有机—无机杂化阴离子交换膜的制备、表征和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与有机或无机膜相比,有机—无机杂化膜具有优良的强度和柔韧性、成膜性能、热和化学稳定性等,并且能发展单一膜材料原先所没有的综合性能,因此具有广阔的应用前景。
     杂化离子交换膜可以将无机材料的优点引入有机离子交换膜中,应用于多种领域。其中,杂化阴离子交换膜在一些重要的应用领域具有不可替代的作用,所以进一步的发展很有潜力。
     杂化阴离子交换膜可以应用于多价离子的截留和贵重金属的回收、压力驱动液相分离、蛋白质分离、气体分离膜等领域,特别是应用于碱性膜燃料电池(AMFC)上。在AMFC领域,杂化阴离子交换膜的性能可以与相应的氟化聚合物膜相比,显示出优异的机械强度、化学和热稳定性、以及良好的电学性能。杂化阴离子交换膜的制备方法包括原位聚合法、掺杂法、聚合物改性法、接枝法,其中最重要的方法之一是共聚法,它可以避免有机—无机相分离或降低相分离的程度、兼顾膜的强度和柔韧性、使有机-无机相之间的相对比例更容易调节、使离子交换基团更容易引入且更加稳定。因此,共聚法是本论文所采用的主要制备方法。
     本论文共包括七章。第一章是绪论,先对有机—无机杂化材料和杂化膜作简要的介绍,然后对杂化离子交换膜的发展、应用和制备进行了概括,再过渡到杂化阴离子交换膜的应用和发展,并重点介绍了它们的制备方法。最后提出本论文的设计思想和论文的主要工作。
     由于共聚法具有特出的优点,第二章先制备了共聚物(甲基丙烯酸缩水甘油酯/甲基丙烯酸-三甲氧基硅丙酯)(poly(GMA-co-KH-570)。共聚物涂覆在陶瓷片上,随后进行开环反应和sol-gel反应;得到以陶瓷为支撑体的杂化阴离子交换膜。考察了聚合物成分对膜的亲水性、水通量、电学性能、热稳定性和形貌的影响,结果表明膜可以应用于压力驱动过程,如超滤和纳滤。
     为了制备可以应用于电驱动过程的杂化膜,第三章选用了柔韧性良好的聚乙二醇(PEO)作为改性材料。PEO经过封端和季铵化后,得到前驱体PEO-[Si(OCH_3)_3](+)。前驱体与荷电、不荷电的小分子烷氧基硅烷一同进行sol-gel反应,得到无支撑体的杂化阴离子交换膜。膜均匀致密,具有较高的热稳定性、合适的电导率和优异的机械性能,有可能应用于AMFC上。
     第四章采用了共聚法,先制备了共聚物(氯甲基苯乙烯/甲基丙烯酸-三甲氧基硅丙酯)(poly(VBC-co-KH-570)),共聚物进行季铵化,同时和小分子烷氧基硅烷进行sol-gel反应后,得到杂化阴离子交换膜。膜平整致密、具有优异的化学稳定性和热稳定性、以及较高的离子交换容量(IEC),但电导率偏低。膜有可能应用于AMFC上
     第五章以聚(2,6-二甲基-1,4-苯撑氧)(PPO)为原料,进行溴化、羟基化、季铵化,随后和烷氧基硅烷一同进行sol-gel反应,热处理后得到杂化阴离子交换膜。调节以上制备过程,得到两种不同系列杂化膜:(1)变化热处理时间和温度,可以对膜的亲水性、柔韧性、电学性能和热稳定性进行有效调节。合适的热处理条件(130℃4-6h)得到的膜具有较高的耐碱能力和热稳定性,以及可接受的电导率。总体上,杂化膜可以有可能应用于AMFC上;(2)选定一个优化的热处理条件(130℃5h),变化烷氧基硅烷的用量,探索无机相的含量对膜性能的影响。结果表明适当的氧化硅含量可以提高膜的性能,相对于系列(1),膜的抗溶涨能力和电学性能得到了显著的改善,更加适合应用于AMFC上。
     以上膜制备过程中均涉及到sol-gel反应,为了探索sol-gel反应与膜性质之间的关系,在第六章中,选用了poly(GMA-co-KH-570)进行了材料-制备过程-膜性能关系的研究。poly(GMA-co-KH-570)和荷电、不荷电小分子烷氧基硅烷一同进行sol-gel反应,制备了杂化阴离子交换膜。初步的研究表明,高分子量的共聚物不利于sol-gel反应的充分进行,制得的膜常不均匀。低分子量的共聚物可以制备出具有较高交联程度的膜、高度均相和柔韧的膜;膜的热稳定性受交联程度的影响,膜的电学性能主要受到荷电小分子烷氧基硅烷用量的影响。
Compared with organic or inorganic membranes,organic-inorganic hybrid membranes have favorable strength and flexibility,membrane formation ability, thermal and chemical stabilities,and also new synergetic properties.Hence,hybrid membranes can be potentially widely used.
