用户名: 密码: 验证码:
生物质催化热解和气化的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源形势日益严峻,环境污染问题日趋严重,合理开发和利用新型可再生的洁净能源已成为当前紧迫的研究课题。生物质能作为唯一可储存和运输的可再生能源,其高效转换和洁净利用日益受到全世界的关注。生物质热转化技术是实现其能量转换的最有效途径,尤其是将其转化为气体燃料或气化发电。而限制其气化应用的瓶颈和主要障碍是气体中焦油的存在,催化热解气化被认为是去除焦油和提高气化效率最有效的方法。本文依托华中科技大学环境学院和新加坡南洋理工大学环境科学与工程研究院国际交流合作项目,对生物质(油棕废弃物和锯屑)的催化热解和气化技术展开了系统的研究,主要研究内容及成果如下:
     锯屑和油棕废弃物分别是木材加工业和东南亚油棕种植地区的主要固体废弃物。在实际应用和实验室研究中,必需预先经过干燥、破碎和筛分,得到不同粒径范围的实验原料。其理化特性分析显示:油棕废弃物和锯屑都含有较高的挥发份,相对较低的固定碳含量;它们的低位热值约为20MJ/kg,与烟煤和褐煤的热值相当。同时,原料中有害元素N和S含量极低,灰分含量小于5%,所以油棕废弃物和锯屑都是环境友好的生物质资源。
     催化剂的研制是本课题的重要工作之一。本文开发和制备了负载型纳米镍基催化剂,以纳米氧化镍为活性成分,将其负载到γ-Al2O3或自制的赤泥粉煤灰载体上,评价了它在生物质催化热解和气化过程中的催化活性。
     纳米氧化镍粉体的制备采用均匀沉淀法,并利用FTIR、TGA、XRD、TEM等手段对所得纳米NiO颗粒及其前驱体进行了表征和分析。同时探讨了制备纳米氧化镍的最佳工艺条件;并利用热重分析仪初步评价了纳米氧化镍对生物质三种主要成分热解的催化活性,而且与微米NiO的催化性能进行了比较。结果表明:纳米NiO能显著地降低反应的活化能,导致生物质热分解发生在更低的温度,显示出比微米NiO更好的催化活性。在此基础上,以γ-Al2O3为载体,利用沉淀——沉积的方法制备了负载型Nano-NiO/γ-Al2O3催化剂,催化剂中NiO负载量达12wt%以上,负载的NiO粒径在12-18nm之间,其表面积高于商业镍基催化剂。此外,为节省催化剂制备成本和减少环境污染,本文利用工业固废——赤泥和粉煤灰等为原料,制备了催化剂载体,探讨了载体的焙烧工艺和最佳配方。载体的性能测试表明,所制备的催化剂载体符合工业要求,达到了废物资源化的目的。随后,参照Nano-NiO/γ-Al2O3催化剂的制备方法和条件,制备了负载型Nano-NiO/赤泥粉煤灰催化剂,其NiO负载量约10wt%,表面积甚至高于Nano-NiO/γ-Al2O3催化剂。
     利用逆流上吸式固定床对油棕废弃物的热解进行了详细研究,重点探讨了两个主要的热解运行条件(温度和气体停留时间)对油棕废弃物热解产物特性的影响,并采用各种分析手段对热解产物进行了全面的分析,尤其是建立了热解焦油的系统分析方法。实验证明:温度对生物质热解产物的分布和特性起着重要的作用。随着热解温度升高,固体残余焦炭和液体焦油的产量显著降低,气体产量快速增加,气体中H2、CO和CH4的含量随之升高,而CO2含量急剧减小。热解温度升高也使焦油中含氧化合物种类和含量减少,而芳香化合物含量升高,焦油成分随温度而变化。气体停留时间对生物质的热解也有很重要的影响,本实验条件下,停留时间为15s时,气体产量最大。同时,采用HSC模拟软件对油棕废弃物的热解进行了热力学平衡模拟计算,计算结果与生物质热解实验中的产物特性和变化趋势相符。此外,还以苯甲醚为焦油模型化合物,对其热解机理进行了初步的探讨,提出了自由基反应机理,较好地解释了热解实验中焦油的变化趋势。
     在双床石英反应器系统上对油棕废弃物的催化热解进行了对比研究,并评价了各种催化剂的催化性能,测试了纳米镍基催化剂的寿命和再生的方法。实验结果表明:焦炭对生物质热解有一定的催化作用,能提高气体成分中CO的含量,但催化过程中,焦炭被逐渐消耗。白云石能有效地去除热解气中的焦油,提高气体产率,但对甲烷的重整和转化没有催化效果。本文开发的负载型Nano-NiO/γ-Al2O3催化剂和Nano -NiO/赤泥粉煤灰催化剂的催化活性相当,这两种镍基催化剂都能高效去除生物质热解过程中产生的焦油,并显著提高气体产率,调整气体成分,其催化效果明显优于白云石和焦炭。特别地,纳米镍基催化剂的抗失活能力强,失活速率缓慢,并可通水蒸汽和二氧化碳混合气使之再生。
     利用本实验室自行设计的双床不锈钢反应器系统,在连续进料方式下,对锯屑水蒸气催化气化进行了系统的试验研究,探讨和分析了各工艺参数对锯屑催化气化的影响。研究结果表明:生物质气化过程中引入水蒸气和升高温度均能显著提高产气量和H2产率,水蒸气的最佳通入量为1.33(S/B)。催化剂的影响也很大,本文所开发的Nano-NiO/γ-Al2O3催化剂的催化效果明显优于白云石和焦炭催化剂,具有极大的应用价值。相对于生物质催化热解,水蒸气催化气化的产气量、H2产率和焦油去除效率更高,残余焦炭量更少,因而更适合产气或制H2。
     为了开拓生物质热转化产物的利用途径,本文探讨了生物质气作为燃料电池燃料的可行性,研究了生物质气组成对其发电效率的影响;同时,考察了生物质热转化后的残余焦炭对工业废水中铜离子的吸附性能。结果显示,其吸附效率达86%以上。这些开拓性研究将有助于生物质热转化技术的进一步开发和利用。
In view of the severe lack of energy and increasing environmental pollution worldwide, to explore clean energy technologies has become an important and timely research topic. Biomass, as the only reproducible energy that can be stored and transported, is taking great attentions of worldwide researchers with its high effect and cleanness. Biomass pyrolysis/gasification is one of the most efficient processes for converting biomass to energy, especially for gas fuel and power production. However, tar is generally formed in the process, which inhibits the further development and commercialization of biomass gasification. The catalytic pyrolysis is considered as the most potent technique to remove tar, thus to improve gasifying effect and the quality of produced gas. Under the scheme of the research cooperation between Huazhong University of Science and Technology (HUST) and Institute of Environmental Science and Engineering (IESE), Nanyang Technological University (Singapore), the PhD candidate has spent two years of research in IESE on his project entitled“Developing novel catalysts for advanced biomass pyrolysis and gasification”, aiming to develop an advanced biomass gasification technique to convert efficiently palm oil wastes and sawdust into bioenergy. The main findings of this study are summarized as follows:
     Sawdust and palm oil wastes are the main solid wastes coming respectively from wood process and palm oil plants in ASEAN countries. In the practical application and lab work, the wastes were dried, crashed, and sieved in order to get raw materials in different particle sizes. The physicochemical property of these materials showed that palm oil waste and sawdust both contained more volatiles and lower fixed carbon comparing to coal, and their low heat values are ~ 20 MJ/kg, which are similar with that of soft coal and lignite coal. In addition, the baneful elements N and S are of very low contents in raw materials, which are less than 5%. Therefore, palm oil wastes and sawdust are both environment-friendly biomass sources.
