流体加热道路融雪系统温—湿耦合融雪模型及仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路面积雪结冰是我国大部分地区常见的现象,及时有效地清除路面冰雪对于保障交通安全和提高道路通行能力具有重要的意义。流体加热道路融雪系统以其可控性强、热能来源广、绿色无污染、能源利用率高等优势而备受各国道路工作者推崇。但是,现有的流体加热道路融雪模型忽略了融化雪水在道路结构中传递对道路材料热物理参数的影响致使融雪模型预测精度不高;另一方面,流体加热道路融雪系统由于缺少实测数据的支持,在一定程度上制约了融雪模型的发展。
     针对上述问题,本文开发了真实环境流体加热道路融雪试验系统;考虑了融化雪水在道路结构中的传递对道路材料热物理参数的影响,开展了流体加热道路融雪系统温—湿耦合融雪模型的研究;在此基础上,借助仿真分析的方法探讨流体加热道路融雪系统的融雪特性与融雪效果,制定了融雪系统运行过程控制方法,提出了针对我国不同地区不同融雪目标的流体加热道路融雪系统设计热负荷。主要研究内容及成果概括如下:
     首先,采用太阳能和土壤源热能作为融雪系统能量来源,建立了真实环境下的流体加热道路融雪试验系统。依托试验系统开展试验研究,分析了融雪过程热泵系统工作特性及路面温变特性,验证了试验系统的稳定性与可靠性,并探讨了液体流速、管间距、管埋深、环境因素对路面温变特性的影响,揭示了流体加热道路融雪系统良好的环境适应性。
     其次,综合考虑融化雪水在道路结构中的传递对道路材料热物理性质的影响,利用含水量作耦合项,建立了流体加热道路融雪系统温—湿耦合融雪模型。运用计算语言编制模型子程序,将其嵌入HVACSIM+仿真环境,完成了流体加热道路融雪系统仿真的实现。在此基础上,采用不同融雪方式流体加热道路融雪试验数据,验证了流体加热道路融雪系统温—湿耦合融雪模型的准确性与合理性,对比分析了温—湿耦合融雪模型与温度场单场融雪模型对融雪过程预测精度的差别,揭示了融化雪水在道路结构中的传递对融雪过程的影响。
     随后,基于建立的温—湿耦合融雪模型,以发生于路表的各种热流密度为研究对象,分析了其随时间的变化规律,研究了流体加热道路融雪系统融雪特性,明确了融雪过程的三个阶段即待融阶段、融雪阶段及融后蒸发阶段。采用“待融时间”、“融雪过程平均固—液相变热流密度”、“融后5小时平均液—汽相变热流密度”分别表征上述三阶段的融雪特性,分析了融雪条件(环境因素、系统运行参数)对流体加热道路融雪系统融雪特性的影响。基于显著影响融雪特性的因素,建立了针对融雪过程不同阶段的流体加热道路融雪系统运行过程控制图,并据此提出了流体加热道路融雪系统的运行过程控制方法(即运行策略),为流体加热道路融雪系统的运行过程控制提供参考。
     最后,基于本文建立的温—湿耦合融雪模型,采用“针对某一融雪目标的无雪时间比”表征流体加热道路融雪系统的宏观融雪效果,分析了地点、系统运行参数、系统设计参数、环境参数等因素对流体加热道路融雪系统融雪效果的影响,并探讨了融雪目标及模型计算深度对流体加热道路融雪系统融雪效果评价的影响。在此基础上,依据我国降雪分布特点及近30年气象数据,选择代表性城市作为研究对象,基于融雪效果提出了针对我国不同地区不同融雪目标的流体加热道路融雪系统设计热负荷,为今后我国流体加热道路融雪系统的设计提供依据。
     本文在流体加热道路融雪试验系统开发、温—湿耦合融雪模型研究、流体加热道路融雪系统的运行策略及设计热负荷等方面开展了一系列工作,将促进流体加热道路融雪系统研究的发展及此项技术在我国的推广应用。
In winter, traffic accidents occur frequently during snowfall, sleet andfreezing rain. Therefore, preventing ice formation and snow accumulation onroad surface is of high priority to improve the safety of driving. In recent years,due to certain inherent advantages, such as, high energy efficiency, strong systemcontrollability, convenient installation and wide energy source, hydronic heatingis the most promising candidate to be practically applied for the applications ofpavement snow melting. But the neglection of melted water on the thermalparperties of pavement material is the main reason for low prediction precisionof snow melting model. On the other hand, the lack of test data also restricts thedevelopment of snow melitng model.