     Ion-exchange hybrid membranes can introduce the merits of inorganic material into the organic polymers,thus is widely applied to various fileds.As the anion-exchange hybrid membranes have irreplaceable effects in some important applications,further development is quite necessary and meaningful.
     Anion-exchange hybrid membranes are widely needed on some important occasions such as retention of multi-valent ions,recovery of valuable metals, pressure-driven liquid separation,protein separation and gas separation,etc, eapecially on alkaline membrane fuel cells(AMFCs).In the filed of AMFCs,the performances of anion-exchange hybrid membranes are comparable with those of fluorinated polymer membranes.The hybrid membranes show excellent mechanical properties,chemical and thermal stabilities,as well as favorable electrical properties. The hybrid membranes can be prepared by various methods,including in-situ polymerization,adulteration,polymer modification and grafting.One of the most important methods is the copolymerization.This method can overcome organic-inorganic phase separation or reduce the degree of phase separation,obtain membranes with both favorable strength and flexibility,adjust the ratios between organic and inorganic phases more easily,introduce ion-exchange groups more conveniently,and make the ion-exchange groups more stable.Hence, copolymerization route is the main adopted method in this dissertation.
     This dissertation includes seven chapters.ChapterⅠgives an overview on the research background through the introduction of organic-inorganic hybrid materials and membranes.Subsequently,chapterⅠgeneralizes the development,application and preparation of ion-exchange hybrid membranes.Then the chapter focuses on the application and development,especially preparation of anion-exchange hybrid membranes.Finally,the research ideas and outline of the dissertation are proposed.
     As the method of copolymerization has excellent merits,In chapterⅡ,the copolymer of glycidylmethacrylate andγ-methacryloxypropyl trimethoxy silane (poly(GMA-co-KH-570)) is prepared firstly.The copolymer is dip-coated on ceramic plate,and then undergos the ring-opening and sol-gel reaction,respectively. Finally,ceramic supported anion-exchange hybrid membranes are obtained. Effects of the copolymer composition are fully discussed on membrane hydrophilicity,water flux,electrical properties,thermal stability and membrane morphology.Results show that the membranes are suitable for potential application in pressure driven process,such as UF and NF.
     In order to develop hybrid membranes that can be used in electro-driven process, chapterⅢselects flexible polyethylene oxide(PEO) as the starting material.PEO is endcapped and quaternized to obtain precursor PEO-[Si(OCH_3)_3](+).The precursor undergoes the sol-gel reaction together with charged and non-charged alkoxysilanes of small molecular weight.Finally,free-standing anion-exchange hybrid membranes are obtained.The membranes are compact and homogenous.They have relatively high thermal stability,proper conductivity and excellent mechanical properties,thus can be potentially applied to AMFCs.
     ChapterⅣadopts the method of copolymerization.The copolymer of vinylbenzyl chloride and KH-570(poly(VBC-co-KH-570)) undergoes the quaternization,and sol-gel reaction with alkoxysilanes of small molecular weight.The obtained anion-exchange hybrid membranes are compact and dense,with relatively high ion-exchange capacities(IECs) but low conductivity.The membranes have excellent chemical and thermal stabilities.They are intended for application in AMFCs.
     ChapterⅤutilize the polymer of poly(2,6-dimethyl-l,4-phenylene oxide)(PPO). PPO is modified by bromination,hydroxylation and quaternization in sequence, subsequent sol-gel reaction with alkoxysilanes,followed by heat treatment,yields two series of anion-exchange hybrid membranes.(1) Through varying the conditions of heat treatment,the hydrophilicity,flexibility,electrical properties and thermal stabilities of the hybrid membranes can be adiusted effectively.Membranes endured proper heat treatment(130℃4-6 h) can have relatively high alkaline resistance, thermal stability and acceptable conductivity.Generally speaking,the hybrid membranes can be potentially applied to AMFCs;(2) An optimized condition of heat treatment is selected(130℃5 h).The dosages of alkoxysilanes are varied,and the impacts of inorganic content on the membrane properties are investigated.Results show that proper silica content can improve the membrane performances.Compared with the membranes of part(1),the membranes here have significantly improved swelling resistance and electrical properties.Hence,they are more suitable for application in AMFCs.
     The above membrane formation processes all involve sol-gel reactions.To investigate the relations between sol-gel reaction and membrane properties,chapterⅥselects poly(GMA-co-KH-570).The copolymer is used to investigate the relations among materials,membrane formation process and membrane properties. Poly(GMA-co-KH-570) undergoes the sol-gel reaction together with charged and non-charged alkoxysilanes of small molecular weight.After the sol-gel process, anion-exchange hybrid membranes are obtained.Primary studies indicate that,the copolymer of high molecular weight is disadvantage to the sol-gel reaction,and the obtained membranes are always inhomogenous.The membranes prepared from the copolymer of low molecular weight have relatively high crosslinking degree,and are highly homogenous and flexible.The crosslinking degree affects their thermal stability significantly,while the dosage of charged alkoxysilane controls their electrical properties.
引文
[1]P.G.Romero,Hybrid organic-inorganic materials-in search of synergic activity.Adv.Mater.13(2001) 163-174.
    [2]S.Yano,K.Iwata,K.Kurita,Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process,Materials Science and Engineering C 6(1998) 75-90.
