样的焊接工艺下,动态拉伸时,在没有焊接缺陷的影响下,抗拉强度及断裂应变比其在静态拉伸条件下有所提高,且应变率越大,抗拉强度和断裂应变越高;不同材料的动态拉伸试验结果显示:6061的抗拉强度及断裂应变与6063相比要高些,说明6061的材料性能优于6063;同样材料不同的取样方式(垂直于焊缝和沿着焊缝)的动态拉伸试验结果显示:沿着焊缝取样的试样质量优于垂直于焊缝取样的试样,且抗拉强度及断裂应变高于垂直于焊缝取样的试样;以焊缝成形及质量良好的静态平板拉伸试样进行微剪切试验,并结合有限元模拟得到焊接接头各个区域的材料的力学性能参数及损伤参数,并应用得到的参数模拟静态平板拉伸试验得到了很好的结果,说明微剪切试验及建立的有限元模型的正确性;应用有限元仿真的方法研究了不同匹配焊接接头及焊缝相对宽度对接头性能的影响,结果发现:对于低匹配的焊接接头,损伤主要发生在热影响区,且相对宽度越窄,损伤越容易发生,因此建议对于低匹配的焊接接头要选择一个合理的宽度的焊缝;对于高匹配焊接接头,损伤主要发生在母材上,且相对宽度越窄,损伤越不容易发生,因此建议对于高匹配的焊接接头要选择一个尽可能窄的焊缝。
     T型部件的试验研究及有限元模拟。通过试验和有限元分析相结合,研究了6063铝合金T型焊接结构在平面弯曲载荷作用下的变形及损伤行为。设计的T型试样可以实现角焊缝在拉应力状态下的变形及损伤行为,可以作为表征T型部件的“标准”试样的参考。Gurson和Johnson-cook损伤模型能够预测T型部件的损伤行为,Gurson模型预测结果要好于Johnson-cook模型。试验结果表明,S型焊缝裂纹在熔合线附近产生之后逐渐向热影响区扩展,最后宏观裂纹在热影响区形成。U型焊缝宏观裂纹产生于焊缝,最后向热影响区扩展,有限元仿真也很好的预测了这一过程,验证了模型的正确性。
As result of the need to save energy and protect the environment, the use of aluminium alloy space frames are increasing. Aluminium alloy exhibits the property of high specific strength and low specific stiffness compared with steel.Meanwhile Aluminium alloy has good ductility, which being manufactured in complicated cross-section component and space-frame by extrusion, stamping, die-casting and welding. The use of aluminium alloy not only reduces the weight of space-frame but ensure stiffness as well. At the same time, advanced aluminium alloy space-frame body is the development direction of transportation means in the future. This paper studied deformation and damage behaviours of aluminium-alloy component, focus on extrusion-complicated component under axial compression and tubular T-joints component under plane bending combining tests with FEM (finite element method).
     In this paper, the series of 6000 (AA6014、6061、6063) aluminium-alloy were characterized under tensile and shear loadings including strain-rate dependence, anisotropy effects and processing influences. At the same time, stress states also considered when choosing the damage model for the damage behaviour of the components depended strongly on the stress triaxiality. Fracture strain decreased remarkably with increasing triaxiality and damage mechanisms could be quite different at high and low triaxiality. Therefore, it was necessary to characterize the influence of stress triaxiality on damage beahviour with relevant experiments then to simulate it with a verified damage model. The results showed:at low stress triaxiality, Johnson-cook damage model gave good result, while high stress triaxiality, Gurson model gave good result. In addition, damage parameters depended on size of mesh, damage parameters reduced with mesh size increasing. Macroscopic test showed that fracture strain of plate tension was larger than that of notched plate tension; yield stress of plate tension was lesser than that of notched plate tension. Furthermore, fracture strain of pure shear was much larger than that of plate tension. Moreover, the fracture graphic analysis suggested that the fracture appearance in 6061 and 6063:dimple mechanism was increasing and shear mechanism was decreasing with stress triaxiality enhancing. Fracture mechanism of notched plate tension was dimple, but large shear dimple and shear facet were observed in shear test,but shear fracture mechanism and tension fracture mechanism mixed for plate tension test, shear fracture occurred on width or thickness in microscopically. Tension fracture occurred in notch tension test.Fellowed that fracture path of 6063 tension test has been implemented in FORTRAN and introduced in ABAQUS by user subroutine.