     In this paper, a large-scale hydronic snow melting test system has been built.And a 2-dimensional snow melting model coupling the thermal and hydrologicalprocess is developed. A research implementation of this model has been used insnow melitng characteristic study and snow melting performance study.Operation strategy for hydronic snow melting system is suggested, and requiredheat fluxes for hydronic snow melting system in China is proposed. The mainresearch contents and achievements are summarized in the following:
     Firstly, a large-scale hydronic snow melting test system has been developed.In this test system, both solar energy and ground thermal energy are adopted asenergy source. Heat pump with inverter, pavement structure with differentembeded pipe depth and pipe spacing make up the multiple operating conditions.The system reliability and stability is validated by the data collected fromsolar-ground source coupled snow-melting test systems for pavement. Besides,the factors which have an impact on temperature distribution characteristic arealso investigated. It indicates that this system could be used in a widetemperature range.
     Secondly, a two dimensional snow melting model coupling the heat andmass transfer process is developed, which accounts for the effect of melted waterpenetration into pavement. A Fortran code is written and numerical implementedin HVACSIM+ simulation environment. The collection of operating data, and corresponding weather data, from the snow melting test system (Achievement 1)is used in the model validation. The prediction difference between the heat andmass coupled snow melting model and heat only snow melting model iscompared. The role of melted moisture transport to pavment is discussed.
     Thirdly, based on the heat and mass coupled snow melting model, snowmelting characteristic for hydronic heated system for pavement is analyzed. It isindicated that idling period, snow melting period and after-snow period are thethree periods during the snow melting process. The snow melting characteristicduring snow melting process are represented by waiting time, averagesolid-liquid phase change heat flux during snow melting process, and averageliquid-steam phase change heat flux within the first 5 hours in after-snow process,respectively. The factors which have an impact on snow-melting characteristicare also investigated. Based on the results above, operation strategy for hydronicsnow melting system is suggested. The proposed method will give a lot ofsuggestion in the operation of hydronic heated system for pavement
     At last, based on the heat and mass coupled snow melting model, thepercentage of snow-free hours during snowfall is adopted to represent the snowmelting performance of hydronic snow melting system. The effect of idling time,heat fluxes, pipe spacing, embeded pipe depth, pipe material, thermal property ofmaterial, meteorological condition and control strategy on the snow meltingperformance have been discussed. The effect of the snow melting aim andcalculation depth of the model on the snow melting performance evaluation isalso studied. According to the research on snow hazard regionalization in China,different locations have been chosen to represent a range of climates andsnowfall characteristics. According to the weather data corresponding to snowevent from 1981 to 2010 in representative cities, the limit snowfall conditions ata 95% confidence level is proposed. Based on the limit snowfall conditions at a95% confidence level , required heat fluxes for hydronic snow melting system inChina is suggested. The proposed heat fluxes will give a lot of suggestion in thedesignation of hydronic heated system for pavement in China.
     A series of creative researches, such as the development of hydronic snowmelting test system, the development of a heat and mass coupled snow meltingmodel for hydronic heated pavement, the operation strategy and required heat for hydronic snow melting system, were carried out in this paper. Theseresearches will promote the development and application of hydronic heatedpavement in China.
引文
[1]谷宪明.季冻区道路冻胀翻浆机理及防治研究[D].长春:吉林大学地质工程学科博士学位论文,2007.