    [3]H.J.Schmidt,New type of non-crystalline solids between inorganic and organic materials,Non-Crystalline Solids 73(1985) 681.
    [4]S.J.Seo,D.Zhao,K.Suh,J.H.Shin,B.S.Bae,Synthesis and luminescence properties of mesophase silica thin films doped with in-situ formed europium complex,Journal of Luminescence 128(2008) 565-572.
    [5]吴翠明,徐铜文,杨伟华。无机-有机复合膜的制备技术进展。无机材料学报17(2002)641-648。
    [6]G.H.Hsiue,W.J.Kuo,Y.P.Huang,et al.Microstructural and morphological characteristics of PS-SiO_2 nanocomposites,Polymer 41(2000) 2813-2825.
    [7]C.L.Chiang,C,M.Ma,Synthesis,characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol-gel method,European Polymer Journal 38(2002) 2219-2224.
    [8]I.Honma,S.Nomura,H.Nakajima,Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane,J.Membr.Sci.185(2001) 83-94.
    [9]C.J.Cornelius,E.Marand,Hybrid silica-polyimide composite membranes:gas transport properties,J.Membr.Sci.202(2002) 97-118.
    [10]T.C.Chang,Y.T.Wang,Y.S.Hong,et al.Organic-inorganic hybrid materials Part 9:Dynamics and stability of PMMA modified aluminum-EAA complex,Thermochimica Acta 372(2001) 165-173.
    [11]L.H.Lee,W.C.Chen,High-refractive-index thin films prepared from trialkoxysilane-capped poly(methyl methacrylate)-Titania materials,Chem.Mater.13(2001)1137-1142.
    [12]P.Jannasch,Recent developments in high-temperature proton conducting polymer electrolyte membranes,Current Opinion in Colloid and Interface Science 8(2003) 96-102.
    [13]J.Wen,G.L.Wilkes,Organic/inorganic hybrid network materials by the sol-gel approach,Chem.Mater.8(1996) 1667-1681.
    [14]R.K.Nagarale,G.S.Gohil,V.K.Shahi,Organic-Inorganic hybrid membrane:Thermally stable cation-exchange membrane prepared by the sol-gel method,Macromolecules 37(2004)10023-10030.
    [15]D.B.Mitzi,Thin -Film Deposition of Organic-Inorganic Hybrid Materials,Chem.Mater.13(2001) 3283-3298.
    [16]B.M.Novak,Hybrid Nanocomposite Materials-between inorganic glasses and organic polymers,Adv.Mater.5(1993) 422.
    [17]X.Hong,T.Ishihara,A.V.Nurmikko,Dielectric confinement effect on excitons in PbI_4-based layered semiconductors,Phys.Rev.B 45(1992) 6961.
    [18]C.Sanchez,F.Ribot,Design of hybrid organic-inorganic materials synthesized via sol-gel Chemistry,N.J.Chem.18(1994) 1007-1047.
    [19]K.J.Shea,D.A.Loy,O.Webster,Arylsilsesquioxane gels and related materials.New hybrids of organic and inorganic networks,J.Am.Chem.Soc.114(1992) 6700-6710.
    [20]G..Kickelbick,Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale,Prog.Polym.Sci.28(2003) 83-114.
    [21]A.Okada,A.Usuki,The chemistry of polymer-clay hybrid,Mater.Sci.Eng.C 3(1995)109-115.
    [22]J.W.Gilman,Flammability and thermal stability studies of polymer layered-silicate(clay)nanocomposites,Appl.Clay Sci.15(1999) 31-49.
    [23]V.V.Binsu,R.K.Nagarale,V.K.Shahi,Phosphonic acid functionalized aminopropyl triethoxysilane-PVA composite material:organic-inorganic hybrid proton-exchange membranes in aqueous media,Journal of Materials Chemistry 15(2005) 4823.
    [24]张国昌,陈运法,王立新等。复合分离膜的研究进展。化工冶金 20(1999)105-112.
    [25]A.J.Burggraaf,L.(Eds).Cot,Fundamentals of Inorganic Membrane Science and Technology,Amsterdam Elsevier 1996.
    [26]Y.H.Wu,C.M.Wu,T.W.Xu,F.Yu,Y.X.Fu,Novel anion-exchange organic-inorganic hybrid membranes:Preparation and characterizations for potential use in fuel cells,J.Membr.Sci.321(2008) 299-308.
    [27]K.Kusakabe,K.Ichiki,J.Hayashi,et al.Preparation and characterization of silica-polyimide composite membranes coated on porous tubes for CO_2 separation,J Membr.Sci.115(1996)65-75.
    [28]I.Jun-ichi,M.Tatsushi,Y.Hideo,Surface modification of a ceramic membrane by the SPCP-CVD method suitable for enzyme immobilization,Journal of Electrostatics,49(2000)71-82.
    [29]N.S.M.Stevens,M.E.Rezac,Formation of hybrid organic/inorganic composite membranes via partial pyrolysis of poly(dimethyl siloxane),Chemical Engineering Science 53(1998)1699-1711.