     An extensive experimental research project has been carried out to study the crash behaviour of a complicated cross-section with different thicknesses of aluminium extrusions subjected to axial loading. Test specimens were'made of the aluminium alloy AA6014. Tempers T7 and provided by Daimler Chrysler. Prediction of the deformation and damage behaviour was carried out with the material properties, which were acquired in above. To sum up, deformation damage parameters received combining the test with simulation. Because damage model dependented on stress triaxiality, the appropriate damage model should be chose to simulate deformation and damage behaviour under different type loadings, the finer the element-size, the better the calculation and simulation result, however the calculation will cost a lot of time. Therefore, appropriate element-size not only ensured the precision of results, but saved time as well. Damage parameters depended on element-size, and the element size is coarser in components than in specimens. Thus to the component, it is necessary to adjust the damage parameters according to the element size. The effects of the inhomogeneous material properties on the component behavior depended on loading situation. In future work, a link between extrusion simulation, microstructure simulation and crash simulation will be an important step to crashworthiness assessment.
     Characterization of aluminium alloy welded joint was carried out. A test method called double-hole micro-shearing was proposed without small specimens. Two through holes beside the measured zone were acquired. Micro-shearing test was performed to get local intensity, deformation, and damage behaviour of local material. Then radius of holes and distance of bridge were changed to study deformation and damage behaviour of local material under different stress states. TIG (Tungsten inert Gas) welding was applied in 6061 and 6063 aluminium alloy joint, then inhomogeneous of organization and mechanical properties of welded joint were studied. To butt welded joint, base material is 6061 and 6063, while T welded joint is 6063. A lot of experiments proved that reservation clearance affected molding of weld in large degree. Weld shape was good when the right clearance was selected. The results showed that the lager one resulted in destroy of weld, on the contrary, the lesser one, more quantity of heat, which would lead the wider of HAZ that deduced the intensity of weld joint. To the T welded joint, because of thin plate need less welding current, therefore weld penetration depth, which was hardly, influenced by clearance and slope, on the contrary which resulted in weld sag and cold joining. So weld penetration depth was ignored when considered strength calculation in this paper. In order to characterize the properties of welded joint correctly, inhomogeneous of organization and mechanical property which would be indicated by metallographic and hardness test must be considered in detail. Combining simulation with micro-shearing test was applied in T welded joint too, true strain and true stress of different zones on welded joint were acquired.
     Plate tension tests and simulations of butt joint were performed based on the above result. Deformation and damage behaviour of butt joints with melt welding under static and dynamic loadings were studied. Then influence on properties of joint in over-match and under-match and width of weld under different match based on Gurson and Johnson-cook model were investigated. Fracture intensity and strain were higher under dynamic tension loading than that under static tension loading, the two parameters increased with increasing of strain ratio. The samples in the same weld techniques and no lacuna, the dynamic tension results showed that fracture intensity and strain of 6061 were higher than that of 6063. It certificated that mechanical of 6061 was better than that of 6063, Different sample method of same material (including vertical and along weld direction) test results showed, fracture intensity and strain of samples which along weld direction were better than that of vertical weld direction. Combining Double-hole micro-shearing experiment with simulation were performed on welded joint to get the material mechanical and damage parameters. Then the parameters were used to simulate static plate tension tests. Good results mean correct model and precision test; In addition, based on the correct model influence of mechanical mismatching on the failure of welded joints were studied. The results showed the damage of under-matched joints mainly occurred in HAZ, the narrower the joint, the lower the damage resistance of the specimen, based on this result, a reasonably wide weld should be chosen for under-matched welded joints. While, to the over-matched joints, the damage mainly occurred in the base metal area adjacent to the joint, the narrower the joint, the higher the damage resistance of the joint. A reasonably narrow weld should be chosen for over-matched welded joints.
     Tests and simulations of T welded joint were performed. Deformation and damage behavior of 6063 T welded joint under plane bend were researched combining tests with simulations. Designed T welded joint samples, which can be used to study deformation, and damage behaviour of corner weld under different stress states. Two damage models (Gurson& Johnson-cook) predicted the damage behaviour, the former give better result than the later. To the S type weld, crack began in melt line then enlarged to HAZ, the marco-crack formed in HAZ in the end. To the U type, weld crack origin nated in weld material, then enlarged to HAZ, simulation gave good prediction for this process.
引文
[1]王柏龄.全铝车身的研究及发展[J].汽车工业研究,2000,6:1-33.
    [2]君杨,宇迪.焊接技术在汽车制造中的应用—访中国机械工程协会副理事长兼秘书长宋天虎先生[J].航天制造技术,2004,3:4-27.
