钽铌酸钾锂单晶电光性能和压电谐振增强特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钽铌酸钾晶体KTa_(1-x)Nb_xO_3(KTN)作为一种优异的非线性电光材料以及电控全息材料被广泛地研究和应用。目前KTN系材料的研究重点主要集中于富钽的组分,这些单晶组分的居里温度较低或在室温附近,通常具有很高的二次电光系数,但作为器件在工作的时候所产生的热量极容易造成其性能的不稳定,因此对工作环境要求极高。而富铌(x≥0.5)的KTN晶体可以通过调节钽铌比得到较高的居里温度,在室温下展现出良好的线性电光性能,与此同时,此类材料还表现出了十分优异的压电性能,是极具研究和应用价值的多功能材料。但由于室温铁电材料生长困难,其性能很少被报道。
     本工作采用改进的提拉法成功获得了尺寸约为1×1×2cm3高质量、少量掺杂锂元素的富铌K_(0.95)Li_(0.05)Ta_(1-x)Nb_xO_3(x=0.52、0.60、0.69和0.78,KLTN)四种组分的单晶材料。继而对室温铁电的KLTN系单晶基本的光学性能、结构相变、热膨胀特性以及线性电光性能进行研究。同时,作为新型压电-电光多功能材料,KLTN系单晶压电谐振对其高频电光性能的增强效应也被测定以及讨论。
     室温铁电的KLTN单晶经过切割、抛光以及极化处理后,在可见光区域,可以实现极好的光学透过率。KLTN单晶的紫外吸收边和禁带宽度通过测试其透射谱而得知。利用最小偏向角法,精确地测量四个组分KLTN单晶的折射率。通过最小二乘法拟合,得到KLTN系单晶折射率色散的塞尔迈耶尔方程,研究对比不同组分KLTN单晶塞尔迈耶尔光学系数。对KLTN四个组分的晶体样品介电常数的温度和频率特性进行研究,确定不同组分的居里温度,分析组分对居里温度的影响以及介电性能的频率依赖关系。
     采用线性电压差动法,对KLTN系单晶的热膨胀形变以及系数进行研究。通过热膨胀测试的结果,分析材料结构相变机制与温度、组分以及晶体取向之间的关系。对比介电与热膨胀数据的差异,分析组分波动引起的峰值位置偏差。对比热释电与热膨胀数据的积分结果,讨论KLTN系晶体的自发极化与动态局域极化机制之间的关系。
     对富铌的室温铁电KLTN系单晶的线性电光性能进行细致地表征和分析,测得四个组分单晶的电光系数矩阵中所有的非零张量元γ_(33)、γ_(13)、γ_(51)以及有效电光系数γ_c,发现富铌KLTN系单晶具有很大的切向线性电光系数γ_(51),并分析单晶电光性能的频率依赖特性。根据坐标系旋转的理论,结合实验所得的电光系数矩阵,模拟四方相KLTN晶体有效电光系数的三维空间分布,得到沿任意方向电光系数的大小。根据仿真的结果,由于电光矩阵中γ_(51)值很大,其对有效电光系数的贡献较大,致使电光系数在三维空间分布中的最大方向发生偏转,而不再沿原来的[001]方向。在高频调制电场下,讨论富铌KLTN系单晶的压电谐振对其电光性能的增强作用。研究结果表明谐振峰附近的电光响应会急剧的增加,峰值处的线性电光响应大小可以与低频电光响应相当,这为KLTN晶体的应用提供了更广阔的空间。
     本工作对富铌KLTN系晶体线性电光性能及其他相关性能进行大量的研究,结果预示着KLTN系材料有着巨大的潜力成为光电-压电-机电性能耦合的高质量多功能材料。
As a good nonlinear electrooptic and electrical controlled holographic material,potassium tantinate niobate KTa_(1-x)Nb_xO_3(KTN) was investigated and appliedbroadly. Current research work about KTN family is focusing on Ta-richcomposition, which has low Curie temperature near room temperature. Ta-rich KTNcrystal has large Kerr coefficient however the heat created by materials will induceinstability when the material was used in device. But for Nb-rich KTN system,through modifying the Ta-Nb ratio, we can obtain high Curie temperature and goodlinear electrooptic property at room temperature. At the meantime, KTN seriesmaterials also show excellent piezoelectric properties, thus KTN series crystal isone kind of multifunctional material deserve to be studied. But owing to thedifficulty of ferroelectrics single crystal growth, the report about Nb-rich KTNseries single crystal is scare.