    [30]V.Ramani,H.R.Kunz,J.M.Fenton,Investigation of Nafion~(?)/HPA composite membranes for high temperature/low relative humidity PEMFC operation,J.Membr.Sci.232(2004)31-44.
    [31]G.Alberti,M.Casciola,Solid state protonic conductors,present main applications and future prospects,Solid State Ionics 145(2001) 3-16.
    [32]A.Javaid,D.M.Ford,Solubility-based gas separation with oligomer-modified inorganic membranes:Part Ⅱ.Mixed gas permeation of 5 nm alumina membranes modified with octadecyltrichlorosilane,J Membr.Sci.215(2003) 157-168.
    [33]L.Y.Hench,J.K.West,The sol-gel process,Chemical Reviews 90(1990) 33-74.
    [34]H.Uchida,Y.Ueno,H.Hagihara,M.Watanabe,Self-humidifying electrolyte membranes for fuel cells-Preparation of highly dispersed TiO_2 particles in Nafion 112,Journal of The Electrochemical Society 150(2003) A57-A62.
    [35]D.A.Siuzdak,P.R.Start,K A.Mauritz,Surlyn~(?)/silicate hybrid materials.I.Polymer in situ sol-gel process and structure characterization,Journal of Applied Polymer Science 77(2000)2832-2844.
    [36]K.A.Mauritz,Organic-inorganic hybrid materials:perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides,Materials Science and Engineering C 6(1998) 121-133.
    [37]W.M.Aylward,P.G.Pickup,Ion exchange and ion transport properties of sulfonated organically modified silica hydrogels,Journal of Solid State Electrochemistry 8(2004)742-747.
    [38]P.Tien,L.K.Chau,Y.Y.Shieh,W.C.Lin,G.T.Wei,Anion-Exchange Material with pH-Switchable Surface Charge Prepared by Sol-Gel Processing of an Organofunctional Silicon Alkoxide,Chem.Mater.13(2001) 1124-1130.
    [39]U.L.Stangar,B.Orel,J.Vince,et al.Silicotungstic acid/organically modified silane proton-conducting membranes,Journal of Solid State Electrochemistry 9(2005) 106-113.
    [40]Y.L.Liu,Y.H.Su,J.Y.Lai,In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using g-glycidoxypropyltrimethoxysilane as a crosslinking agent,Polymer 45(2004) 6831-6837.
    [41]R.P.Castro,Y.Cohen,H.G.Monbouquette,Silica-supported polyvinylpyrrolidone filtration membranes,J.Membr.Sci.115(1996) 179-190.
    [42]Q.G.Zhang,Q.L.Liu,Z.Y.Jiang,Y.Chen,Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes.J.Membr.Sci.287(2007) 237-245.
    [43]H.Y.Chang,C.W.Lin,Proton conducting membranes based on PEG/SiO_2 nanocomposites for direct methanol fuel cells,J.Membr.Sci.218(2003) 295-306.
    [44]I.Honma,H.Nakajima,S.Nomura,High temperature proton conducting hybrid polymer electrolyte membranes,Solid State Ionics 154-155(2002) 707-712.
    [45]D.S.Kim,H.B.Park,J.W.Rhim,Y.M.Lee,Preparation and characterization of crosslinked PVA/SiO_2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications,J.Membr.Sci.240(2004) 37-48.
    [46]L.Depre,J.Kappel,M.Popall.Inorganic-organic proton conductors based on alkylsulfone functionlities and their patterning by photoinduced methods.Electrochimica Acta,1998(10-11)1301-1306.
    [47]L.Depre,M.Ingram,C.Poinsignon,et al.Proton conducting sulfon/sulfonamide functionalized materials based on inorganic-organic matrices,Electrochimica Acta,45(2000)1377-1383.
    [48]C.M.Wu,T.W.Xu,W.H.Yang,Fundamental studies of a new hybrid(inorganic-organic)positively charged membrane:membrane preparation and characterizations,J.Membr.Sci.216(2003)269-278.
    [49]M.Kato,W.Sakamoto,T.Yogo,Synthesis of proton-conductive sol-gel membranes from trimethoxysilylmethylstyrene and phenylvinylphosphonic acid,J.Membr.Sci.303(2007)43-53.
    [50]C.M.Wu,T.W.Xu,W.H.Yang,A new inorganic-organic negatively charged membrane:membrane preparation and characterizations,J.Membr.Sci.224(2003) 117-125.
    [51]R.K.Nagarale,V.K.Shahi,R.Rangarajan,Preparation of polyvinyl alcohol-silica hybrid heterogeneous anion-exchange membranes by sol-gel method and their characterization,J.Membr.Sci.248(2005) 37-44.
    [52]V.S.Silva,B.Ruffmann,H.Silva,V.B.Silva,A.Mendes,L.M.Madeira,S.Nunes,Zirconium oxide hybrid membranes for direct methanol fuel cells—Evaluation of transport properties,J.Membr.Sci.284(2006) 137-144.
    [53]T.N.Danks,R.C.T.Slade,J.R.Varcoe,Comparison of PVDF-and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs,J.Mater.Chem.12(2002) 3371-3373.