    [2]赵波,李晋.高原冰雪条件下汽车主要性能的变化探析[J].兵工学报,1999,4:46-49.
    [3]彭旭东,雷毅,郭孔辉,等.冰雪路面上轮胎摩擦特性的控制方法研究[J].中国机械工程,2001,12:1323-1235.
    [4]彭旭东,孟祥凯,卢荡,等.冰雪路面汽车轮胎摩擦特性研究进展[J].摩擦学学报,2003,5:451-455.
    [5]周纯秀.冰雪地区橡胶颗粒沥青混合料应用技术的研究[D].哈尔滨:哈尔滨工业大学道路与铁道工程学科博士学位论文,2006.
    [6]靳长征,白晨.浅谈道路结冰的清除[J].河南交通科技,1996,5:45-46.
    [7]综合报道.09年平均每天186人死于交通事故[EB/OL]. (2010-01-11)[2011-03-12].http://www.cheabc.com/html/shenghuo/cheyouhui/20100111/33495.html.
    [8]景鹏,孟祥海.冰雪融冻期城市道路行车速度和流量及其关系模型研究[J].森林工程,2006,9:24-27.
    [9]蒋贤才,裴玉龙,刘勇.寒冷地区城市道路信号控制参数取值研究[J].公路交通科技,2008,3:115-118.
    [10] Rise G L. Impact of weather on freeway capacity [M]. MinnesotaDepartment of Transportation,Minneapolis,Minnesota,1981.
    [11]常烨. 6万余人滞留京珠高速湖南段,南方多省份交通受阻[EB/OL].(2008-01-26)[2010-01-30].http://news.xinhuanet.com/newscenter/2008-01/26/content_7500589.htm.
    [12]肖春平.辽宁遭暴雪袭击全省高速路封闭[EB/OL]. (2009-2-20)[2010-1-30]. http://news.sina.com.cn/c/2009-02-20/055717251751.shtml.
    [13]张晓涛.欧洲多国遭大风雪突袭多地交通陷入瘫痪[EB/OL].(2009-12-19)[2010-01-30].http://www.chinanews.com/gj/gj-oz/news/2009/12-19/2027196.shtml.
    [14]李光明,丁文霞,杨健琳.融雪剂的作用机理及危害分析研究[J].交通科技,2011,1:78-80.
    [15]王稷良,田波,刘英.氯盐类融雪剂对水泥混凝土盐冻破坏机理与影响因
    [16]张志敏,杜素军,赵世涛.融雪剂对交通设施和环境的影响及对策研究[J].山西建筑,2010,23:345-347.
    [17]严霞,李法云,刘桐武,等.化学融雪剂对生态环境的影响[J].生态学杂志,2008,12:2209-2214.
    [18]彭海平.融雪剂对天安门广场行道树油松的危害分析[J].河北林业科技,2010,12:5-10.
    [19]李磊,乔保雨,许振平.城市行道树生长衰弱原因探析及对策[J].吉林农业科技学院学报,2010,2:37-39.
    [20]丁清波,戴浩.融雪剂对水体环境的影响[J].仪器仪表与分析监测,2010,2:38-40.
    [21] Pravda M F,Bienert E B,Wolf J E, et al. Augmentation of Earth HeatingDevices for Purposes of Roadway De-icing [R]. Washington D C:FederalHighway Administration,1978:194.
    [22] Long D C. Snow and Ice Removal from Pavement Using Stored EarthEnergy[R]. Washington DC: Federal Highway Administration,1980:78.
    [23] Blackburn R R,McGrane E J,Chappelow C C,et al. Development ofAnti-icing Technology[R].Washington, D.C:National Research Council,1994.
    [24] Luchette A S, Francini F. Forecast:A Neural System for Diagnosis andControl of Highway Surfaces[J]. IEEE Intelligent Systems,1998,3:20-26.