     With a slight Li doped, high quality K_(0.95)Li_(0.05)Ta_(1-x)Nb_xO_3(x=0.52,0.60,0.69and0.78, KLTN) single crystals were grown using Top Seeded Melt Growth method.The optical, dielectric phase transition, thermal expansion and linear electroopticproperties of KLTN single crystals were investigated. As piezoelectric-electroopticmultifunctional material, the piezo-resonance enhanced the electrooptic effect ofNb-riched KLTN single crystal was reported at the first time.
     For room temperature ferroelectric KLTN single crystal, good opticaltransmittance can be obtained after cutting, polishing and poling processing. Theultraviolet absorbing edge and band gap of KLTN single crystals were determinedby transmittance spectrum. The refractive indices of four compositions of KLTNsingle crystals were measured accurately by using the minimum deviation method.The Sellmeier’s dispersion equations of refractive indices and the Sellmeier opticalcoefficients for KLTN single crystals were obtained in terms of least squares fit.The temperature and frequency dependent dielectric properties of KLTN singlecrystals were investigated. The compositions and frequency dependent Curietemperature of Nb-riched KLTN singe crystal were determined.
     The thermal expansion strain and coefficient of KLTN single crystal werestudied by using LVDT method. Accoding to the thermal expansion results, analysethe relationship between structure phase transition and temperature, compositions,orientation. Comparing the results of dielectric and thermal expansion, discuss thedata peak disagreement by using the composition inhomogeneity. Comparing theresults of paryelectric and thermal expansion, the sponteous and dynamic local polarization mechanism of KLTN single crystals were studied.
     The low frequency dependent linear electro-optic (EO) properties of KLTNseries single crystals were studied at room temperature. The EO coefficients γ_33, γ_13,γ_(51)and effective EO coefficients of KLTN single crystals at the wavelength of0.633nm were measured. The large value of γ_(51)for KLTN series single crystals wasreported at the first time. The orientation dependent corresponding electroopticcoefficient of KLTN single crystal was calculated and simulated based on axesrotation theory and experimental results. It is found that owing to the contribution ofγ_(51), the maximum orientation of EO coefficient in3-dimension space is deviatingfrom the [001] direction. The piezo-resonance enhances the EO properties for KLTNseries single crystals under high frequency modulation field were studied at the firsttime. The results indicated that the EO response sharply increase near resonancepeak where the EO coefficient is comparable with that at low frequency. Accordingto these results, KLTN series multifunctional material may obtain more broadlyapplication space.
     The linear EO properties and other related properties of KLTN series singlecrystals were investigated in this work. It is found that KLTN series single crystalhas large potential to optical-piezoelectric-mechanism coupling high qualitymultifunctional materials.
引文
[1] Nye J F. Physical Properties of Crystal: Their Representation by Tensors andMatrices[M]. Boston: Oxford University Press.1985.
    [2] He C J, Zhou D, Wang F F, et al. Elastic, Piezoelectric, and DielectricProperties of Tetragonal Pb(Mg1/3Nb2/3)O3-PbTiO3Single Crystals[J]. J. Appl.Phys.,2006,108(8):043520.
    [3] Guo Y P, Luo H S, Chen K P, et al. Effect of Composition and Poling Field onthe Properties and Ferroelectric Phase-Stability of Pb(Mg1/3Nb2/3)O3-PbTiO3Crystals[J]. J. Appl. Phys.,2002,92(10):6134-6138.
    [4] Zhang S J, Xia R and Shrout T R. Lead-Free Piezoelectric Ceramics vs.PZT[J]. J. Electroceram.,2007,19:251.
    [5] Jarupoom P, Pengpat K, Pisitpipathsin N, et al. Development of ElectricalProperties in Lead-Free Bismuth Sodium Lanthanum Titanate–BariumTitanate Ceramic Near the Morphotropic Phase Boundary[J]. Curr. Appl. Phys.,2008,8:253-257.
    [6] Johnston A R. The Strainfree Electrooptic Effect in Single Crystal BariumTitanate[J]. Appl. Phys. lett.,1965,7(7):195-198.
    [7] Guo R Y, Wang J F, Povoa J M and Bhalla A S. Electrooptic Properties andtheir Temperature Dependence in Single Crystals of Lead Barium Niobate andStrontium Barium Niobate[J]. Mater. Lett.,2000,42:130-135.
    [8] Reisman A, Triebwasser S, Holtzberg F. Phase Diagram of the SystemKNbO3-KTaO3by the Methods of Differential Thermal and ResistanceAnalysis[J]. Phys. Rev.,1955,77:4228-4230.