    [54]J.R.Varcoe,R.C.T.Slade,E.L.H.Yee,S.D.Poynton,D.J.Driscoll,D.C.Apperley,Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells,Chem.Mater.19(2007) 2686-2693.
    [55]J.R.Varcoe,R.C.T.Slade,Prospects for alkaline anion-exchange membranes in low temperature full cells,Fuel Cells 5(2005) 187-200.
    [56]J.R.Varcoe,R.C.T.Slade,An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells,Electrochem.Commun.8(2006)839-843.
    [57]Y.Xiong,Q.L.Liu,A.M.Zhu,S.M.Huang,Q.H.Zeng,Performance of organic-inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells,Journal of Power Sources 186(2009) 328-333.
    [58]C.C.Yang,Synthesis and characterization of the cross-linked PVA/TiO_2 composite polymer membrane for alkaline DMFC,J.Membr.Sci.288(2007) 51-60.
    [59]C.S.Chang,H.S.Ni,S.Y.Suen,W.C.Tseng,H.C.Chiu,C.P.Chou,Preparation of inorganic-organic anion-exchange membranes and their application in plasmid DNA and RNA separation,J.Membr.Sci.311(2008) 336-348.
    [60]N.A.Kotov,S.Magonov,E.Tropsha,Layer-by-layer self-assembly of alumosilicate-polyelectrolyte composites:mechanism of deposition,crack resistance,and perspectives for novel membrane materials,Chem.Mater.1998,10,886-895.
    [61]C.M.Wu,Y.H.Wu,T.W.Xu,Y.X.Fu,Novel anion-exchange organic-inorganic hybrid membranes prepared through sol-gel reaction and UV/thermal curing,J.Appl.Polym.Sci.2008(107)1865-1871.
    [62]L.T.Arenas,S.L.P.Dias,C.C.Moro,T.M.H.Costa,E.V.Benvenutti,A.M.S.Lucho,Y.Gushikem,Structure and property studies of hybrid xerogels containing bridged positively charged l,4-diazoniabicycle[2.2.2]octane dichloride,Journal of Colloid and Interface Science,297(2006) 244-250.
    [63]H.Touzi,Y.Chevalier,R.Kalfat,H.B.Ouada,H.Zarrouk,J.P.Chapel,N.J.Renault,Elaboration and electrical characterization of silicone-based anion-exchange materials,Materials Science and Engineering C 26(2006) 462-471.
    [64]K.Sunaga,M.Kim,K.Saito,K.Sugita,Characteristics of Porous Anion-Exchange Membranes Prepared by Cografting of Glycidyl Methacrylate with Divinylbenzene,Chem.Mater.1999,11,1986-1989.
    [65]C.M.Wu,T.W.Xu,W.H.Yang,Synthesis and characterizations of new negatively charged organic-inorganic hybrid materials:effect of molecular weight of sol-gel precursor,Journal of Solid State Chemistry 177(2004) 1660-1666.
    [66]C.M.Wu,T.W.Xu,M.Gong,W.H.Yang,Synthesis and characterizations of new negatively charged organic-inorganic hybrid materials Part II.Membrane preparation and characterizations,J.Membr.Sci.247(2005) 111-118.
    [67]C.M.Wu,T.W.Xu,W.H.Yang,Synthesis and characterizations of novel,positively charged poly(methyl acrylate)-SiO_2 nanocomposites,European Polymer Journal 41(2005)1901-1908.
    [68]S.L.Zhang,T.W.Xu,C.M.Wu,Synthesis and characterizations of novel,positively charged hybrid membranes from poly(2,6-dimethyl-l,4-phenylene oxide),J.Membr.Sci.269(2006)142-151.
    [69]S.L.Zhang,C.M.Wu,T.W.Xu,M.Gong,X.L.Xu,Synthesis and characterizations of anion exchange organic-inorganic hybrid materials based on poly(2,6-dimethyl-1,4-phenylene oxide)(PPO),Journal of Solid State Chemistry 178(2005)2292-2300
    [70]B.Mouanda,Grafting polyvinylimidazole onto silicon wafers via a copolymer of methacrylate epoxy and methacrylate-functional silane coupling agents,Polymer 38(1997)5301-5308.
    [71]Y.H.Wu,C.M.Wu,M.Gong,T.W.Xu,New anion exchanger organic-inorganic hybrids and membranes from a copolymer of glycidylmethacrylate and y-methacryloxypropyl trimethoxy silane,J.Appl.Polym.Sci.102(2006) 3580-3589.
    [72]I.A Toutorski,T.E.Tkachenko,B.V.Pokidko,Mechanical properties and structure of zinc-containing latex-silicate composites,Journal of sol-gel science and technology 26(2003)505.
    [73]Y.Inaki,H.Yoshida,T.Yoshida,T.Hattori,Active Sites on Mesoporous and Amorphous Silica Materials and Their Photocatalytic Activity:An Investigation by FTIR,ESR,VUV-UV and Photoluminescence Spectroscopies,J.Phys.Chem.B 106(2002) 9098.