    [3]赵学平.基于轿车纵梁的碰撞模拟及吸能特性的研究[南京理工大学硕士学位论文].南京:南京理工大学,2004.
    [4]黄世霖,张金换.我国的汽车安全法规及碰撞安全技术[J].商用汽车,2002,11:49-50.
    [5]余英华,郎国军.基于LS-DYNA的汽车保险杠碰撞仿真研究[J].计算机仿真,2007,12:235-238.
    [6]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995.
    [7]杨桂通.弹塑性力学引论[M].北京:清华大学出版社,2004.
    [8]李国琛,M.耶纳.塑性大应变微结构力学[M].北京:科学出版社,2003.
    [9]S.P.Timoshenko, J.N.Goodier. Theory of Elasticity [M]北京:清华大学出版社,2004.
    [10]余文寿,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [11]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [12]T.Bφrvik, O.S.Hopperstad, T.Berstad, et al. A computational model of viscoplasticity and ductile damage for impact and penetration [J]. European Journal of Mechanics-A/Solids, 2001,20(5):685-712.
    [13]T.Bφrvik, O.S.Hopperstad, S.Dey, et al. Strength and ductility of Weldox 460 E steel at high strain rates, elevated temperatures and various stress triaxialities [J]. Engineering Fracture Mechanics,2005,72(7):1071-1087.
    [14]O.S.Hopperstad, T.Bφrvik, M.Langseth, et al. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel.Part I.Experiments [J]. European Journal of Mechanics-A/Solids,2003,22(1):1-13.
    [15]T.Bφrvik, O.S.Hopperstad, T.Berstad. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel.Part II.Numerical study [J]. European Journal of Mechanics-A/Solids,2003,22(1):15-32.
    [16]Franck Lauro, Bruno Bennani, Patrick Croix,et al. Identification of the damage parameters for anisotropic materials by inverse technique:application to an aluminium [J]. Journal of Materials Processing Technology,2001,118(1-3):472-477.
    [17]W.Schmitt, D.Z.Sun, J.GBlauel. Damage mechanics analysis (Gurson model) and experimental verification of the behaviour of a crack in a weld-cladded component [J].Nuclear Engineering and Design,1997,174(3):237-246.
    [18]Tomasz Wierzbicki, Yingbin Bao, Young-Woong Lee, et al. Calibration and evaluation of seven fracture models [J]. International Journal of Mechanical Sciences,2005, 47(4-5):719-743.
    [19]Z.L.Zhang, C.Thaulow, J.φdegard. A complete Gurson model approach for ductile fracture [J]. Engineering Fracture Mechanics,2000,67(2):155-168.
    [20]Hibbitt, Karlsson&Sorensen,INC.有限元软件入门指南[M].庄茁等译.北京:清华大学出版社,1999.
    [21]裘新,黄世霖,李一兵.非线性有限元模拟技术在汽车被动安全性研究中的应用[J].汽车技术,1998,2:15-19
    [22]钟志华.汽车耐撞性分析的有限元法[J].汽车工程,1994,16(1):1-6,11.
    [23]卢剑锋,冲击载荷作用下材料和结构力学行为有限元模拟.[清华大学硕士论文].北京:清华大学,2003.
    [24]屈金山,邓江.车辆用铝合金6061焊接接头性能探讨[J].西南交通大学学报,1994,29(2):223-228.
    [25]朱亮,陈剑虹.热影响区软化焊接接头应力分布特征及强度预测[J].焊接,2004,25(3):48-51.
    [26]田锡唐.焊接结构[M].北京:机械工业出版社,1996:104-105.
    [27]Anthony K. Pickett, Thomas Pyttel, Fabrice Payen,et al. Failure prediction for advanced crashworthiness of transportation vehicles [J]. International Journal of Impact Engineering,2004,30(7):853-872.
    [28]Z.L.Zhang, J.φdegard, O.R.Myhr, et al. From microstructure to deformation and fracture behaviour of aluminium welded joints-a holistic modelling approach [J]. Computational Materials Science,2001,21(3):429-435.
    [29]W.M.Gho, F.Gao, Y.Yang.Strain and stress concentration of completely overlapped tubular CHS joints under basic loadings [J]. Journal of Constructional Steel Research, 2006,62(7):656-674.
    [30]倪红芳,凌祥,涂善东.多道焊三维残余应力场有限元模拟[J].机械强度,2004,26(2):218-222.
    [31]N.Sidhom, A.Laamouri, R.Fathallah, et al.Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening:experimental characterization and predictive approach [J]. International Journal of Fatigue,2005,27(7):729-745.