    [9] Sciborrylski M T. A Total Internal Reflection Device Using KTN[J]. Opt.Quant. Electron.,1976,8:197-201.
    [10] Leyva V, Agranat A and Yariv A. Dependence of the Photorefractive Propertiesof KTa1-xNbxO3:Cu,V on Cu Valence State Concentration[J]. J. Appl. Phys.,1990,67(11):7162-7165.
    [11] Hulm J K, Matthias B T, and Long E A. A Ferromagnetic Curie Point in KTaO3at Very Low Temperatures[J]. Phys. Rev.,1950,79:885-886.
    [12] Siegwarth J D, Holste J C, and Morrow A J. Polarization and DielectricConstant of Potassium Tantalate[J]. J. App. Phys.,1976,47(11):4791-4793.
    [13] Wong J Y, Zhang L, Kakarantzas G, et al. Ion-Implanted Optical Waveguides inKTaO3[J]. J. Appl. Phys.,1992,71(1):49-52.
    [14] Laguta V V, Glinchuk M D, and Bykov I P. Light-Induced Defects in KTaO3[J].J. Appl. Phys.,2003,93(10):6056-6064.
    [15] Matthias B T, Remeika J P. Dielectric Properties of Sodium and PotassiumNiobates[J]. Phys. Rev.,1949,76:1886.
    [16] Gunter P. Electro-Optical Properties of KNbO3[J]. Opt. Commun.,1974,11(3):285-290.
    [17] Sastry P U. Linear Electro-Optical Properties of Orthorhombic KNbO3[J]. Sol.Sta. Commun.,2002,122:41-44.
    [18] Gunter P. Spontaneous Polarization and Pyroelectric Effect in KNbO3[J]. J.Appl. Phys.,1977,48(8):3475-3477.
    [19] Triebwasser S. Study of Ferroelectric Transitions of Solid-Solution SingleCrystal of KNbO3-KTaO3[J]. Phy. Rev.,1959,114(1):63-70.
    [20] Rytz D, Scheel H J. Crystal Growth fo KTa1-xNxO3(0    [21] Samara G A. Glasslike Behavior and Novel Pressure Effects in KTa1-xNbxO3[J].Phy. Rev. Lett.,1984,53(3):298-301.
    [22] Rytz D, Chatelain A. Elastic Properties in Quantum Ferroelectric KTa1-xNbxO3[J]. Phys. Rev. B.,1983,27(11):6830-6840.
    [23] H chli U T, Boatner L A. Quantum Ferroelectricity in K1-xNaxTaO3andKTa1-yNbyO3[J]. Phys. Rev. B.,1979,20(1):266-275.
    [24] Prater R L, Chase L L, and Boatner L A. Raman Scattering Studies of theImpurity-Induced Ferroelectric Phase Transition in KTaO3:Nb[J]. Phys. Rev. B.,1981,23(1):221-231.
    [25] Prater R L, Chase L L, and Boatner L A. Raman Scattering Studies of theImpurity-Induced Ferroelectric Phase Transition in KTaO3:Li[J]. Phys. Rev. B.,1981,23(11):5904-5915.
    [26] Prater R L, Chase L L, and Boatner L A. Raman Scattering Studies of theEffects of a Symmetry-Breaking Impurity on the Ferroelectric Phase Transitionin K1-xLixTa1-yNbyO3[J]. Sol. Stat. Commun.,1981,40(6):697-701.
    [27] Kleemann W and Schafer F J. Diffuse Ferroelectric Phase Transition andLong-range Order of Dilute KTa1-xNbxO3[J]. Phy. Rev. Lett.,1985,54(18):2038-2041.
    [28] Chou H, Shapiro S M, Lyons K B, Kjems J, and Rytz D. Soft-Mode Behaviourand Dipolar Glass Transition in KTa1-xNbxO3[J]. Phy. Rev. B.,1990,41(10):7231-7234.
    [29] Toulouse J, Wang X M, Knauss L A, Boatner L A. Dielectric Nonlinearity andSpontaneous Polarization of KTa1-xNbxO3in the Diffuse Transition Range[J].Phys. Rev. B,1991,43(10):8297-8302.
    [30] Trepakov V, Jastrabik L, Kapphan S, Giulotto E, and Agranat A. PhaseTransitions, Related Properties and Possible Applications of (K,Li)(Ta,Nb)O3Crystals[J]. Opt. Mater.,2002,19:13-21.