    [74]J.Shi,Q.Yuan,C.J.Gao,Hand Book of Membrane Science and Technology,Press of Chemical Engineering,Beijing,2001
    [75]T.Moritz,S.Benfer,P.Arki,G.Tomandl,Investigation of ceramic membrane materials by streaming potential measurements,Colloids and Surfaces A:Physicochemical and Engineering Aspects 195(2001) 25.
    [76]D.P.Wilkinson,Z.S.Liu,S.Holdcroft,P.Jannasch,Recent developments in high-temperature proton conducting polymer electrolyte membranes,Current Opinion in Colloid and Interface Science 8(2003) 96-102.
    [77]J.L.Zhang,Z.Xie,J.J.Zhang,Y.H.Tang,C.J.Song,T.Navessin,Z.Q.Shi,D.T.Song, H.J.Wang,High temperature PEM fuel cells,Journal of Power Sources 160(2006)872-891.
    [78]V.K.Shahi,Highly charged proton-exchange membrane:Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells,Solid State Ionics 177(2007)3395-3404.
    [79]H.K.Kim,H.Chang,Organic/inorganic hybrid membranes for direct methanol fuel cells,J.Membr.Sci.288(2007) 188-194.
    [80]I.Honma,Y.Takeda,J.M.Bae,Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules,Solid State Ionics 120(1999) 255-264.
    [81]M.Kogure,H.Ohya,R.Paterson,M.Hosaka,J.Kim,S.McFadzean,Properties of new inorganic membranes prepared by metal alkoxide methods Part Ⅱ:New inorganic-organic anion-exchange membranes prepared by the modified metal alkoxide methods with silane coupling agents,J.Membr.Sci.126(1997) 161-169.
    [82]I.Zudans,W.R.Heineman,C.J.Seliskar,In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry,Three case studies,Thin Solid Films 455(2004)710-715.
    [83]Y.Wang,L.Li,L.Hu,L.Zhuang,J.T.T.Lu,B.Q.Xu,A feasibility analysis for alkaline membrane direct methanol fuel cell:thermodynamic disadvantages versus kinetic advantages,Electrochemistry Communications 5(2003) 662-666.
    [84]A.A.Zagorodni,D.L.Kotova,V.F.Selemenev,Infrared spectroscopy of ion exchange resins:chemical deterioration of the resins,React.Funct.Polym.53(2002) 157.
    [85]V.Neagu,I.Bunia,I.Plesca,Ionic polymers Ⅵ.Chemical stability of strong base anion exchangers in aggressive media,Polym.Degrad.Stabil.70(2000) 463.
    [86]E.Agel,J.Bouet,J.F.Fauvarque,Characterization and use of anionic membranes for alkaline fuel cells,J.Power.Sources 101(2001) 267-274.
    [87]E.Agel,J.Bouet,J.F.Fauvarque,H.Yassir,The use of a solid polymer electrolyte in alkaline fuel cells,Ann.Chim.Sci.Mater.26(2001) 59-68.
    [88]Y.H.Wu,C.M.Wu,F.Yu,T.W.Xu,Y.X.Fu,Free-standing anion-exchange PEO-SiO_2 hybrid membranes,J.Membr.Sci.307(2008) 28-36.
    [89]Y.Li,T.W.Xu,M.Gong,Fundamental studies of a new series of anion exchange membranes:Membranes prepared from bromomethylated poly(2,6-dimethyl-l,4-phenylene oxide)(BPPO) and pyridine,J.Membr.Sci.279(2006) 200-208.
    [90]T.W.Xu,Z.M Liu,W.H.Yang,Fundamental studies of a new series of anion exchange membranes:membrane prepared from poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) and triethylamine,J.Membr.Sci.249(2005) 183-191.
    [91]N.Viart,J.L.Rehspringer,Study of the action of formamide on the evolution of a sol by pH measurements and Fourier transformed infra-red spectroscopy,Journal of Non-crystalline Solids 195(1996) 223-231.
    [92]F.Rubio,J.Rubio,J.L.Oteo,A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS),Spectroscopy Letters 31(1998) 199-219.
    [93]P.Innocenzi,Infrared spectroscopy of sol-gel derived silica-based films:a spectra-microstructure overview,Journal of Non-crystalline Solids 316(2003) 309-319.
    [94]Y.Li,Z.M.Huang,Y.D Lv,Electrospinning of nylon-6,66,1010 terpolymer,European Polymer Journal 42(2006) 1696-1704.
    [95]Y.Mao,J.P.Zhou,J.Cai,L.Zhang,Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution,J.Membr.Sci.279(2006) 246-255.
    [96]Z.K.Xu,L.Q.Shen,Q.Yang,F.Liu,S.Y.Wang,Y.Y.Xu,Ultrafiltration hollow fiber membranes from poly(ether imide):preparation,morphologies and properties,J.Membr.Sci.223(2003)105-118.
    [97]D.R.Vernond,F.Menga,S.F.Decb,D.L.Williamsonc,J.A.Turnerd,A.M.Herring,Synthesis,characterization,and conductivity measurements of hybrid membranes containing a mono-lacunary heteropolyacid for PEM fuel cell applications,Journal of Power Sources,139(2005)141-151.
