稠油油藏蒸汽-CO_2复合驱模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稠油是一种非常规石油资源,稠油的开发对于缓解我国的能源供应紧张意义重大。蒸汽-CO_2复合驱方法开采稠油,不仅可以提高稠油的采收率,而且可以实现CO_2气体的减排,对减缓全球气候变暖、保护环境具有重要意义。采用自制的PVT装置,研究了CO_2在稠油以及稠油-水体系中的溶解特性,分析了其影响因素。采用高温高压落球粘度计,对稠油、稠油-水体系、稠油-CO_2体系以及稠油-水-CO_2体系的粘度进行了测量,研究了温度、压力、溶解气油比以及含水率对体系粘度的影响。建立了系列一维填砂模型,利用稠油渗流机理研究装置,开展了稠油油藏蒸汽驱、蒸汽-CO_2复合驱以及蒸汽-N2复合驱模拟实验研究,研究了蒸汽注入温度、注入速度、CO_2注入时机、CO_2注入量等因素对稠油采收率的影响,对注入参数进行了优化,并对蒸汽-CO_2复合驱增产机理进行了分析。实验结果表明,稠油及稠油-水的体系泡点压力随温度升高而升高,含水率越高,泡点压力越高。CO_2在稠油、稠油-水体系中的溶解气油比比在稀油中的溶解气油比小,它随温度升高而降低,随饱和压力升高而升高,随含水率升高而降低。稠油、稠油-水体系溶解CO_2后粘度大幅度下降,降幅可达99%。稠油油藏蒸汽驱能提高水驱采收率,降低水驱含水率,并且蒸汽注入速度越大,注入温度越高,采出液含水率越低,采收率越好。相比蒸汽驱,蒸汽-CO_2复合驱可以降低含水率30%,提高采收率30%。CO_2溶解对稠油-水体系有一定的破乳作用,能有效降低稠油粘度,提高蒸汽利用率,增大波及体积,提高采收率。
Heavy oil is an unconventional resources, which is of great significance to relieve the tension supply of energy. Steam-CO_2 combination flooding can not only enhance oil recovery, but also reduce the emission of CO_2, which is dramatically meaningful to global warming and environmental protection. The solution properties of CO_2 in heavy oil and heavy oil-water system was investigated, and the factors that influence the solution was analysed by self-made device. The viscosity of heavy oil, heavy oil-water system, heavy oil-CO_2 system and heavy oil-water-CO_2 system were measured by high pressure and high temperature falling sphere viscometer, and the influencing factors such as temperature, pressure, solubility and water ratio were also studied. A series of simulated experiments include steam flooding, steam-CO_2 combination flooding and steam-N2 combination flooding were studied by a lot of sand pack models and the flowing mechanisms apparatus of heavy oil. In addition, the injection parameters which impact oil recovery such as injection temperature, injection rate, CO_2 injection time, CO_2 injection rates was optimized. Stimulation mechanism of steam-CO_2 combination flooding is analysed as well.
     Experimental results show that the bubble-point pressure of heavy oil and heavy oil-water systems increase with temperature rise and water ratio decline. Solubility of CO_2 in heavy oil and heavy oil-water systems is smaller than that in thin oil, and reduces with temperature rise, water ratio rise and saturation pressure decline. The viscosity of heavy oil and heavy oil-water system decreases up to 99% dissolved by CO_2. Steam flooding can enhance water flooding recovery and reduce water ratio for heavy oil reservoir. As the increasing of injection rate and injection temperature, water ratio of produced fluid decreases and recovery increases. Compared with steam flooding, recovery of steam-CO_2 combination flooding improves up to 30%, and water ratio of produced fluid decreases up to 30%. Solution of CO_2 had demulsification of heavy oil-water systems, reduces viscosity of heavy oil effectively, improves utilization of steam, increases swept volume and enhances oil recovery.
引文
[1]刘文章.热采稠油油藏开发模式[M].北京:石油工业出版社,1998:26-29.
    [2]胡常忠.稠油开采技术[M].北京:石油工业出版社,1998:2-9.
    [3]贾学军.高粘度稠油开采方法的现状与研究进展[J].石油天然气学报,2008,30(2):529-531.
    [4]于连东.世界稠油资源的分布及其开采技术的现状与展望[J].特种油气藏,2001,8(2):98-103.
    [5]贾学军.高粘度稠油开采方法的现状与研究进展[J].石油天然气学报(江汉石油学院学报).2008,30(2):529-537.
    [6]李鹏华.稠油开采技术现状及展望[J].油气田地面工程,2009,28(2):9-10.