    [31] Cohen M G and Gorden E I. Eletro-optic KTa1-xNbxO3Gratings for Light BeamModulation and Deflection[J]. App. Phys. Lett.,1964,5(9):181-182.
    [32] Chen F S, Geusic J E, Kurtz S K, Skinner J G, and Wemple S H. The Use ofPerovskite Paraelectric in Beam Deflectors and Light Modulators[J], Proc.IEEE,1964,52:1258-1259.
    [33] Chen F S, Geusic J E, Kurtz S K, Skinner J G, and Wemple S H. LightModulation and Beam Deflection with Potassium Tantalate-Niobate Crystals[J].J. Appl. Phys.,1966,37(1):388-398.
    [34] Krishan I, Srivastava K K and Lal K. Ferroelectric Properties ofKTa0.65Nb0.35O3Single Crystas [J]. J. Phys. C: Solid State Phys.,1975,8:71-79.
    [35] Fox A J. Nonlinear Longitudinal KTN Modulator[J]. Appl. Opt.,1975,14(2):343-352.
    [36] Agranat A, Leyva V, and Yariv A. Voltage-Controlled Photorefractive Effect inparaelectric KTa1-xNbxO3:Cu,V[J]. Opt. Lett.,1989,14(18):1017-1019.
    [37] Fluck D, Gutmann R, Günter P, and Irmscher R. Optical Waveguides inKTa1-xNbxO3Produced by He Ion Implantation[J]. J. Appl. Phys.,1991,70(9):5147-5149.
    [38] Liu H M, Powell R C, and Boatner L A. Effect of Niobium Doping on theProperties of Picosecond Laser-Induced Transient Gratings in KTa1-xNbxO3[J].Phys. Rev. B.,1991,44(6):2461-2469.
    [39] Agranat A, Hofmeister R and Yariv A. Characterization of A NewPhotorefractive Material: Kl-yLiyTa1-xNbxO3[J]. Opt. Lett.,1992,17(10):713-715.
    [40] Hofmeister R, Yariv A, Yagi S, and Agranat A. New PhotorefractiveMechanism in Centrosymmetric Crystal: A Strain-Coordinated Jahn-TellerRelaxation[J]. Phys. Rev. Lett.,1992,69(9):1459-1462.
    [41] Wang X P, Wang J Y, Yu Y, Zhang H, Boughton R. Growth of CubicKTa1-xNbxO3Crystal by Czochralski Method[J]. J. Cryt. Growth,2006,293:398-403.
    [42] Wang X P, Wang J Y, and Zhang H J. Thermal Properties of CubicKTa1xNbxO3Crystals[J]. J. Appl. Phys.,2008,103:033513.
    [43] Mu X, Shao Z, Yue X, Chen J, Guan Q, and Wang J. High ReflectivitySelf-Pumped Phase Conjugation in an Unusually Cut Fe-doped KTa1-xNbxO3Crystal[J]. App. Phys. Lett.,1995,66(9):1047-1049.
    [44] Balberg M, Razvag M, Vidro S, and Agranat A. Electroholographic NeuronsImplemented on Potassium Lithium Tantalate Niobate Crystals[J]. Opt. Lett.,1996,21(19):1544-1546.
    [45] Nakamura K, Miyazu J, Sasaura M, and Fujiura K. Large-Angle, Low-VoltageElectro-Optic Beam Scanner by Kerr Effect and Space-Charge-ControlledElectrical Conduction in KTa1-xNbxO3[C]. Electro-Optic and Nonlinear OpticMaterials, Baltimore, Maryland:2007,6.
    [46] Yagi S, Nakamura K, Imai T, et al. A Mechanical-Free150-kHz RepetitionSwept Light Source Incorporated a KTN Electro-Optic Deflector[J]. Proc.SPIE,2011,7889:78891J.
    [47] Nakamura K, Miyazu J, Sasaki Y, Imai T, Sasaura M, and Fujiura K.Space-Charge-Controlled Electro-Optic Effect: Optical Beam Deflection byElectro-Optic Effect and Space-Charge-Controlled Electrical Conduction[J]. J.Appl. Phys.,2008,104(1):013105.
    [48] Svitelskiy O, Suslov A V, Betts J B, Migliori A, Yong G and Boatner L A.Resonant Ultrasound Spectroscopy of KTa1xNbxO3Ferroelectric RelaxorCrystals[J]. Phys. Rev. B,2008,78(6):064113.
    [49] Molson A J, and Herbert. Electroceramic Materials Properties andApplications[M]. London: Chapman&Hall.1997.