     A main task of the thesis research is to develop catalysts suitable for biomass catalytic pyrolysis and gasification. Based on the knowledge obtained on the latest development of nanotechnology, the supported Nano-NiO/γ-Al2O3 catalysts were developed in this study, involving Nano-NiO particles as an active component loaded on carriers such as commercialγ-Al2O3 and the carriers produced in this study. Meantime, the catalytic activity of the developed Nano-NiO/Al2O3 catalysts in biomass pyrolysis/gasification was evaluated systematically using several reactors.
     Nano-NiO particles were prepared by homogeneous precipitation method. Different approaches such as FTIR, TGA, XRD and TEM were used to characterize and analysis the NiO nanoparticles and their precursors. Meanwhile, the optimum conditions for preparing NiO nanoparticles were screened. The catalytic activity of NiO nanoparticles in pyrolyzing three main biomass components was evaluated by TGA, and the catalytic performance was compared with that of Micro-NiO. The results indicated that nano-NiO could reduce markedly the activation energy in reaction, leading to biomass pyrolysis at lower temperature. Compared with micro-NiO, nano-NiO had a better catalytic activity over micro-NiO. From the above successful work, the supported nano-NiO/γ-Al2O3 catalysts were further developed involvingγ-Al2O3 as carrier through deposition-precipitation (DP) Method. The loaded capacity of NiO was more than 12 wt%, the sizes of NiO particles were found between 12 and 18 nm, and its surface area was larger than commercial Nickel-based catalysts. Furthermore, in view of saving cost and protecting environment, industrial solid wastes, i.e. red putty and fly ash were used as raw materials of carriers in this study. The influence of calcinations conditions on preparing the carrier and the optimum proportion of raw materials were investigated. It’s the performance test showed that the prepared carrier met the industrial standards. Following that, the supported catalyst, with nano-NiO coated on putty-fly ash carrier, was prepared following the same method as preparing nano-NiO/γ-Al2O3. The loading capacity of NiO in the supported catalyst was over 10 wt%, and its specific surface area showed larger than nano-NiO/γ-Al2O3.
     A countercurrent fixed bed reactor was used for detailed investigation of palm oil waste pyrolysis. The study focused on the influence of two important pyrolysis conditions such as temperature and gas residence time on the distribution of pyrolysis products. Meanwhile, various analytical means were utilized to characterize the obtained products. In particular, the full screening method of tar in different fractions was established. It demonstrated that temperature played an important role in biomass pyrolysis. As the pyrolysis temperature increased, the gas yield enhanced while that of tar and char reduced. Meanwhile, the amount of H2, CO, and CH4 in product gas increased with the increasing temperature; contrarily, that of CO2 in gas dropped significantly. Furthermore, the proportion of oxygenated compounds in tar declined with temperature increasing, while that of the aromatic hydrocarbons and PAHs showed a marked increase, and the changing trend of oil components versus temperature could be concluded. Gas residence time also demonstrated a big effect on pyrolysis process. When the residence time was 15 s, the yield of gas products reached the biggest. At the same time, HSC software was used to simulate thermodynamically the process and products generated in biomass pyrolysis. The simulation results were consistent with those derived from experimental investigation. Besides, anisole was utilized as a tar model component to explore the mechanism and pathway of tar pyrolysis, and a radical reaction mechanism was put forward to explain preferably the changing trend of the tar components derived from biomass pyrolysis.
     On a double-bed system equipped quartz reactor, the catalytic pyrolysis of palm oil wastes was conducted to evaluate the performance of various catalysts, and to test the lifetime and potential regeneration of nano-nickel catalysts. The results indicated that the char had certain catalytic activity on biomass pyrolysis, especially in upgrading CO amount in gas products, in a price of itself consumption. Dolomite could remove effectively tar in gas, and increased the yield of gas, but it had almost no impact in methane reforming and transforming. The two nano-nickel catalysts developed in this study showed a similar catalytic activity, and they both reduced sharply the yield of tar in biomass pyrolysis whilst increased markedly the gas production and improved significantly the quality of the produced gas. Both the developed nano-nickel catalysts were superior to dolomite and char in removing tar during biomass pyrolysis. In particular, nano-nickel catalysts had strong anti-deactivation and slow deactivation rate, and they could possibly be regenerated by adding H2O and CO2.