    [32]B.GMellor, R.C.T.Rainey, N.E.Kirk. The static strength of end and T fillet weld connections [J]. Materials & Design,1999,20(4):193-205.
    [33]武振宇,远芳,张耀春.不等宽T型CR节点静力工作性能的研究[J].工业建筑, 2004,34(4):53-55.
    [34]S.T.Lie, C.K.Lee, S.P.Chiew, et al. A consistent crack modelling and analysis of rectangular hollow section joints [J]. Finite Elements in Analysis and Design,2006, 42(8-9):639-649.
    [35]Bard Wathne Tveiten, Arne Fjeldstad, Gunnar Harkegard, et al. Fatigue life enhancement of aluminium joints through mechanical and thermal prestressing [J]. International Journal of Fatigue,2006,28(12):1667-1676.
    [36]Yong-Bo Shao.Geometrical effect on the stress distribution along weld toe for tubular T-and K-joints under axial loading [J]. Journal of Constructional Steel Research,2007, 63(10):1351-1360.
    [37]A. N'Diaye, S. Hariri, G. Pluvinag et al. Stress concentration factor analysis for notched welded tubular T-joints [J]. International Journal of Fatigue,2007,29(8):1554-1570.
    [38]K.a.Macdonald, P.J.Haagensen. Fatigue design of welded aluminum rectangular hollow section joints [J]. Engineering Failure Analysis,1999,6(2):113-130.
    [39]F. Andrieux, S.Oeser, J.GBlauel, Dong-Zhi Sun. The use of micro-mechanical material laws to describe the deformation and failure behaviour of aluminium welt joints Part Ⅰ and Part Ⅱ [J]. Aluminium,2001,77:1-3.
    [40]B.Y.Ghoo, Y.T.Keum, Y.S.Kim. Evaluation of the mechanical properties of welded metal in tailored steel sheet welded by CO2 laser [J]. Journal of Materials Processing Technology,2001,113(1-3):692-698.
    [41]Fidelis Rutendo Mashiri, Xiao-Ling Zhao. Plastic mechanism analysis of welded thin-walled T-joints made up of circular braces and square chords under in-plane bending [J]. Thin-Walled Structures,2004,42(5):79-783.
    [42]F.R.Mashiri, X.L.Zhao, P.Grundy, et al. Fatigue design of welded very thin-walled SHS-to-plate joints under in-plane bending [J]. Thin-Walled Structures,2002, 40(2):125-151.
    [43]Xiao-Ling Zhao. Deformation limit and ultimate strength of welded T-joints in cold-formed RHS sections [J]. Journal of Constructional Steel Research,2000, 53(2):149-165.
    [44]Fidelis Rutendo Mashiri, Xiao-Ling Zhao. Thin circular hollow section-to-plate T-joints: Stress concentration factors and fatigue failure under in-plane bending [J]. Thin-Walled Structures,2006,44(2):159-169.
    [45]T.K.Chan, R.F.D.Porter Goff. Welded aluminium alloy connections:test results and BS8118 [J]. Thin-Walled Structures,2000,36(4):265-287.
    [46]S.R. Satish Kumar, D.V.Prasada Rao. RHS beam-to-column connection with web opening-experimental study and finite element modelling [J]. Journal of Constructional Steel Research,2006,62(8):739-746.
    [47]D-Z.Sun, Silk Sommer. Characterization and modeling of material damage under crash loading.In:21st CAD-FEM Users'Meeting.Berlin,2003,98-103.
    [48]Johann Georg Blauel, Wolfgang Bosshme.Material characterization for crash simulation.In:Crash Mat 2002.2.Berlin,2002,46-50.
    [49]Blauel J.G, Sommer. Crash tests and numerical simulation of welded aluminium component with defects.In:3rd international symposium"Passive safety of rail vehicles".Berlin,2002,57-61.
    [50]Jun Lu, Subra Suresh, Guruswami Ravichandran. Dynamic indentation for determining the strain rate sensitivity of metals [J]. Journal of the Mechanics and Physics of Solids, 2003,51(11-12):1923-1938.
    [51]Woei-Shyan Lee, Wu-Chung Sue, Chi-Feng Lin, et al. The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy [J]. Journal of Materials Processing Technology,2000,100(1-3):116-122.
    [52]Franck Lauro, Bruno Bennani, Patrick Croix, et al. Identification of the damage parameters for anisotropic materials by inverse technique:application to an aluminium [J]. Journal of Materials Processing Technology,2001,118(1-3):472-477.