    [25] Nysten E. Determination and Forcasting of Road Surface Temperature in theCOST-30 Automatic Road Station[R]. Helsinki:Finnish MeteorologicalInstitute,1980.
    [26] Minsk L D. Heated bridge technology [R]. Washington DC:U.S.Department of Transportation, 1997.
    [27]高青,于鸣,刘小兵.基于蓄能的道路热融雪化冰技术及其分析[J].公路,2007,5:170-174.
    [28]胡文举.基于土壤源热泵桥面融雪系统的基础研究[D].哈尔滨:哈尔滨工业大学供热、供燃气、通风及空调工程学科硕士学位论文,2006.
    [29]齐晓杰,郝晨声,毕凤阳,等.城市道路机械式清除冰雪机械研究与探讨[J].黑龙江工程学院学报,2002,6:23-26.
    [30]代琳琳.融雪剂的环境污染与控制对策[EB/OL].(2007-11-01)[2011-2-28].
    [31]冯雨芹,于继承,齐晓杰.高速公路清冰雪技术研究[J].建筑机械,2006,07:71-75.
    [32] Xiaobing Liu. Development and experimental validation of simulation ofhydronic snow melting systems for bridges [D]. Stillwater: The Doctoraldissertation of Oklahoma State University, 2005.
    [33] Sean Lynn Hockersmith. Experimental and computational investigation ofsnow melting on heated horizontal surfaces [D].Stillwater: The Masterdissertation of Oklahoma State University, 2002
    [34]刘凯.融雪化冰水泥混凝土路面研究[D].西安:长安大学道路材料科学与工程学科博士学位论文,2010.
    [35]王庆艳.太阳能-土壤蓄热融雪系统路基得热和融雪机理研究[D].大连:大连理工大学制冷与低温工程学科硕士学位论文,2007.
    [36] Tanaka O.Snow Melting Using Heat Pipes[C]. Proceedings of 4thInternational Heat Pipe Conference. London,1981:11-23.
    [37] Xia Xiao. Modeling of hydronic and electric-cable snow-melting systemsfor pavements and bridge decks [D]. Stillwater: The Master dissertation ofOklahoma State University, 2000.
    [38]武海琴.发热电缆用于路面融雪化冰的技术研究[D].北京:北京工业大学供热、供燃气、通风及空调工程学科硕士学位论文,2005.
    [39]高辉.北京足球场草坪冬季电热融雪保绿实验研究[D].北京:北京工业大学供热、供燃气、通风及空调工程学科硕士学位论文,2005.
    [40] Chapman W P. Design of snow melting systems [J]. Heating and Ventilating,1952 (11): 88~95.
    [41] Chapman W P. Design of snow melting systems [J]. Heating and Ventilating,1952 (4): 96~102.
    [42] Schnurr N M., Rogers D.B. Heat transfer design data for optimization ofsnow melting systems[J]. ASHRAE Journal, 1970 (6): 42.
    [43] Kilkis I B. Design of embedded snow-melting systems Part 2: Heat transferin the slab-A simplified model[J]. ASHRAE Transactions: Research, 1994(1): 434-441.
    [44] Williams G P. Design heat requirements for embedded snow-meltingsystems in cold climates[C]. Proceeding of 55th Transportation ResearchBoard, Washington, DC: Transporation Research Board, 1976:410-416.
    [45] Williamson P J. The estimation of heat outputs for road heatinginstallations[R]. Crowthorne, England: Road Research Laboratory,1967.
    [46] Leal M,Miller P L. An analysis of the transient temperature distribution inpavement heating installations [J]. ASHRAE Transactions 1978 (2):61-66.
    [47] Schnurr N M,Falk M W. Transient analysis of snow melting systems [J].ASHRAE Transactions, 1973 (2): 159-166.
    [48] Chiasson A D,Spitler J D,Rees S J,et al. A model for simulating theperformance of a pavement heating system as a supplemental heat rejecterwith closed-loop ground-source heat pump systems [J]. ASME Journal ofSolar Energy Engineering, 2000 (122): 183-191.