     A home designed double-fixed bed system equipped steel reactor with continuous feeding was used to investigate systematically the catalytic gasification of sawdust with adding stream vapor. The influence of various technical parameters on sawdust catalytic gasification was analyzed experimentally. It was found that the higher temperature and adding vapor were favorable for increasing the gas yield and upgrading H2 gas, and the optimum quantity of adding vapor is 1.33 (S/B) in biomass gasification. The developed nano-NiO/γ-Al2O3 catalyst was proven to have a better performance over dolomite and char for catalytic gasification of biomass. Compared with catalytic pyrolysis, biomass gasification with the presence of vapor was more beneficial owing to the higher gas yield and larger proportion of the valuable H2, the higher efficiency for tar removal, as well as lower residue yields.
     To further develop and utilize the products derived from biomass thermochemical conversion, the feasibility of using bio-gas generated from this study as the fuel of solid oxide fuel cell was explored, and the influence of gas composition on the efficiency of power production was investigated. Meanwhile, the absorption performance of residual char on Cu2+ in industrial wastes water was tested. The results revealed that the absorption efficiency of char on Cu2+ was over 86%. These explorations and preliminary studies would facilitate the further development and advances of biomass thermochemical conversion technology.
引文
[1] McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 2002;83 (1):37-46.
    [2] Leung DYC, Yin XL, Wu CZ. A review on the development and commercialization of biomass gasification technologies in China. Renewable and Sustainable Energy Reviews 2004;8 (6):565-80.
    [3] Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management 2001;42 (11):1357-78.
    [4] Caputo AC, Palumbo M, Pelagagge PM, Scacchia F. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and Bioenergy 2005;28 (1):35-51.
    [5] Hamelinck CN, Faaij APC. Outlook for advanced biofuels. Energy Policy 2006;34 (17):3268-83.
    [6] Hamelinck CN, Suurs RAA, Faaij APC. International bioenergy transport costs and energy balance. Biomass and Bioenergy 2005;29 (2):114-34.
    [7]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社, 2003.
    [8]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社, 2002.
    [9] Domalski ES. Thermodynamic data for biomass materials and waste components. New York: The American Society of Mechanical Engineers, 1987.
    [10] Sudo S, Takahashi F, Tekeuchi M. Chemical properties of biomass. New York: Gordon and Breach Science, 1989.
    [11] Zhang JL. Pyrolysis of Biomass. Chemical engineering. Mississippi: Mississippi State University, 1996.
    [12] Rao TR, Sharma A. Pyrolysis rates of biomass materials. Energy 1998;23 (11):973-8.
    [13] Orfao J, Antunes F, Figueiredo J. Pyrolysis kinetics of lignocellulosic materials-three independent reaction model. Fuel 1999;78:349-58.
    [14] Varhegyi G, Antal JJM, Jakab E, Szabo P. Kinetic modeling of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis 1997;42 (1):73-87.
    [15]肖波,周英彪,李建芬.生物质能循环经济技术[M].北京:化学工业出版社, 2006.
    [16] Klass DL. Biomass for renewable energy, fuels, and chemicals. San Diego, CA: Academic Press, 1998.
    [17] Dietrich F, Wegener G. Wood Chemistry, Ultrastructure, and Reactions. New York: Berlin-New York: Walter de Gruyter,, 1989.
    [18] Rodriguez I. Composition related effects on thermal reactivity of organic feedstocks. Chemical Engineering. Washington: University of Washington, 1996.
    [19]杨海平.油棕废弃物热解的实验及机理研究[D].博士论文.武汉:华中科技大学, 2005.
    [20] Demirbas A. Biomass resources for energy and chemical industry. Energy Edu. Sci. Technol. 2000;5:21-45.
    [21] Natarajan E, Ohman M, Gabra M, Nordin A, Liliedahl T, Rao AN. Experimental determination of bed agglomeration tendencies of some common agricultural residues in fluidized bed combustion and gasification. Biomass and Bioenergy 1998;15 (2):163-9.
    [22] Zevenhoven OM, Backman R, Skrifvars BJ, Hupa M, Liliendahl T, Rosen C, Sjostrom K, Engvall K, Hallgren A. The ash chemistry in fluidised bed gasification of biomass fuels. Part II: Ash behaviour prediction versus bench scale agglomeration tests. Fuel 2001;80 (10):1503-12.
    [23] Agblevor FA, Besler S. Inorganic compounds in biomass feedstocks. 1. effect on the quality of fast pyrolysis oils. Energy & Fuels 1996;10 (2):293-8.
    [24] Raveendran K, Ganesh AK, Khilar C. Influence of mineral matter on biomass pyrolysis characteristics. Fuel 1995;74 (12):1812-22.
    [25] Williams PT, Horne PA. The role of metal salts in the pyrolysis of biomass. Renewable Energy 1994;4 (1):1-13.
    [26] Turn SQ, Kinoshita CM, Ishimura DM. Removal of inorganic constituents of biomass feedstocks by mechanical dewatering and leaching. Biomass and Bioenergy 1997;12 (4):241-52.
    [27] Zevenhoven OM, Backman R, Skrifvars BJ, Hupa M. The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash-bed material interaction. Fuel 2001;80 (10):1489-502.
    [28] Blander M. Biomass gasification as a means for avoiding fouling and corrosion during combustion. Journal of Molecular Liquids 1999;83 (1-3):323-8.
    [29]王海滨.国外生物质能转换技术与应用[J].新能源, 2000, (6):15~6.
    [30]石元春.发展生物质产业潜力无限[J]安徽科技, 2005, (5):4~5.
    [31] Turn S, Kinoshita C, Zhang Z, Ishimura D, Zhou J. An experimental investigation of hydrogen production from biomass gasification. International Journal of Hydrogen Energy 1998;23 (8):641-8.
    [32] Demirbas A. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 1998;77:1117-20.
    [33] Demirbas A. Determination of combustion of fuels by using non-calorimetric experimental data. Energy Edu. Sci. Technol. 1998;1:7-12.
    [34] Twidell J. Biomass energy. Renewable Energy World 1998;3:38-9.
    [35] McKendry P. Energy production from biomass (part 2): conversion technologies. Bioresource Technology 2002;83 (1):47-54.