    [50] Johnson S T. Dynamic Linear Electro-Optic Frequency Dependence inPMN-32%PT and PZN-8%PT for PF Microwave Photonics[D]. The DoctorDegree Thesis of the Pennsylvania State University.2005:22-23.
    [51] Park S E and Shrout T R. Ultrahigh Strain and Piezoelectric Behavior inRelaxor Based Ferroelectric Single Crystals[J]. J. Appl. Phys.,1997,82:1804.
    [52] Park S E and Shrout T R. Characteristics of Relaxor-Based Piezoelectric SingleCrystals for Ultrasonic Transducers[C]. IEEE Trans. Ultrasonics, Ferroelectr.Freq. Control,1997,44:1140-1147.
    [53] Jin G H. PLZT Film Waveguide Mach–Zehnder Electrooptic Modulator[J]. J.Lightwave Technol.,2000,18(6):807-812.
    [54] Ducharme S, Feinberg J, and Neurgaonkar R R. Electrooptic and PiezoelectricMeasurementsin Photorefractive Barium Titanate and Strontium BariumNiobate[J]. IEEE J. Quantum Elect.,1987, QE-23:12.
    [55] Kaminov J P, and Jonston W J. Quantitative Determination of Sources of theElectrooptic Effect in LiNbO3and LiTaO3[J]. Phys Rev.,1967,160:519-522.
    [56] Haas W and Johannes R. Linear Electrooptic Effect in KTN Crystals [J]. Appl.Opt.,1967,6(11):2007-2009.
    [57] Raalte J A. Linear Electro-Optic Effect in Ferroelectric KTN[J]. J. Opt. Soc.Am.,1967,57(5):671-674.
    [58] Neumann J, Rowe M, Veenhuis H, et al. Linear Electrooptic Coefficient r42ofTetragonal Potassium-Tantalate-Niobate and Barium-Calcium-Titanate[J]. Phys.Status Solidi B,1999,215:9-10.
    [59] Johnston A R and Weingart J M. Determination of the Low-Frequency LinearElectro-Optic Effect in Tetragonal BaTiO3[J]. J. Opt. Soc. Am.,1965,55:828-834.
    [60] Holman R J, Johnson L M. and Skinner D P. The Desirability of ElectroopticFerroelectric Materials for Guided-Wave Optics[C].6th InternationalSymposium on Applications of Ferroelectrics, Lehigh University, PA, USA,1986:32-41.
    [61] Yamamoto J K, McHenry D A, and Bhalla A S. Strontium Barium NiobateSingle Crystal Fibers: Optical and Electrooptic Properties[J]. J. Appl. Phys.,1991,70:3215.
    [62] Zhou Z X, Li J, Tian H, Wang Z, Li Y, Zhang R. Piezoelectric Properties ofLead-free Crystal K0.95Li0.05Ta0.61Nb0.39O3[J]. J. Phys. D: Appl. Phys.,2009,42:125405.
    [63]李均.无铅单晶KLTN横向长度振动模式压电性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文.2009.
    [64] Holman R J. Growth and Application of Photorefractive Potassium LithiumTantalate Niobate (KLTN)[D]. The Doctoral Degree Thesis of CaliforniaInstitute of Technology.1993.
    [65] Feng Z, Luo H S, Guo Y, et al. Dependence of High Electric-Field-InducedStrain on the Composition and Orientation of Pb(Mg1/3Nb2/3)O3-PbTiO3Crystals[J]. Solid. State. Commun.,2003,126:347-351.
    [66] Tu C S, Chien R, Wang F T, et al. Phase Stability after an Electric-Field Polingin Pb(Mg1/3Nb2/3)1-xTixO3Crystals[J]. Phys. Rev. B.,2004,70:220103(R).
    [67] Zheng K Y, Zhang D M, Zhong Z C, et al. Synthesis and Optical Properties ofTetragonal KTa0.6Nb0.4O3Nanoparticles[J]. App. Surf. Sci.,2009,256:1317–1321.
    [68]赫崇君.弛豫铁电单晶PMN-PT的光学与压电性能[D].哈尔滨:哈尔滨工业大学博士学位论文.2007.
    [69] Wan X M, Luo H S, Wang J, et al. Investigation on Optical TransmissionSpectra of (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3single crystals[J]. Solid. State.Commun.,2004,129:401–405.
    [70] Tauc J C. Optical Properties of Solids. Amsterdam: North-Holland.1972:372.
    [71] Maiti T, Guo R Y and Bhalla A S. Ferroelectric Relaxor Behaviour inBa(ZrxTi1x)O3: MgO Composites[J]. J. Phys. D: Appl. Phys.,2007,40:4355–4359.