    [49] Rees S J,Spitler J D,Xiao X. Transient analysis of snow-melting systemperformance[J]. ASHRAE Transactions, 2002 (2): 406-423.
    [50] Liu X,Rees S J,Spitler J D. Modeling snow melting on heated pavementsurfaces PartⅠ: Model development [J]. Applied thermal engineering,2007 (27): 1115~1124.
    [51] Liu X, Rees S J, Spitler J D. Modeling snow melting on heated pavementsurfaces PartⅡ: Experimental validation [J]. Applied thermal engineering,2007 (27): 1125~1131.
    [52] Chapman W P. Calculationg the heat requirements of a snow melting system[J]. Air Conditioning, Heating and Ventilating, 1956 (9):67-71.
    [53] Chapman W P, Katunich S. Heat requirements of snow melting [J]. Heating,Piping and Air Conditioning, 1956 (2):149-153.
    [54] Kilkis I B.Design of embedded snow-melting systems Part 1: Heatrequirements-An overall assessment and recommendations [J]. ASHRAETransactions: Research, 1994 (1): 423-433.
    [55] ASHRAE. Handbook of HVAC Applications 2003 [S]. American Society ofHeating, Refrigerating and Air-Conditioning Engineers, Inc, 2003.
    [56] Yavuzturk C. Modeling of Vertical Ground Loop Heat Exchangers forGround Source Heat Pump System [D]. Stillwater: The Master dissertationof Oklahoma State University, 1999.
    [57] Ball D A, Fisher R D, Hodgett D L. Design Methods for Ground SourceHeat Pump [J]. ASHRAE Transactions,1983,89:157-169.58] Lund J W. Direct utilization of geothermal energy [J]. Energies, 2010
    [58] Lund J W. Direct utilization of geothermal energy [J]. Energies, 2010(3):1443-1471.
    [59] Spitler J D. Medium-Scale Smart Bridge Thumbnails [EB/OL] (1999-12-07)[2010-08-31].http://www.smartbridge.okstate.edu/new_information/medium_scale_bridge_1.html.
    [60]中华人民共和国行业标准.公路沥青路面设计规范(JTG D50-2006)[S].北京:人民交通出版社,2006.
    [61]李雪连,陈宇亮,张起森.高温条件下上坡路段沥青路面结构性能研究[J].公路交通科技,2010,8:1-6.
    [62]沈金安.沥青及沥青混合料路用性能.北京:人民交通出版社,2001.
    [63]怀艺暖通[EB/OL].http://www.sh-huaiyi.com/ArticleShow.asp?ArticleID=828.
    [64]中华人民共和国行业标准.公路沥青路面施工技术规范(JTG F40-2004)[S].北京:人民交通出版社,2004.
    [65]中华人民共和国行业标准.公路工程沥青及沥青混合料试验规程(JTJ052-2000)[S].北京:人民交通出版社,2000.
    [66] Chang X. Prediction of Moisture Migration in Flexible Pavement Systems:An Evaluation of the Enhanced Integrated Climatic Model[D]. Fayetteville:The doctoral dissertation of University of Arkansas, 2008.
    [67]中华人民共和国行业标准.公路工程无机结合料稳定材料试验规程(JTJE51-2009)[S].北京:人民交通出版社,2009.
    [68] Diego Patricio Espin Tobar. Experimental and computational investigationof snow melting on a hydronically heated concrete slab [D].Stillwater: TheMaster dissertation of Oklahoma State University, 2003.
    [69]黄勇.路面融雪化冰及太阳辐射吸热研究[D].长春:吉林大学动力机械与工程学科博士学位论文,2010.
    [70]宋存牛.沙漠地区路基路面温度场暨路面工作环境温度指标研究[D].西安:长安大学道路与铁道工程学科博士学位论文, 2006.