    [36] Broek R, Faaij A, Wijk A. Biomass combustion power generation technologies. Biomass and Bioenergy 1996;11:271-81.
    [37] Demirbas A. Yield of oil products from thermochemical biomass conversion processes. Energy Conversion Management 1998;39:685-90.
    [38] Demirbas A, Arin G. An overview of biomass pyrolysis. Energy Sources 2002;24 (5):471-82.
    [39] Maggi R, Delmon B. Comparison between slow and flash pyrolysis oils from biomass. Fuel 1994;73 (5):671-7.
    [40] Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management 2004;45:651-71.
    [41] Gil J, Corella J, Aznar MP, Caballero MA. Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution. Biomass and Bioenergy 1999;17 (5):389-403.
    [42] McKendry P. Energy production from biomass (part 3): gasification technologies. Bioresource Technology 2002;83 (1):55-63.
    [43] Herguido J, Corella J, Gonzalez SJ. Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. effect of the type of feedstock. Ind. Eng. Chem. Res. 1992;31 (5):1274-82.
    [44] Gil J, Aznar MP, Caballero MA, Frances E, Corella J. Biomass gasification in fluidized bed at pilot scale with steam-oxygen mixtures. product distribution for very different operating conditions. Energy & Fuels 1997;11 (6):1109-18.
    [45] Badin J, Kirschner J. Biomass greens US power production. Renew Energy World 1998;1:40-5.
    [46] Minowa T, Kondo T, Sudirjo ST. Thermochemical liquefaction of Indonesian biomass residues. Biomass and Bioenergy 1998;14 (5-6):517-24.
    [47] Graham RG. A characterization of the fast pyrolysis of cellulose and wood biomass. University of Western Ontario, 1993.
    [48]尹艳红,朱威,夏长荣.一种新的生物质气发电装置——固体氧化物燃料电池[J].可再生能源, 2003;115 (3):38-40.
    [49] Demirbas A. Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolysis oil. Energy 1999;24:141-50.
    [50] Kawser MJ, Nash FA. Oil palm shell as a source of phenol. Journal of Oil Palm Research 2000;12:86-94.
    [51] Milosavljevic I, Suuberg EM. Cellulose thermal decomposition kinetics: Global mass loss kinetics. Ind. Eng. Chem. Res. 1995;34:1081-91.
    [52] Beaumont O, Schwob Y. Influence of physical and chemical parameters on wood pyrolysis. Ind. Eng. Chem. Process Des. 1984;23:637-41.
    [53] Blasi CD, Signorelli G, Russo CD, Rea G. Product distribution from pyrolysis of wood and agricultural residues. Ind. Eng. Chem. Res. 1999;38:2216-24.
    [54] Cetin E, Moghtaderi B, Gupta R, Wall TF. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 2004;83 (16):2139-50.
    [55] Chen G, Spliethoff H, Andries J. The investigation of biomass pyrolysis behaviour: operating variables and catalytic application. In: Samen W, Charters B, Hollands T, editors. Proceedings of the ISES Solar World Congress. Adelaide, Australia, 2001.
    [56] Encinar JM, Beltran FJ, Bernalte A, Ramiro A, Gonzalez JF. Pyrolysis of two agricultural residues: olive and grape bagasse. influence of particle size and temperature. Biomass and Bioenergy 1996;11 (5):397-409.
    [57] Gercel HF. The effect of a sweeping gas flow rate on the fast pyrolysis of biomass. Energy Sources 2002;24 (7):633-42.
    [58] Horne PA, Williams PT. Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 1996;75 (9):1051-9.
    [59] Sensoz S, Can M. Pyrolysis of pine chips: 1. effect of pyrolysis temperature and heating rate on the product yields. Energy Sources 2002;24 (4):347-55.
    [60]朱慧.生物质在落下床中热解和气化制富氢气体[D].硕士论文.大连:大连理工大学, 2005.
    [61] Demirbas A. Gaseous products from biomass by pyrolysis and gasification: effectsof catalyst on hydrogen yield. Energy Conversion and Management 2002;43 (7):897-909.
    [62] Demirbas A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis 2004;71 (2):803-15.
    [63] Beis SH, Onay O, Kockar M. Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renewable Energy 2002;26:21-32.
    [64] Encinar JM, Beltran FJ, Ramiro A, Gonzalez JF. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel processing Technology 1998;55 (3):219-33.
    [65] Babu BV, Chaurasia AS. Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum. Energy Conversion and Management 2004;45 (9-10):1297-327.
    [66] Li S, Xu S, Liu S, Yang C, Lu Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology 2004;85 (8-10):1201-11.
    [67] Zanzi R, Sjostrom K, Bjornbom E. Rapid pyrolysis of agricultural residues at high temperature. Biomass and Bioenergy 2002;23 (5):357-66.
    [68] Chan WCR, Kelbon M, Krieger-Brockett B. Single-particle biomass pyrolysis: correlations of reaction products with process conditions. Ind. Eng. Chem. Res. 1988;27 (12):2261-75.
    [69] Caglar A, Demirbas A. Hydrogen rich gas mixture from olive husk via pyrolysis. Energy Conversion and Management 2002;43 (1):109-17.
    [70] Chen G, Andries J, Spliethoff H. Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energy Conversion and Management 2003;44 (14):2289-96.
    [71] Onay O, Kockar OM. Slow, fast and flash pyrolysis of rapeseed. Renewable Energy 2003;28 (15):2417-33.
    [72] Dai X, Wu C, Li HB, Chen Y. The fast pyrolysis of biomass in CFB reactor. Energy & Fuels 2000;14 (3):552-7.
    [73] Fagbemi L, Khezami L, Capart R. Pyrolysis products from different biomasses: application to the thermal cracking of tar. Applied Energy 2001;69 (4):293-306.
    [74] Shen Z, Day M, Cooney JD, Lu G, Briens CL, Bergougnou MA. Ultrapyrolysis of automobile shredder residue. Can. J. Chem. Eng. 1995;73:357-66.
    [75] Yu QZ, Brage C, Chen GX, Sjostrom K. Temperature impact on the formation of tarfrom biomass pyrolysis in a free-fall reactor. Journal of Analytical and Applied Pyrolysis 1997;40-41:481-9.