    [7]戴树高,崔波,祁亚玲,等.高粘度稠油开采技术的国内外现状[J].化工技术经济.2004,22(11):21-25.
    [8]杜殿发,王学忠,崔景云,等.稠油注蒸汽热采的替代技术探讨[J].油气田地面工程,2010,29(10):54-56.
    [9] Maurice B Dusseault, Mikhail B Gelilikman. Heavy Oil Production from Unconsolidated Sandstones U sing S and Production and SAGD[J]. SPE 48890, 1998:537-543.
    [10]武毅,张丽萍,李晓漫,等.超稠油SAGD开发蒸汽腔形成及扩展规律研究[J].特种油气藏,2007,14(6):40-43.
    [11]马洪新,李刚,尚小东,等.稠油开采技术研究现状[J].内蒙古石油化工,2009,8:219-220.
    [12]凌建军.水平压裂辅助蒸汽驱开采稠油油藏的研究[J].河南石油,1996,10(3):30-34.
    [13]王卓飞,朗兆新,何军.稠油化学驱微观机理及数学描述研究[J].石油勘探与开发,2005,32(2):113-115.
    [14]雷光伦.微生物采油技术的研究与应用[J].石油学报,2001,22(2):56-61.
    [15]罗瑞兰,程林杜.稠油油藏多轮次蒸汽吞吐后注CO_2的可行性[J].新疆石油地质,2004,25(2):182-184.
    [16]沈德煌,张义堂,张霞,等.稠油油藏蒸汽吞吐后转注CO_2吞吐开采研究[J].石油学报,2005,26(1):83-86.
    [17]付美龙,张鼎业.CO_2在辽河油田杜84块超稠油中的溶解性研究[J].钻采工艺,2006,29(2):104-107.
    [18]付美龙,张鼎业.杜84块超稠油油藏蒸汽+CO_2+助剂吞吐物理模拟实验研究[J].油田化学,2006,23(2):145-149.
    [19]孙家国,邵国峰,田华.二氧化碳三元复合吞吐采油技术在杜84区块的应用[J].渤海大学学报(自然科学版).2008,29(1):18-21.
    [20]杨胜来,王亮,何建军,等.CO_2吞吐增油机理及矿场应用效果[J].西安石油大学学报(自然科学版).2004,19(6):23-26.
    [21]张小波.蒸汽-二氧化碳-助剂吞吐开采技术研究[J].石油学报,2006,27(2):51-54.
    [22]欧阳传湘,闫利恒,姚梦多,等.超稠油三元复合吞吐物理模拟实验研究[J].新疆石油天然气,2007,3(4):40-43.
    [23]欧阳传湘,闫利恒,岳雷.辽河油田超稠油三元复合吞吐影响因素研究[J].断块油气田,2008,15(2):78-80.
    [24]檀德库.用于蒸汽驱油藏的高温产CO_2气复合驱油剂[J].油田化学,2008,25(3):272-276.
    [25]蒲丽萍、张国红、骆向杰.浅层超稠油注蒸汽加注CO_2单井吞吐试验数模研究[J].新疆石油科技,2008,2(18):20-22.
    [26]刘恒.二氧化碳三元复合吞吐技术在曙光超稠油油藏的应用[J].石油地质与工程,2008,22(6):86-88.
    [27]孙家国,邵国峰,田华.二氧化碳三元复合吞吐采油技术在杜84区块的应用[J].渤海大学学报(自然科学版),2008,29(1):18-22.
    [28]陶磊,李兆敏,张凯,等.二氧化碳辅助蒸汽吞吐开采超稠油机理[J].油气地质与采收率,2009,16(1):80-84.
    [29]李兆敏,陶磊,张凯,等.CO_2在超稠油中的溶解特性实验[J].中国石油大学学报,2008,32(5):92-96.
    [30]李辉,李伟忠,周瑞松,等.王庄油田郑411块特超稠油开采机理与评价方法[J].石油地质与工程,2009,23(2):64-69.
    [31]张守军,郭东红.超稠油自生二氧化碳泡沫吞吐技术的研究与应用[J].石油钻采技术,2009,37(5):101-104.
    [32]黄伟强,王利华,陈忠强,等.复合蒸汽吞吐提高稠油采收率试验[J].新疆石油与地质,2010,31(1):69-71.
    [33] Anil K.Mehrotra, William Y.Scrcek. Measurement and Correlation of Viscosity, Density and Gas Solubility for Marguerite Lake Bitumen Saturated with Carbon Dioxide[J]. Aostra Journal Of Research, 1984, 1:51-62.