    [71] Taylor G S, Luthin J N. A Model for Coupled Heat and Moisture TransferDuring Soil Freezing[J]. Canadian Geotechnical Journal,1978,15:548-555.
    [72] Nakano Y, Tice A R. Soil-water diffusivity of unsaturated soils at sub-zerotemperatures[C]. Proceedings of 4th International Conference on Permafrost,Fairbanks: International Permafrost Association,1982:889-893.
    [73] Incropera F P, DeWitt D P, Bergman T L, et al. Fundamentals of Heat andMass Transfer[M]. New York: John Wiley & Sons, Inc.,2006.
    [74] Copper P I, Christie E A, Dunkle R V. A Model of Measuring SkyTemperature [J]. Solar Energy,1981,1:153-159.
    [75] Ramsey J,Chiang H. A Study of The Incoming Longwave AtmosphericRadiation From A Clear Sky[J]. Journal of Applied Meteorology,1989,21:566-578.
    [76] Swinbank W C. Longwave radiation from clear skies[J]. Quarterly Journalof Royal Meterological,1963,89:339-348.
    [77]赵振南.传热学[M].北京:高等教育出版社,2002.
    [78] Niu G Y, Yang Z L. Effect of frozen soil on snowmelt runoff and soil waterstorage at a continental scale[J]. Journal of Hydrometeorology, 2006:937-952.
    [79] De Vires D A. Thermal properties of soils. Physics of the Plant Environment[M]. North-Holland:W.R. van Wijk,1963:210~235.
    [80] Lu S, Ren T, Gong Y. An improved model for predicting soil thermalconductivity from water content at room temperature [J]. Soil ScienceSociety of America Journal, 2007,1:8-14.
    [81] Richards L A. Capillary Conduction of Liquids in Porous Mediums[J].Physics,1931,1.
    [82] Dempsey B J,Elzeftawy A. Mathematical model for predicting moisturemovement in pavement systems[J]. Transportation Research Record, 1976,612: 48-55.
    [83] Childs E C, Collis-George N. The Permeability of Porous Materials [C].Proceedings of Royal Society, London: Royal Society, 1950:392-405.
    [84] Kirkham D, Powers W L. Advanced Soil Physics[M]. New York:Wiley-Interscience,1972.
    [85] Rogers J S, Klute A. The Hydraulic Conductivity-Water ContentRelationship During Nonsteady Flow Through a Sand Column1[J]. SoilScience Society of American Journal, 1971,5:695-700.
    [86] Philip J R, Vries D. Moisture movement in porous materials undertemperature gradients[J]. Transactions of the American geophysical union,1957, 38: 222~232.
    [87] Taylor S A, Cary J W. Linear Equations for the Simultaneous Flow of Matterand Energy in a Continuous Soil System[J].Soil Science Society ofAmerica,1964,28:167-172.
    [88] Cassel D K. Soil-Water Behavior in Related to Imposed TemperatureGradients[D]. Dacvis: The Doctoral dissertation of University of California,Davis, 1968.
    [89] Cary J W. Soil Moisture Transport Due to Thermal Gradients: PracticalAspects [J]. Soil Science Society of America, 1966,30:428-433.
    [90] Hoekstra P. Moisture Movement in Soils Under Temperature Gradients WithCold-Side Temperature Below Freezing[J]. Water Resources Research,1966,2:241-250.
    [91] Jumikis A R. Experimental Studies on Moisture Transfer in a Silty SoilUpon Freezing as a Function of Porosity[M]. New Brunswick: RutgersUniversity,1969.
    [92] Brooks R H, Corey A T. Hydrological Properties of Porous Media[M]. FortCollins: Colorado State University,1964:27.
    [93] Mualem Y. A New Model for Predicting the Hydraulic Conductivities ofUnsaturated Porous Medium[J]. Water Resour Research, 1976,12:513-522.