    [76] Garcia BP, Bilbao R, Arauzo J, Luisa SM. Scale-up of downdraft moving bed gasifiers (25-300 kg/h) -- design, experimental aspects and results. Bioresource Technology 1994;48 (3):229-35.
    [77] Bilba K, Ouensanga A. Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. Journal of Analytical and Applied Pyrolysis 1996;38:61-73.
    [78] Chen G, Andries J, Luo Z, Spliethoff H. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects. Energy Conversion and Management 2003;44 (11):1875-84.
    [79] Ates F, Putun AE, Putun E. Fixed bed pyrolysis of Euphorbia rigida with different catalysts. Energy Conversion and Management 2005;46 (3):421-32.
    [80] Rapagna S, Tempesti E, Foscolo PU, Parodi E. Continuous fast pyrolysis of biomass at high temperature in a fluidized bed reactor. Journal of Thermal Analysis 1992;38:2621-9.
    [81] Albertazzi S, Basile F, Brandin J, Einvall J, Hulteberg C, Fornasari G, Rosetti V, Sanati M, Trifiro F, Vaccari A. The technical feasibility of biomass gasification for hydrogen production. Catalysis Today 2005;106 (1-4):297-300.
    [82] Gil J AM, Caballero M.A. et al. Biomass gasification in fluidized bed at pilot scale with steam-oxygen mixture. Energy&Fuels, 1997;11 (6):1109-18.
    [83] Branca C, Di Blasi C. Kinetics of the isothermal degradation of wood in the temperature range 528-708 K. Journal of Analytical and Applied Pyrolysis 2003;67 (2):207-19.
    [84] Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX. An experimental study on biomass air-steam gasification in a fluidized bed. Bioresource Technology 2004;95 (1):95-101.
    [85] Koufopanos CA, Maschio G, Lucchesi A. Kinetic Modeling of the Pyrolysis of Biomass and Biomass Components. Canadian Journal of Chemical Engineering 1989;67 (1):75-84.
    [86] Encinar JM, Gonzalez JF, Rodriguez JJ, Ramiro MJ. Catalysed and uncatalysed steam gasification of eucalyptus char: influence of variables and kinetic study. Fuel 2001;80 (14):2025-36.
    [87] Encinar J. M. GJF, Gonzatez J. Steam gasification of cynara cardunculus L.:influence of variables. Fuel processing technology 2002;75:27-43.
    [88]宋晓锐.生物质催化裂解气化研究[D].博士论文.广州:华南理工大学, 1999.
    [89]王铁柱.生物质焦油催化裂解试验研究[D].学位论文.浙江:浙江大学, 2003.
    [90] Evans RJ, Milne TA. Molecular characterization of the pyrolysis of biomass. Energy Fuels 1987;1 (2):123-37.
    [91] Brage C, Yu Q, Chen G, Sjostrom K. Tar evolution profiles obtained from gasification of biomass and coal. Biomass and Bioenergy 2000;18 (1):87-91.
    [92] Hasler P, Nussbaumer T. Gas cleaning for IC engine applications from fixed bed biomass gasification. Biomass and Bioenergy 1999;16 (6):385-95.
    [93]胡冠,徐绍平,刘淑琴.生物质催化气化制氢催化剂研究进展[J].林产化学与工业, 2005 (12):12-5.
    [94] Rapagna S, Jand N, Kiennemann A, Foscolo PU. Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass and Bioenergy 2000;19 (3):187-97.
    [95] Sutton D, Kelleher B, Ross JRH. Review of literature on catalysts for biomass gasification. Fuel Processing Technology 2001;73 (3):155-73.
    [96] Devi L, Ptasinski KJ, Janssen FJG. A review of the primary measures for tar elimination in biomass gasification processes. Biomass and Bioenergy 2003;24 (2):125-40.
    [97]侯斌,吕子安,李晓辉等.生物质热解产物中焦油的催化裂解[J].燃料化学学报2001;29 (1):70-5.
    [98]周劲松,王铁柱,骆仲涣等.生物质焦油的催化裂解研究[J].燃料化学学报, 2003;31 (2):145-9.
    [99]王铁军,常杰,吴创之等.生物质气化焦油催化裂解特性[J].太阳能学报, 2003 24 (3):376-9.
    [100]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究[J].燃料化学学报, 2001;29 (4):319-22.
    [101] Tomishige K, Asadullah M, Kunimori K. Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and fluidized bed reactor. Catalysis Today 2004;89 (4):389-403.
    [102]周志军,赖开忠,周俊虎,刘建忠,岑可法.气化过程中焦油催化裂解的影响因素研究[J].热力发电, 2005;11:26-30.
    [103] Aznar, M. P. et al. Commercial steam reforming catalysts to improve biomassgasification with steam-oxygen mixtures. . Ind. Eng. Chem. Res., 1 1999;37 (7):2668-80.
    [104] Simell P, Stahlberg P, Kurkela E, Albrecht J, Deutsch S, Sjostrom K. Provisional protocol for the sampling and anlaysis of tar and particulates in the gas from large-scale biomass gasifiers. Version 1998. Biomass and Bioenergy 2000;18 (1):19-38.
    [105] Mutert EW, Fairhurst TH. Oil palm - the great crop of Southeast Asia: potential, nutrition and management. The IFA Regional Conference for Asia and the Pacific. Kuala Lumpur, Malaysia, 1999. pp. 14-7.
    [106] Kittikun AH, Prasertsan P, Srisuwan G, Krause A. Environmental management for palm oil mill. Internet Conference on Material Flow Analysis of Integrated Bio-Systems, 2000.
    [107] Indarti. Country paper-Indonesia. Economic and Social Commission for Asia and the Pacific-Regional seminar on commercialization of biomass technology. Guangzhou, China, 2001.
    [108] Ramli M, Rozaine M. An investigation of particulate emissions from palm oil mill boilers using solid fuel. The CTCE'97 National Conference on Combustion Technologies for Cleaner Environment. Kuala Lumpur, Malaysia, 1997.