    [72] Lu Y T, Chen X M, Jin D Z, Hu X. Dielectric and Ferroelectric Properties of(1-x)(Na0.5K0.5)NbO3-xBaTiO3Ceramics[J]. Mater. Res. Bull.,2005,40:1847.
    [73] Maiti T, Alberta E, Guo R Y, Bhalla A S. The Polar Cluster Like Behavior inTi4+Substituted BaZrO3Ceramics[J]. Mater. Lett.,2006,60:3861–3865.
    [74] Li Y L, Qu Y F. Substitution Preference and Dielectric Properties of Y3+-dopedBa0.62Sr0.38TiO3Ceramics[J]. Mater. Chem. Phys.,2008,110:155–159.
    [75] Huang C Y. Ferroelectric Single Crystal Fiber in High Frequency ElectroopticModulation and Optical Frequency Shift[D]. The Doctor Degree Thesis of thePennsylvania State University.2006:54.
    [76] Radhika M V, and Umarji A M. Thermal Expansion Studies on FerroelectricMaterials[J]. Bull. Mater. Sci.,1997,20(7):1023-1028.
    [77] Newnham R E. Properties of Materials-Anisotropy, Symmetry, Structure[M].Boston: Oxford University Press,2005:79.
    [78] Burns G, Dacol F H. Crystalline Ferroelectrics with Glassy PolarizationBehavior[J]. Phys. Rev. B,1983,28:2527-2530.
    [79] Newnham R E. Properties of Materials-Anisotropy, Symmetry, Structure[M].Boston: Oxford University Press,2005:81.
    [80] Wongmaneerung R, Guo R Y, Bhalla A S, Yimnirun R, Ananta S. ThermalExpansion Properties of PMN–PT Ceramics[J]. J. Alloy. Compd.,2008,461:565–569.
    [81] Unruan M, Prasatkhetragarn A, Laosiritaworn Y, Guo R Y, Bhalla A S. ThermalExpansion Behavior and Estimated Total Polarizations of Lead ZirconateTitanate–Lead Nickel Niobate Ceramics[J]. Mater. Lett.,2010,64:1960-1963.
    [82] Bhalla A S, Guo R, Cross L E, Burns G, Dacol F H, et al. Glassy Polarization inthe Ferroelectric Tungsten Bronze (Ba,Sr)Nb2O6[J]. J. Appl. Phys.,1992,71:5591.
    [83] Uchino K, Nomura S, Cross L E, Newnham R E. Electrostrictive Effects inPotassium Tantalate Niobate[J]. Ferroelectrics,1981,38:825-828.
    [84] Dorey R A, Whatmore R W. Pyroelectric PZT/PMNZTU Composite ThickFilms[J]. J. Euro. Ceram. Soc.,2005,25:2379–2382.
    [85] Zhao M L, Wang C L, Zhong W L. Dielectric and Pyroelectric Properties ofSrBi4Ti4O15-based Ceramics for High-Temperature Applications[J]. Mater. Sci.Eng. B,2003,99:143-146.
    [86] Tian H, Zhou Z X, Wang H F, Liu D J. Optical Properties of CubicK0.95Li0.05Ta0.61Nb0.39O3Single Crystal[J]. Opt. Mater.,2008,31(1):106-109.
    [87] Vazquez R M, Osellame R, Marangoni M, et al. Er3+Doped YAl3(BO3)4SingleCrystals: Determination of the Refractive Indices[J]. Opt. Mater.,2004,26:231-233.
    [88] Wan X, Chan H L W, Choy C L, Zhao X and Luo H. Optical Poperties of(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3Sngle Cystals Sudied by SectroscopicElipsometry[J]. J. Appl. Phys.,2004,96:1387-1391.
    [89] Bing Y, Guo R Y and Bhalla A S. Optical Properties of Relaxor FerroelectricCrystal: Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3[J]. Ferroelectrics.,2000,242:1-11.
    [90] Marinova V, Shurulinkov S, Daviti M, et al. Refractive Index Measurements ofMixed HgBrxI2-xSingle Crystals[J]. Opt. Mater.,2000,14:95-99.
    [91] He C J, Tang Y X, Zhao X Y, et al. Optical Dispersion Properties of TetragonalRelaxor Ferroelectric Single Crystals0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3[J].Opt. Mater.,2007,29:1055–1057.