    [94] Jansson C, Almkvist E, Jansson P-E. Heat balance of an asphalt surface:observations and physically-based simulations[J].Meteorologicalapplication, 2006,2:203-212.
    [95] Raudkivi A J,Van U’u N. Soil moisture movement by temperature gradient[J]. Journal of the grotechnical engineering division,1976,12:1225~1244.
    [96] Zhang X, Sun S, Xue Y. Development and Testing of a Frozen SoilParameterization for Cold Region Studies [J]. Journal of Hydrometeorology,2007,8:690-701.
    [97]陶澎.应用数理统计方法[M].北京:中国环境科学出版社,1994.
    [98]逯彦秋.钢桥桥面铺装层温度场的研究[D].哈尔滨:哈尔滨工业大学道路与铁道工程学科博士学位论文, 2007.
    [99] Tegeler P A, and Dempsey B J. A method of predicting compaction time forhot-mix bituminous concrete [J]. Asphalt Paving Technology,1973,42:499~523.
    [100]韩子东.道路结构温度场研究[D].西安:长安大学道路与铁道工程学科硕士学位论文, 2004.
    [101]Dempsey B J,Elzeftawy A. Moisture movement and moisture equilibria inpavement systems [R]. Washington DC:Federal Highway Adiministration,1976:102~122.
    [102]Farouki O T. The thermal properties of soils in cold regions[J].ColdRegions Science and Technoligy, 1981,5:67-75.
    [103]Huajun Wang, Jun Zhao, and Zhihao Chen. Experimental investigation ofice and snow melting process on pavement utilizing geothermal tail water[J]. Energy Conversion & Management,2008,1538~1546.
    [104]Huajun Wang, Jun Zhao, and Zhihao Chen. Experimental investigation ofhydronic snow melting process on the inclined pavement [J]. Cold RegionsScience and Technolog,2010,63:44-49.
    [105]Nagai N, Miyamoto S, Nishiwaki M, and Takeuchi M. Numericalsimulation of snow melting on pavement surface with heat dissipation pipeembedded [J]. Transactions of the Japan Society of Mechanical EngineersB,2008,74:640~647.
    [106]曲香朴.气象学与天气学[M].北京:水利水电出版社,1991.
    [107]U.S. Department of Energy. National Solar Radiation Data Base. (2008-08-20)[2010-09-23](EB/OL).http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/.
    [108]Cook B J, Bonan G B. The thermoinsulation effect of snow cover within aclimate model[J]. Cliamte Dynamic,2008,31:107-124.
    [109]Trnka M, Kocmankova E, Balek J, et al. Simple snow cover model foragrometeorological applications[J]. Agricultural and Forest Meteorology,2010,150:1115-1127.
    [110]Strack J E, Pielke SR R A. Sensitivity of model-generated daytime surfaceheat fluxes over snow to land-cover changes[J]. Journal ofHydrometeorology, 2003, 4:24-42.
    [111]Rangwala I, Miller J R, Russell G L, et al. Using a global climate model toevaluate the influences of water vapor, snow cover and atmospheric aerosolon warming in the Tibetan Plateau during the twenty-fist century[J].Climate Dynamic,2010, 34:859-872.
    [112]王华军.流体加热道路融雪传热传质特性研究[D].天津:天津大学动力工程及工程热物理学科博士学位论文,2007.
    [113]Hu R, Ma H, Wei W. Snow Hazard Regionalization in China[J]. ChineseGeographical Science, 1992.3:197-204.
    [114]U.S. Department of Commerce. NOAA Satellite and Information Service.(2010-08-30)[2010-09-23](EB/OL).http://www.ncdc.noaa.gov/oa/mpp/freedata.html#FREE.
    [115]杨书平.太阳能供热采暖技术新突破[J].可再生能源,2010,14:82-83.
    [116]Williams G P. Heating Requirements of Snow Melting Systems inCanada[C]. Proceedings of National Conference on Snow and Ice Control.Ottawa: Road and Transportation Association of Canada, 1973:179-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700