    [109] Mayoral MC, Izquierdo MT, Andres JM, Rubio B. Different approaches to proximate analysis by thermogravimetry analysis. Thermochimica Acta 2001;370:91-7.
    [110] Mattsson JE. Country Report on Standardization of Solid Biofuels in Sweden. 2000.
    [111] Blasi CD. Comparison of semi-global mechanism for primary pyrolysis of lignocellulosic fuels. Journal Analytical and Applied Pyrolysis 1998;47:43-64.
    [112] Rapagna S, Jand N, Foscolo PU. Catalytic gasification of biomass to produce hydrogen rich gas. International Journal of Hydrogen Energy 1998;23 (7):551-7.
    [113] Raveendran K, Ganesh A, Khilar KC. Pyrolysis characteristics of biomass and biomass components. Fuel 1996;75 (8):987-98.
    [114] Stamm A. Thermal Degradation of Wood and Cellulose. J. Ind. Eng. Chem. 1956;48:413-7.
    [115] Wang Y, Zhu J, Yang X, Lu L, Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochimica Acta 2005;437 (1-2):106-9.
    [116] Carnes CL, Klabunde KJ. The catalytic methanol synthesis over nanoparticle metaloxide catalysts. Journal of Molecular Catalysis A: Chemical 2003;194 (1-2):227-36.
    [117] Devi L, Ptasinski KJ, Janssen FJJG. Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar. Fuel Processing Technology 2005;86 (6):707-30.
    [118] Furusawa T, Tsutsumi A. Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification. Applied Catalysis A: General 2005;278 (2):207-12.
    [119] Czernik S, French R, Feik C, Chornet E. Hydrogen by Catalytic Steam Reforming of Liquid By products from Biomass Thermoconversion Processes. Ind. Eng. Chem. Res. 2002;41 (17):4209-15.
    [120] Li Q, Wang L-S, Hu B-Y, Yang C, Zhou L, Zhang L. Preparation and characterization of NiO nanoparticles through calcination of malate gel. Materials Letters 2007;61 (8-9):1615-8.
    [121] Bhargava RN. Doped nanocrystalline materials -- Physics and applications. Journal of Luminescence 1996;70 (1-6):85-94.
    [122] Ichiyanagi Y, Wakabayashi N, Yamazaki J, Yamada S, Kimishima Y, Komatsu E, Tajima H. Magnetic properties of NiO nanoparticles. Physica B: Condensed Matter 2003;329-333 (Part 2):862-3.
    [123] Biju V, Abdul Khadar M. Analysis of AC electrical properties of nanocrystalline nickel oxide. Materials Science and Engineering A 2001;304-306:814-7.
    [124] Deki S, Iizuka S, Mizuhata M, Kajinami A. Fabrication of nano-structured materials from aqueous solution by liquid phase deposition. Journal of Electroanalytical Chemistry 2005;584 (1):38-43.
    [125] Dierstein A, Natter H, Meyer F, Stephan HO, Kropf C, Hempelmann R. Electrochemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides. Scripta Materialia 2001;44 (8-9):2209-12.
    [126]张明月,廖列文.均匀沉淀法制备纳米氧化物研究进展[J].化工装备技术, 2002;23 (4):18-20.
    [127] Xin X, Lu Z, Zhou B, Huang X, Zhu R, Sha X, Zhang Y, Su W. Effect of synthesis conditions on the performance of weakly agglomerated nanocrystalline NiO. Journal of Alloys and Compounds 2007;427 (1-2):251-5.
    [128] Liu X-M, Zhang X-G, Fu S-Y. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors. Materials Research Bulletin 2006;41 (3):620-7.
    [129] Li G-J, Huang X-X, Shi Y, Guo J-K. Preparation and characteristics of nanocrystalline NiO by organic solvent method. Materials Letters 2001;51 (4):325-30.
    [130] Zhang R, Brown RC, Suby A, Cummer K. Catalytic destruction of tar in biomass derived producer gas. Energy Conversion and Management 2004;45 (7-8):995-1014.
    [131] Mi Y, Liu Y, Zhang J. Preparation of nano-crystalline NiO by combustion method. Chemical Research and Application 2005;17 (1):81-2 (in Chinese).
    [132] Li J, Yan R, Xiao B. Preparation of NiO nanoparticles by homogeneous precipitation method at optimized process conditions. Chemical Engineering 2007:In Press.
    [133] Di Blasi C. Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. Journal of Analytical and Applied Pyrolysis 1998;47 (1):43-64.
    [134] Yang HP, Yan R, Chin T, Liang DT, Chen HP, Zheng CG. Thermogravimetric Analysis-Fourier Transform Infrared Analysis of Palm Oil Waste Pyrolysis. Energy Fuels 2004;18 (6):1814-21.
    [135] Song C, Hu H, Zhu S, Wang G, Chen G. Nonisothermal Catalytic Liquefaction of Corn Stalk in Subcritical and Supercritical Water. Energy Fuels 2004;18 (1):90-6.
    [136] Milosavljevic I, Suuberg EM. Cellulose Thermal-Decomposition Kinetics - Global Mass-Loss Kinetics. Industrial & Engineering Chemistry Research 1995;34 (4):1081-91.
    [137] Reynolds JG, Burnham AK. Pyrolysis Decomposition Kinetics of Cellulose-Based Materials by Constant Heating Rate Micropyrolysis. Energy Fuels 1997;11 (1):88-97.
    [138] Varhegyi G, Antal MJ, Jakab E, Szabo P. Kinetic modeling of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis 1997;42 (1):73-87.
    [139] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management 2000;41 (6):633-46.
    [140] Jensen A, Dam-Johansen K, Wojtowicz MA, Serio MA. TG-FTIR Study of the Influence of Potassium Chloride on Wheat Straw Pyrolysis. Energy Fuels 1998;12 (5):929-38.
    [141] Galwey AK. Is the science of thermal analysis kinetics based on solid foundations?: A literature appraisal. Thermochimica Acta 2004;413 (1-2):139-83.
    [142] Chen JH, Li CR. Thermal Analysis and Application. Beijing, China: Science Press, 1985.