    [34] Anil K.Mehrotra, William Y.Scrcek. Viscosity, Density and Gas Solubility Data for Oil Sand Bitumens[J]. Aostra Journal Of Research, 1985, 1(4):263-268.
    [35] F. Giimrah, S.Bagci. Steam-CO_2 drive experiments using horizontal and vertical wells[J]. Journal of Petroleum Science and Engineering, 1997, 18:113-129.
    [36] J. H. Benard, W. C. Richardson. and G. M. Sitton, Steam Oil Displacement and Vaporization of Minas Oil in Slimtubes[C]. SPE 39639, USA,1998,1-15.
    [37] L.Zhao. Steam Alternating Solvent Process[C]. SPE 86957,USA, 2004,1-13.
    [38] Bagci A. S, Gumrah F. Effects of CO_2 and CH4 Addition to Steam on Recovery of West Kozluca Heavy Oil[C]. SPE 86953, USA. 2004,1-7.
    [39] Vasant R. Choudhary, Kartick C. Mondal. CO_2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 erovskite-type mixed metal-oxide catalyst[J]. Applied Energy. 2006,83:1024-1032.
    [40] R. Luo, L.-S. Cheng, J.-C. Peng. Feasibility Study of CO_2 Injection for Heavy Oil Reservoir After Cyclic SteamStimulation: Liaohe Oil Field Test[C]. SPE/PS-CIM/CHOA 97462, Canada, 2005,1-7.
    [41] A.K. Baksh, D.O. Ogbe, D.G. Hatzignatiou. Feasibility Study of C02 Stimulation in the West Sak Field, Alaska[C]. SPE 24038, California, 1992,151-158
    [42] Stanislaw Nagy, Andrzej Olajossy, Jakub Siemek. Use of nitrogen and carbon dioxide injection in exploitation of light oil reservoirs[J]. Acta Montanistica Slovaca, 2006, 11:120-124.
    [43] A. Al-Quraini, M. Sohrabi, M. Jamiolahmady. Heavy Oil Recovery by Liquid CO_2/Water Injection[C], SPE 107163,Londen 2007,1-8.
    [44] Tayfun Babadagli a, S. Sahin b, U. Kalfa b, D. Celebioglu b, U. Karabakal b, N.N. Topguder.Evaluation of steam injection potential and improving ongoing CO_2 injection of the Bati Raman field[J], Turkey. Journal of Petroleum Science and Engineering,2009,68:107-117.
    [45]李振泉.油藏条件下溶解CO_2的稀油相特性实验研究[J] .石油大学学报,2004,28(3):43-48.
    [46]秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2003.
    [47]耿宏章,陈建文,孙仁远,等.二氧化碳溶解气对原油粘度的影响[J] .石油大学学报(自然科学版),2004,28(4):78-80.
    [48]江延明,李传宪.W/O乳状液的流变性研究[J].油气储运.2000,19(1):10-12.
    [49]王为民,李恩田,申龙涉,等.辽河油田含水超稠油流变特性研究[J].石油化工高等学校学报.2003,16(2):69-72.
    [50]韩洪升,魏兆胜.石油工程非牛顿流体力学[M].哈尔滨:哈尔滨工业大学出版社,1993.245—249.
    [51]江延明,李传宪.W/0乳状液的流变性研究[J].油气储运.2000,19(1):10-19.
    [52]吴维夫.低温高含水原油流变特性研究[J].岳阳师范学院学报(自然科学版).2000,13(3):64-65.
    [53]朱林,孙锦华,杨杰.原油视粘度随含水率的变化规律及在原油集输中的应用[J].油田地面工程.1993,12(2):8-11.
    [54] H.B.布雷德利主编.童宪章,沈平平,胡乃人,等译.石油工程手册[M].石油工业出版社,1996.
    [55] M.A.克林斯主编.程绍进译.二氧化碳驱油机理及工程设计[M].石油工业出版社,1989.
    [56]薛海涛,卢双舫,付晓泰.甲烷、二氧化碳和氮气在油相中溶解气油比的预测模型[J].石油与天然气地质.2005,26(4):444-449.
    [57]韩布兴,闰海科,胡日恒.CO_2、N_2在克拉玛依九区稠油中的溶解气油比及气体饱和稠油的粘度、密度[J].油田化学.1993,10(3):264-267.
    [58]薛海涛,刘灵芝,周丽华,等.天然气在大庆原油中的溶解气油比[J].大庆石油学院学报.2001,25(2):12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700