    [53]刘瑞堂,刘文博,刘锦方.工程材料力学性能[M].哈尔滨工业大学出版社,2001.
    [54]乔及森.车用铝合金焊接接头及基本单元件的大变形力学行为研究[兰州理工大学博士学位论文].兰州:兰州理工大学,2007.
    [55]石德珂,金志浩.材料力学性能[M].西安交通大学出版社,1998.
    [56]崔约贤,王长利.金属断口分析[M].哈尔滨工业大学出版社,1998.
    [57]T.Pardoen. Numerical simulation of low stress triaxiality ductile fracture [J]. Computers & Structures,2006,84(26-27):1641-1650.
    [58]L.Xue.Void shearing Effect in Ductile Fracture of porous Materials, in:Local approach to fracture.Euromech-Mecamat:JACQUES BESSON,POMINIQUE MOINERAU,DIRK STEGLICH,2006,483-488.
    [59]Z.L.Zhang, C.Thaulow, J.φdegard. A complete Gurson model approach for ductile fracture [J]. Engineering Fracture Mechanics,2000,67(2):155-168.
    [60]W.B.Lievers, A.K.Pilkey, M.J.Worswick. The co-operative role of voids and shear bands in strain localization during bending [J]. Mechanics of Materials,2003,35(7):661-674.
    [61]Liang Xue, Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading [J]. International Journal of Solids and Structures.2007, 44(16):5163-5181.
    [62]Ted Belytschko, Wing Kam Liu, Brian Moran.连续体和结构的非线性有限元[M].庄茁译.北京:清华大学出版社,2002.
    [63]A.G.Hanssen, M.Langseth, O.S.Hopperstad. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering,2000,24(5):347-383
    [64]A.Deb, M.S.Mahendrakumar, C.Chavan, et al. Design of an aluminium-based vehicle platform for front impact safety [J]. International Journal of Impact Engineering,2004, 30(8-9):1055-1079
    [65]D.Al Galib, A.Limam. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes [J]. Thin-Walled Structures,2004, 42(8):1103-1137.
    [66]M.Langseth, O.S.Hopperstad. Static and dynamic axial crushing of square thin-walled aluminium extrusions [J]. International Journal of Impact Engineering,1996, 18(7-8):949-968.
    [67]Anthony K. Pickett, Thomas Pyttel, Fabrice Payen,et al. Failure prediction for advanced crashworthiness of transportation vehicles [J]. International Journal of Impact Engineering,2004,30(7):853-872.
    [68]J.S.Qiao, J.H.Chen, H.Y.Che. Crashworthiness assessment of square aluminum extrusions considering the damage evolution [J]. Thin-Walled Structures,2006, 44(6):692-700.
    [69]赵腾伦.ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
    [70]朱亮,陈剑虹.力学性能不均匀焊接接头的强度预测[J].焊接学报,2005,26(5):13-16.
    [71]Nicolas M, Deschamps A. Precipitate microstructures and resulting properties of Al-Zn-Mg metal Inert Gas-Weld Heat-Affected Zones [J]. Metallurgical and Materials Transactions,2004,35:1437-1448.
    [72]Z.L.Zhang, J.odegard, O.R.Myhr. From microstructure to deformation and fracture behaviour of aluminium welded joints-a holistic modelling approach [J]. Computational Materials Science,2001,21(3):429-435.
    [73]M.Scibetta, E.Lucon, R.Chaouadi,et al. Instrumented hardness testing using a flat punch [J]. International Journal of Pressure Vessels and Piping,2003,80(6):345-349.
    [74]史耀武,周宁宁,张新平,等.微剪切试验及对焊接接头力学性能的评价[J].焊接学报,1994,15(4):235-240.
    [75]X.P.Zhang, L.Dorn. Estimation of the local mechanical properties of pipeline steels and welded joints by use of the microshear test method [J]. International Journal of Pressure Vessels and Piping,1998,75(1):37-42.
    [76]雷斌隆.高速车辆铝合金焊接接头的性能评定[J].电焊机,2004,34(4):6-7,51.
    [77]J.GBlauel, Dong-Zhi Sun, F.Andrieux. The use of micro-mechanical material laws to describe the deformation and failure behaviour of aluminium welt jointsparts Ⅰ/Ⅱ. Aluminium, Deustchland, Fraunhofer Institut Werkstoffmechanik Express,2001, 77:1-12.