    [143] Antal JJM, Varhegyi G. Cellulose pyrolysis kinetics: The current state of knowledge. Ind. Eng. Chem. Res. 1995;34 (3):703-17.
    [144] Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science;In Press, Corrected Proof.
    [145] van Dillen AJ, Terorde R, Lensveld DJ, Geus JW, de Jong KP. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. Journal of Catalysis 2003;216 (1-2):257-64.
    [146] Chang FW, Hsiao TJ, Shih JD. Hydrogenation of CO2 over a Rice Husk Ash Supported Nickel Catalyst Prepared by Deposition-Precipitation. Ind. Eng. Chem. Res. 1998;37 (10):3838-45.
    [147] Burattin P, Che M, Louis C. Metal Particle Size in Ni/SiO2 Materials Prepared by Deposition-Precipitation: Influence of the Nature of the Ni(II) Phase and of Its Interaction with the Support. J. Phys. Chem. B 1999;103 (30):6171-8.
    [148] Fajardo HV, Martins AO, de Almeida RM, Noda LK, Probst LFD, Valentini A. Synthesis of mesoporous Al2O3 macrospheres using the biopolymer chitosan as a template: A novel active catalyst system for CO2 reforming of methane. Materials Letters 2005;59 (29-30):3963-7.
    [149]齐建召,杨家宽,王梅等.赤泥做道路基层材料的试验研究[J].公路交通科技, 2005;22 (6):30-3.
    [150]杨家宽,王梅,齐建召,肖波.铸造旧砂制备免烧砖及经济性分析[J].环境工程, 2005;23 (3):81-2.
    [151]王梅,杨家宽,侯健.生产赤泥粉煤灰免烧砖原料的研究[J].矿产综合利用, 2005;25 (12):23-5.
    [152]朱洪法.催化剂载体[M].北京:化学工业出版社, 1980
    [153] Bridgwater AV. Catalysis in thermal biomass conversion. Applied Catalysis A: General 1994;116 (1-2):5-47.
    [154] Chen G, Andries J, Spliethoff H, Fang M, van de Enden PJ. Biomass gasification integrated with pyrolysis in a circulating fluidised bed. Solar Energy 2004;76 (1-3):345-9.
    [155] Yang HP, Yan R, Chen HP, Lee DH, Liang DT, Zheng CG. Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Processing Technology2006;87 (10):935-42.
    [156] Demirbas A. Yields of hydrogen-rich gaseous products via pyrolysis from selected biomass samples. Fuel 2001;80:1885-91.
    [157] Segal A, Gorecki T, Mussche P, Lips J, Pawliszyn J. Development of membrane extraction with a sorbent interface-micro gas chromatography system for field analysis. Journal of Chromatography A 2000;873:13-27.
    [158] Avenell CS, Sainz-Diaz CI, Griffiths AJ. Solid waste pyrolysis in pilot scale batch pyrolyser. Fuel 1996;75 (10):1167-74.
    [159] Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M. Hydrothermal gasification of biomass and organic wastes. The Journal of Supercritical Fluids 2000;17 (2):145-53.
    [160] Yang HP, Yan R, Chen HP, Lee DH, Liang DT, Zheng CG. Mechanism of Palm Oil Waste Pyrolysis in a Packed Bed. Energy Fuels 2006;20 (3):1321-8.
    [161] Yorgun S, Sens?z S, Kockar ?M. Flash pyrolysis of sunflower oil cake for production of liquid fuels. Journal of Analytical and Applied Pyrolysis 2001;60 (1):1-12.
    [162] Williams PT, Horne PA. Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading. Biomass and Bioenergy 1994;7 (1-6):223-36.
    [163] Hirsch DE, Hopkins RL, Coleman HJ. Separation of High-Boiling Petroleum Distillates Using Gradient Elution Through Dual-Packed (Silica Gel-Alumina Gel) Adsorption Columns. Analytical chemistry 1972;44:915-9.
    [164] Prest H. Solid-phase extraction and retention-time locked GC/MS analysis of seleted polycyclic aromatic hydrocarbons. Agilent Technology, 2002.
    [165] Acikgoz C, Onay O, Kockar OM. Fast pyrolysis of linseed: product yields and compositions. Journal of Analytical and Applied Pyrolysis 2004;71 (2):417-29.
    [166] Islama NM, Zailani R, Ani NF. Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and its characterisation. Renewable Energy 1999;17 (1):73-84.
    [167] Meier D, Faix O. State of the art of applied fast pyrolysis of lignocellulosic materials--a review. Biosource Technology 1999;68 (1):71-7.
    [168] Dai XW, Wu CZ, Li HB, Chen Y. The Fast Pyrolysis of Biomass in CFB Reactor. Energy Fuels 2000;14 (3):552-7.
    [169] Fisher T, Hajaligol M, Waymack B, Kellogg D. Pyrolysis behavior and kinetics of biomass derived materials. Journal of Analytical and Applied Pyrolysis 2002;62(2):331-49.
    [170] Pütün AE, ?zcan A, Pütün E. Pyrolysis of hazelnut shells in a fixed-bed tubular reactor: yields and structural analysis of bio-oil. Journal of Analytical and Applied Pyrolysis 1999;52 (1):33-49.
    [171] Solomon PR, Serio MA, Suuberg EM. Coal pyrolysis: Experiments, kinetic rates and mechanisms. Progress in Energy and Combustion Science 1992;18 (2):133-220.
    [172] Solomon PR, Serio MA, Carangelo RM, Markham JR. Very rapid coal pyrolysis. Fuel 1986;65 (2):182-94.
    [173] Serio MA, Peters WA, Howard JB. Kinetics of vapor-phase secondary reactions of prompt coal pyrolysis tars. Ind. Eng. Chem. Res. 1987;26 (9):1831-8.
    [174] Solomon PR, Serio MA, Despande GV, Kroo E. Cross-linking reactions during coal conversion. Energy Fuels 1990;4 (1):42-54.
    [175] Serio MA, Hamblen DG, Markham JR, Solomon PR. Kinetics of volatile product evolution in coal pyrolysis: experiment and theory. Energy Fuels 1987;1 (2):138-52.