    [98]Y.J.Kim,W.C.Choi,S.I.Woo,W.H.Hong,Proton conductivity and methanol permeation in Nafion~(TM)/ORMOSIL prepared with various organic silanes,J.Membr.Sci.2004(238)213-222.
    [99]C.W.Lin,R.Thangamuthu,P.H.Chang,PWA-doped PEG/SiO_2 proton-conducting hybrid membranes for fuel cell applications,J.Membr.Sci.2005(254) 197-205.
    [100]Y.G.Hsu,F.J.Lin,Organic-inorganic composite materials from acrylonitrile-butadiene-styrene copolymers(ABS) and silica through an in situ sol-gel process,Journal of Applied Polymer Science 75(2000) 275-283.
    [101]T.Tezuka,K.Tadanaga,A.Matsuda,A.Hayashi,M.Tatsumisago,Utilization of glass paper as a support of proton conductive inorganic-organic hybrid membranes based on 3-glycidoxypropyltrimethoxysilane,Electrochem.Commun.7(2005) 245-248.
    [102]J.Chen,U.Septiani,M.Asano,Y.Maekawa,H.Kubota,M.Yoshida,Comparative study on the preparation and properties of radiation-grafted polymer electrolyte membranes based on fluoropolymer films,J.Appl.Polym.Sci.103(2007) 1966-1972.
    [103]Q.H.Guo,P.N.Pintauro,H.Tang,S.O'Connor,Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes,J.Membr.Sci.154(1999) 175-181.
    [104]H.G.Chen,S.J.Wang,M.Xiao,Y.Z.Meng,Novel sulfonated poly(phthalazinone ether ketone) ionomers containing benzonitrile moiety for PEM fuel cell applications,J.Power Sources 165(2007) 16-23.
    [105]J.H.Chen,M.Asano,T.Yamaki,M.Yoshida,Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films,J.Membr.Sci.269(2006) 194-204.
    [106]Y.Chikashige,Y.Chikyu,K.Miyatake,M.Watanabe,Poly(arylene ether) Ionomers Containing Sulfofluorenyl Groups for Fuel Cell Applications,Macromolecules 38(2005)7121-7126.
    [107]D.Stoica,L.Ogier,L.Akrour,F.Alloin,J-F.Fauvarque,Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell:Synthesis,physical and electrochemical properties,Electrochimica Acta 53(2007) 1596-1603.
    [108]L.Wu,T.W.Xu,D.Wu,X.Zheng,Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell,J.Membr.Sci.310(2008)577-585.
    [109]H.Herman,R.C.T.Slade,J.R.Varcoe,The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes:optimisation of the experimental conditions and characterization,J.Membr.Sci.218(2003) 147-163.
    [110]J.Fang,P.K.Shen,Quatemized poly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells,J.Membr.Sci.285(2006) 317-322.
    [111]L.Vaikhanski,J.J.Lesko,S.R.Nutt,Cellular polymer composites based on bi-component fibers,Compos.Sci.Technol.63(2003) 1403-1410.
    [112]S.H.Kwak,T.H.Yang,C.S.Kimb,K.H.Yoon,Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell,Solid State Ionics 160(2003)309-315.
    [113]Y.M.Kim,S.H.Choi,H.C.Lee,M.Z.Hong,K.Kim,H.I.Lee,Organic-inorganic composite membranes as addition of SiO_2 for high temperature-operation in polymer electrolyte membrane fuel cells(PEMFCs),Electrochim.Acta 49(2004) 4787-4796.
    [114]M.Aparicio,J.Mosa,F.Sanchez and A.Duran,Synthesis and characterization of proton-conducting sol-gel membranes produced from 1,4-bis(triethoxysilyl)benzene and(3-glycidoxypropyl) trimethoxysilane,J.Power Sources 151(2005) 57-62.
    [115]Haiqin Pei,L.Hong and J.Y.Lee,Embedded polymerization driven asymmetric PEM for direct methanol fuel cells,J.Membr.Sci.270(2006) 169-178.
    [116]Y.Xiong,J.Fang,Q.H.Zeng,Q.L.Liu,Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells,J.Membr.Sci.311(2008) 319-325.
    [117]T.Uragami,T.Katayama,T.Miyata,H.Tamura,T.Shiraiwa,A.Higuchi,Dehydration of an ethanol/water azeotrope by novel organic-inorganic hybrid membranes based on quaternized chitosan and tetraethoxysilane biomacromolecules 5(2004) 1567-1574.
    [118]S.Sachdeva,R.P.Ram,J.K.Singh,A.Kumar,Synthesis of anion exchange polystyrene membranes for the electrolysis of sodium chloride,AIChE J.54(2008) 940-949.
    [119]T.N.Danks,R.C.T.Slade,J.R.Varcoe,Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells,J.Mater.Chem.13(2003)712-721.
    [120]D.Wu,R.Q.Fu,T.W.Xu,L.Wu,W.H.Yang,A novel proton-conductive membrane with reduced methanol permeability prepared from bromomethylated poly(2,6-dimethyl-l,4-phenylene oxide)(BPPO),J.Membr.Sci.310(2008) 522-530.