    [92] Didomenico M, and Wemple S H. Oxygen-Octahedra Ferroelectrics I: Theoryof Electro-Optical and Nonlinear Optical Effects[J]. J. Appl. Phys.,1969,40:720-734.
    [93] Lin Y T, Ren B, Zhao X Y. Optical Dispersion Behavior and Band Gap Energyof Relaxor Ferroelectric0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3Single Crystal[J].Chinese Phys. Lett.,2009,26:077807.
    [94] Wemple S H, Didomenico M. Optical Dispersion and the Structure of Solids[J].Phys. Rev. Lett.,1969,23:1156-1160.
    [95] Wemple S H, Didomenico M. Behavior of the Electronic Dielectric Constant inCovalent and Ionic Materials[J]. Phys. Rev. B,1971,3(4):1338-1351.
    [96] Kingery W D, Bowen H K, and Uhlmann D R. Introduction to Ceramics[M].New York: Wiley-Interscience1976.
    [97]田浩.钽铌酸钾锂晶体的生长和电光性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2008.
    [98] Takizawa K, Yokota Y. High Accuracy and High Sensitivity Measurements ofthe Electrooptic Effects in Undoped and MgO-Doped LiNbO3Crystals[J]. Opt.Rev.2006,13(3):161–167.
    [99] Lu Y, Cheng Z Y, Park S E. Linear Electro-optic Effect of0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3Single Crystal[J]. Jpn. J. Appl. Phys.,2000,39:141-145.
    [100]Aillerie M, Theofanous N, Fontana M D. Measurement of the Electro-OpticCoefficients: Description and Comparison of the Experimental Techniques[J].Appl. Phys. B,2000,70:317-334.
    [101]Yamamoto J K, McHenry D A, and Bhalla A S. Strontium Barium NlobateSingle-Crystal Fibers: Optical and Electro-Optic Properties[J]. J. Appl. Phys.,1991,70(6):3215-3222.
    [102]Righi A, Salvestrini J P, Bourson P. Electro-Optic Properties of LiKSO4andLiK1xRbxSO4Crystals[J]. Appl. Phys. B,,1998,67:559–562.
    [103]Saadon H L, Rahma M A, Marhoon A F. Thermo-Optic Characterization ofKDP Single Crystals by a Modified Senarmont Setup for Electro-OpticModulation System[J]. Chinese Opt. Lett.,2009,7(7):632-639.
    [104]Wan X, Luo H, Zhao X, Wang D Y, Chan H L W and Choy C L. RefractiveIndices and Linear Electro-optic Properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3Single Crystals[J]. Appl. Phys. Lett.,2004,85:5233-5235.
    [105]Wan X M, Wang D Y, Zhao X Y. Electro-Optic Characterization of Tetragonal(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3Single Crystals by a Modified SénarmontSetup[J]. Solid State Commun.,2005134:547–551.
    [106]Toyoda S. Low-Driving Voltage Electro-Optic Modulator With NovelKTaNbO3Crystal Waveguides[J]. Jpn. J. Appl. Phys.,2004,43:5862.
    [107]Shimokozonoetal M. Newly Developed KTN Optical Waveguide Devices withExtremely High Electro-Optic Effect[M]. Tech. Digest of OECC,2004,14F3-1:560-561.
    [108]Toro J A, Serrano M D, Garc a-Cabanes A, and Cabrera J M. AccurateInterferometric Measurement of Electro-Optic Coefficients: Application toQuasi-Stoichiometric LiNbO3[J]. Opt. Commun.,1998,154(1):23-27.
    [109]Yin S Z, Wu J T, Zhan C. Giant Electro-Optic Effect of PMN-33%PT SingleCrystals under Proper AC Electric Field Bias[J]. Proc. of SPIE.,2003,5206:280-289.
    [110]Méndez A, García-Caba es A, Diéguez E, and Cabrera J M. Pockel’sElectro-Optic Coefficients of Lithium Tetraborate Li2B4O7[J]. J. Appl. Phys,.1999,86(4):2038-2041.
    [111]Pang W Y, and Jang S J. A Sensitive Modified Mach-Zehnder Interferometerfor Studying Electro-Optic Properties[J]. Rev. Sci. Instrum.,1990,61(8):2109-2112.
    [112]He C J, Jing W P, Zhu K J, and Qiu J H. Linear Electro-Optic Properties ofOrthorhombic PZN-8%PT Single Crystal[J]. IEEE Transactions on ultrasonIcs,ferroelectrics, and frequency control.,2011,58(6):1118-1121.