    [176] Yan R, Zhu H, Zheng C, Xu M. Emissions of organic hazardous air pollutants during Chinese coal combustion. Energy 2002;27 (5):485-503.
    [177] Branca C, Giudicianni P, Di Blasi C. GC/MS Characterization of Liquids Generated from Low-Temperature Pyrolysis of Wood. Ind. Eng. Chem. Res. 2003;42 (14):3190-202.
    [178] Williams PT, Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 2000;25 (6):493-513.
    [179] Bruinsma OSL, Geertsma RS, Bank P, Moulijn JA. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor : 1. Benzene and derivatives. Fuel 1988;67 (3):327-33.
    [180] Evans RJ, Wang D, Agblevor FA, Chum HL, Baldwin SD. Mass spectrometric studies of the thermal decomposition of carbohydrates using 13C-labeled cellulose and glucose. Carbohydrate Research 1996;281 (2):219-35.
    [181] Yu Q, Brage C, Chen G, Sjostrom K. Temperature impact on the formation of tar from biomass pyrolysis in a free-fall reactor. Journal of Analytical and Applied Pyrolysis 1997;40-41:481-9.
    [182] Milne TA, Evans RJ. Biomass Gasifier“Tars”: Their Nature, Formation and Conversion. Golden, Colorada: National Renewable Energy Laboratory, 1998.
    [183] Elliott DC. Relation of Reaction Time and Temperature to Chemical Composition of Pyrolysis Oils. In: Soltes EJ, Milne. TA, editors. ACS Symposium Series 376,Pyrolysis Oils from Biomass. Denver, CO. USA.
    [184] Font R, Marcilla A, Devesa J, Verdu E. Gaseous hydrocarbons from flash pyrolysis of almond shells. Ind. Eng. Chem. Res. 1988;27 (7):1143-9.
    [185] Scott DS, Piskorz J, Bergougnou MA, Graham R, Overend RP. The role of temperature in the fast pyrolysis of cellulose and wood. Ind. Eng. Chem. Res. 1988;27 (1):8-15.
    [186] Jensen PA, Frandsen FJ, Dam-Johansen K, Sander B. Experimental Investigation of the Transformation and Release to Gas Phase of Potassium and Chlorine during Straw Pyrolysis. Energy & Fuels 2000;14 (6):1280-5.
    [187] Rostami AA, M.R. H, E. WS. A biomass pyrolysis sub-model for CFD applications. Fuel 2004;83:1519-25.
    [188] Zainal ZA, Ali R, Lean CH, Seetharamu KN. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Conversion and Management 2001;42 (12):1499-515.
    [189] Li XT, Grace JR, Watkinson AP, Lim CJ, Ergüdenler A. Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier Fuel 2001;80:195-207.
    [190] Fink JK. High temperature pyrolysis of plastics in contact with liquid steel. Journal of Analytical and Applied Pyrolysis 1999;49:107-23.
    [191] Gueret C, Billaud F. Methane pyrolysis: thermodynamics. Chemical Engineering Science 1997;52 (5):815-27.
    [192] Lee YL, Sanchez JM. Theoretical study of thermodynamics relevant to tetramethylsilane pyrolysis. Journal of Crystal Growth 1997;178:513-7.
    [193] Roine A. Outokumpu HSC chemistry for windows, Chemical reaction and equilibrium software with extensive thermochemical database,HSC chemistry 4.0. Outokumpu Research Oy. Finland, 1999.
    [194] Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR. Biomass gasification in a circulating fluidized bed. Biomass and Bioenergy 2004;26 (2):171-93.
    [195] Williams PT, Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 2000;25:493-513.
    [196] Reed T. Biomass gasification and principles. In. New Jersey, USA.: Park Ridge, Noyes Data Corporation,, 1981. pp. 123.
    [197] Schuster G, Loffler G, Weigl K, Hofbauer H. Biomass steam gasification - an extensive parametric modeling study. Bioresource Technology 2001;77 (1):71-9.
    [198] Friderichsen AV, Shin EJ, Evans RJ, Nimlos MR, Dayton DC, Ellison GB. The pyrolysis of anisole (C6H5OCH3) using a hyperthermal nozzle. Fuel 2001;80 (12):1747-55.
    [199] Shin EJ, Nimlos MR, Evans RJ. A study of the mechanisms of vanillin pyrolysis by mass spectrometry and multivariate analysis. Fuel 2001;80 (12):1689-96.
    [200] Loffler G, Wargadalam VJ, Winter F. Catalytic effect of biomass ash on CO. CH4, and HCN oxidation under fluidized bed combustor conditions. Fuel 2002;81 (6):711-7.
    [201] Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N. Bio-syngas production from biomass catalytic gasification. Energy Conversion and Management;In Press, Corrected Proof.
    [202] Hu G, Xu S, Li S, Xiao C, Liu S. Steam gasification of apricot stones with olivine and dolomite as downstream catalysts. Fuel Processing Technology 2006;87 (5):375-82.
    [203] Hanaoka T, Inoue S, Uno S, Ogi T, Minowa T. Effect of woody biomass components on air-steam gasification. Biomass and Bioenergy 2005;28 (1):69-76.
    [204] Zhang R, Wang Y, Brown RC. Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2. Energy Conversion and Management;In Press, Corrected Proof.
    [205] Kimura T, Miyazawa T, Nishikawa J. Development of Ni catalysts for tar removal by steam gasification of biomass. Applied Catalysis B: Environmental;In Press, Corrected Proof.
    [206] Panopoulos KD, Fryda L, Karl J, Poulou S, Kakaras E. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification: Part II: Exergy analysis. Journal of Power Sources 2006;159 (1):586-94.
    [207] Zhang L, Jiang SP, Wang W, Zhang Y. NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. Journal of Power Sources 2007;170:55-60.
    [208] Boateng AA, Cooke PH, Hicks KB. Microstructure development of chars derived from high-temperature pyrolysis of barley (Hordeum vulgare L.) hulls. Fuel;In Press, Uncorrected Proof.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700