    [121]Y.H.Wu,C.M.Wu,T.W.Xu,X.C.Lin,Y.X.Fu,Novel silica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid anion exchange membranes for alkaline fuel cells:effect of heat treatment,J.Membr.Sci.No 081101 R1,accepted.
    [122]T.W.Xu,W.H.Yang,Fundamental studies of a new series of anion exchange membranes:membrane preparation and characterization,J.Membr.Sci.190(2001) 159-166.
    [123]B.B.Tang,T.W.Xu,M.Gong,W.H.Yang,A novel positively charged asymmetry membranes from poly(2,6-dimethyl-1,4-phenylene oxide) by benzyl bromination and in situ amination:membrane preparation and characterization,J.Membr.Sci.248(2005) 119-125.
    [124]E.N.Komkova,D.F.Staxnatialis,H.Strathmann,M.Wessling,Anion-exchange membranes containing diamines:preparation and stability in alkaline solution J.Membr.Sci.244(2004) 25-34.
    [125]M.M.Mojtahedi,E.Akbarzadeh,R.Sharifi,M.S.Abaee,Lithium bromide as a flexible,mild,and recyclable reagent for solvent-free cannizzaro,tishchenko,and meerwein-ponndorf-verley reactions,Organic Letters 9(2007) 2791-2793.
    [126]Y.Shi,C.J.Seliskar,Optically transparent polyelectrolyte-silica composite materials:preparation,characterization,and application in optical chemical sensing,Chem.Mater.9(1997) 821-829.
    [127]R.C.T.Slade,J.R.Varcoe,Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes,Solid State Ion.176(2005) 585-597.
    [128]M.Popall,X.M.Du,Inorganic-organic copolymers as solid state ionic conductors with grafted anions,Electrochim.Acta 40(1995) 2305-2308.
    [129]I.Park,H.G.Peng,D.W.Gidley,S.Xue,T.J.Pinnavaia,Epoxy-silica mesocomposites with enhanced tensile properties and oxygen permeability,Chem.Mater.18(2006) 650-656.
    [130]K.Matsuoka,S.Chiba,Y.Iriyama,T.Abe,M.Matsuoka,K.Kikuchi,Z.Ogumi,Preparation of anion-exchange membrane by plasma polymerization and its use in alkaline fuel cells,Thin Solid Films 516(2008) 3309-3313.
    [131]Hiroyuki Yanagi and Kenji Fukuta,Anion exchange membrane and ionomer for alkaline membrane fuel cells(AMFCs),Journal of the electrochemical society transactions,16(2008),257-262
    [132]D.S.Kim,H.B.Park,Y.M.Lee,Y.H.Park,J.W.Rhim,Preparation and characterization of PVDF/silica hybrid membranes containing sulfonic acid groups,Journal of Applied Polymer Science 93(2004) 209-218.
    [133]H.Y.Chang,R.Thangamuthu,C.W.Lin,Structure-property relationships in PEG/SiO_2 based proton conducting hybrid membranes—A ~(29)Si CP/MAS solid-state NMR study,J.Membr.Sci.228(2004) 217-226.
    [134]Y.H.Wu,C.M.Wu,T.W.Xu,Y.X.Fu,Novel anion-exchange organic-inorganic hybrid membranes prepared through sol-gel reaction of multi-alkoxy precursors,J.Membr.Sci.329(2009) 236-245.
    [135]C.Ampelli,D.D.Bella,M.Giuseppe,A.Russo.Calorimetric study of the inhibition of runaway reactions during methylmethacrylate polymerization processes,Journal of loss prevention in the process industries 19(2006) 419-424.
    [136]A.Saxena,B.P.Tripathi,V.K.Shahi,Sulfonated poly(styrene-co-maleic anhydride)-poly(ethylene glycol)-silica nanocomposite polyelectrolyte membranes for fuel cell applications,J.Phys.Chem.B1ll(2007) 12454-12461.
    [137]H.Kim,C.Lim,S.Hong,Gas permeation properties of organic-inorganic hybrid membranes prepared from hydroxyl-terminated polyether and 3-isocyanatopropyltriethoxysilane,J.Sol-Gel Sci.Techn.36(2005) 213-221.
    [138]Q.F.Li,R.H.He,J.O.Jensen,N.J.Bjerrum,Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ℃,Chem.Mater.15(2003)4896-4915.
    [139]T.W.Xu,W.H.Yang,B.L.He,Ionic conductivity threshold in sulphonated poly(phenylene oxide) matrices:a combination of three phase model and percolation theory, Chem.Eng.Sci.56(2001) 5343-5350.
    [140]S.R.Suprakas,O.Masami,Polymer/layered silicate nanocomposites:a review from preparation to processing,Prog.Polym.Sci.28(2003) 1539-1641.
    [141]C.M.Wu,T.W.Xu,M.Gong,W.H.Yang,Multi-step sol-gel process and its effect on the morphology of polyethylene oxide(PEO)/SiO_2 anion-exchange hybrid materials,Eur.Polym.J.43(2007) 1573-1579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700