    [78]Johann Georg Blauel, Wolfgang Bosshme.Material characterization for crash simulation.In:Crash Mat 2002.2.Berlin,2002,46-50.
    [79]Blauel J.G, Sommer. Crashtests and numerical simulation of welded aluminium component with defects.In:3rd international symposium"Passive safety of rail vehicles".Berlin,2002,57-61.
    [80]Asif Husain, D.K.Sehgal, R.K.Pandey. An inverse finite element procedure for the determination of constitutive tensile behavior of materials using miniature specimen [J]. Computational Materials Science,2004,31(1-2):84-92.
    [81]朱亮,侯艳荣.双孔微剪切法测定材料的局部强度[J].兰州理工大学学报,2006,32(3):25-28.
    [82]侯艳荣.材料局部强度及变形特性的测定.[兰州理工大学硕士学位论文].兰州:兰州理工大学,2006.
    [83]车洪艳,朱亮,陈剑虹.局部材料损伤行为的双孔微剪切实验[J].兰州理工大学学报,2007,33(4):31-34.
    [84]Andreas Gerber, Volker Schulze, Detlef Lohe. Influence of Selected Manufacturing Parameters on the Fatigue Strength and the Damage Behavior of Aluminum Light Weight Structures for Automotive Series Production[J].Advance engineering Materials 2003.5, No.3:148-155.
    [85]黄旺福,黄金刚.铝及铝合金焊接指南[M].湖南:湖南科学技术出版社,2005.
    [86]刘宏,赵刚,刘春明,等.6000系铝合金组织性能的研究进展[J].机械工程材料,2004,28(6):1-4.
    [87]H.R.Shakeri, A.Buste, M.J.Worswick, et al. Study of damage initiation and fracture in aluminum tailor welded blanks made via different welding techniques [J]. Journal of Light Metals,2002,2(2):95-110.
    [88]J.φdegard, Z.L.Zhang, A.Kluken. The significance of HAZ (heat affected zone) and welded metal properties on the performance of welded aluminium models, in: Proceedings of the International Body Engineering conference(IBEC'97), stuttgart, 30/9-2/10.
    [89]中国机械工程学会焊接学会.焊接手册第三卷焊接结构[M].北京:机械工业出版 社,2007.
    [90]车洪艳,朱亮,陈剑虹.有限元反推法评定AA6014铝合金的损伤参数[J].机械工程材料,2007,31(7):57-59.
    [91]Z.L.Zhang, J.φdegard, O.R.Myhr,et al. From microstructure to deformation and fracture behaviour of aluminium welded joints-a holistic modelling approach [J]. Computational Materials Science,2001,21(3):429-435.
    [92]G. De Matteis, A.Mandara, F.M.Mazzolani. T-stub aluminium joints:influence of behavioural parameters [J]. Computers & Structures,2000,78(1-3):311-327.
    [93]李强,王波,李存铮.T型焊接接头中疲劳裂纹扩展的三维边界元模拟[J].清华大学学报(自然科学版),2002,42(4):470-473.
    [94]F.R.Mashiri, X.L.Zhao, P.Grundy, et al. Fatigue design of welded very thin-walled SHS-to-plate joints under in-plane bending [J]. Thin-Walled Structures,2002, 40(2):125-151.
    [95]S.T.Lie, C.K.Lee, S.P.Chiew, et al. A consistent crack modelling and analysis of rectongular hollow section joints [J]. Finite Elements in Analysis and Design,2006, 42(8-9):639-649.
    [96]M.Anvari, I.Scheider, C.Thaulow. Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive elements [J]. Engineering Fracture Mechanics,2006,73(15):2210-2228.
    [97]Altino J.R. Loureiro. Effect of heat input on plastic deformation of undermatched welds [J]. Journal of Materials Processing Technology,2002,128(1-3):240-249.
    [98]王庆,张彦华.钢结构角焊缝强度计算与匹配分析[J].工业建筑,2005,35(增刊):732-734.
    [99]兰朋,温新婕,陆念力.单面角焊缝计算公式的探讨[J].起重运输机械,2004,3:45-46.
    [100]项东.T型接头焊缝中未焊透宽度对钢结构质量的影响[J].建筑技术开发,2002,29(3):13-14.
    [101]B.G.Mellor, R.C.T.Rainey, N.E.Kirk. The static strength of end and T fillet weld connections [J]. Materials & Design,1999,20(4):193-205.
    [102]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000.
    [103]龙林.车身铝合金焊接及接头力学性能.[兰州理工大学硕士学位论文].兰州:兰州理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700