    [113]Barad Y, Lu Y, Cheng Z Y, Park S E, and Zhang Q M. Crystal OrientationDependence of Piezoelectric Properties of Lead Zirconate Titanate Near theMorphotropic Phase Boundary[J]. Appl. Phys. Lett.,2000,77:1247.
    [114]Geusic J E, Kurtz S K, Van Uitert L G, and Wemple S H. ElectroopticProperties of Some ABO3Perovskites in the Paraelectric Phase[J]. AppliedPhys. Lett.,1964,4(8):141-143.
    [115]Tian H, Li J, Zhou Z X. Piezoelectric Properties of Tetragonal K0.95Li0.05TaxNb1-xO3Lead-free Single Crystals Near Tetragonal-Cubic PhaseTransition Boundary[J]. Phase Transition,2011,85(6):523-529
    [116]Du X H, Zheng J H, Belegundu U, and Uchino K. Crystal OrientationDependence of Piezoelectric Properties of Single Crystal Barium Titanate[J].Appl. Phys. Lett.1998,72:2421.
    [117]Du X H, Wang Q M, Belegundu U, Bhalla A S, Uchino K. Crystal OrientationDependence of Piezoelectric Properties of Single Crystal Barium Titanate[J].Mater. Lett.,1999,40:109–113.
    [118]Efremidis A T, Deliolanis N C, Vyrsokinos K, at el. Electro-Optic andElectro-Gyration Effects on Light Propagation in42m Point-Group Crystals[J].J. Appl. Cryst.2011,44:1100–1110.
    [119]Zhang R, Jiang B, and Cao W W. Orientation Dependence of PiezoelectricProperties of Single Domain0.67Pb(Mn1/3Nb2/3)O3–0.33PbTiO3Crystals[J].Appl. Phys. Lett.,2003,82:21-26.
    [120]Wang Y, Jiang Y J. Crystal Orientation Dependence of Piezoelectric Propertiesin LiNbO3and LiTaO3[J]. Opt. Mater.,2003,23:403–408.
    [121]Auld B A. Acoustic Fields and Waves in Solids[M]. John Wiley&Sons, NewYork,1973:82.
    [122]I. P. Kaminow I P and E. H. Turner E H. Electrooptic Light Modulators[J].App. Opt.,1966,5(10);1612-1628.
    [123]Andrushchak A S, Mytsyk B G, Demyanyshyn N M. Spatial Anisotropy ofLinear Electro-optic Effect in Crystal Materials: II. Indicative Surfaces asEfficient Tool for Electro-optic Coupling Optimization in LiNbO3[J]. Opt.Laser Eng.,2009,47:24–30.
    [124]钟维烈.铁电体物理学[M].北京:科学出版社,2000.
    [125]Xiang Y, Zhang R, and Wenwu Cao W W. Piezoelectric Properties of DomainEngineered Barium Titanate Single Crystals with Different Volume Fractionsof Domain Walls[J]. J. Appl. Phys.,2009,106:064102.
    [126]Lin D M, Kwok K W, and Chan H W. Dielectric and Piezoelectric Propertiesof K0.5Na0.5NbO3–BaZr0.05Ti0.95O3lead-free ceramics[J]. Appl. Phys. Lett.,2007,91:143513.
    [127]Wang F F, Luo L H, and Zhou D. Complete Set of Elastic, Dielectric, andPiezoelectric Constants of Othorhombic0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3Single Crystal[J]. Appl. Phys. Lett.,2007,90:212903.
    [128]Zhao P and Zhang B P. Enhancing Piezoelectric d33Coefficient inLi/Ta-Codoped Lead-free (Na,K)NbO3Ceramics by Compensating Na and Kat a Fixed Ratio[J]. Appl. Phys. Lett.,2007,91:172901.
    [129]李远,秦自楷,周志刚.压电与铁电材料的测量[M].北京:科学出版社,1984.
    [130]Guo R Y, Liu H B, Reyes B, Jamieson W, and Bhalla A S. PiezoelectricResonance Enhanced Electrooptic Transmission in PZN-8PT Single Crystal[J].Proc. of SPIE,2008,7056:705616.
    [131]Zhang Q M, Jang S J, and Cross L E. High-Frequency Strain Response inerroelectrics and its Measurement using a Modified Mach ZehnderInterferometer[J]. J. App. Phys.,1989,65(7):2807-2813.
    [132]Abarkan M, Salvestrini J P, Aillerie M, and Fontana M D. FrequencyDispersion of Electro-Optical Properties over a Wide Range by Means ofTime-Response Analysis[J]. Appl. Opt.,2003,42(13):2346-2353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700