LSPR传感与微流体系统集成化的生物芯片研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生命科学的不断发展,生物医学检测和生物化学分析得到越来越多的重视,微纳米结构的微流体系统已经逐渐成为研究的热点。本文的主要工作是在研究金纳米粒子的局域表面等离子共振(LSPR)消光特性的基础上,将行波压电微泵与LSPR传感器件集成制作在玻璃基片上,形成一体化的高灵敏度生物芯片系统,实现整体系统的小型化和低成本。在行波压电微泵的制作中,设计了新型的微泵管道结构,提高了微泵输送液体的效率。为了给LSPR传感区域的金纳米粒子消光性质提供理论依据,采用离散偶极子近似(DDA)等仿真算法分析了不同间距的金纳米粒子阵列的消光性质,得出其分布密度对整体灵敏度的影响。并利用金纳米粒子在可见光区的LSPR消光特性,分析纳米粒子表面的分子反应过程。本文的研究目的,是为了开发用于生物医学领域的小型、廉价、高灵敏度、集成化的LSPR生物芯片检测系统。主要研究工作包括:
     1.行波压电微泵的理论研究与仿真分析。选用压电双晶片作为行波压电微泵的执行器,详细分析了压电双晶片振幅模型的理论推导和行波在弹性管道上的形成机理;利用有限元分析软件ANSYS对压电双晶片进行建模仿真,分析了几个重要因素对压电双晶片振幅的影响,对设计参数进行优化改进;同时还分析了与弹性管道接触的压电双晶片输出不同位移时,管道内部产生的位移响应。
     2.行波压电微泵的设计和制作。以PMMA为材料,用微机械加工方法制作行波压电微泵基底和微泵管道模具;将液体高分子材料PDMS注入到PMMA模具中,经过固化处理,制作出弹性微泵管道;在微泵基底上制作了PDMS薄膜,利用热键合工艺将微泵管道与基底粘合在一起,并将压电双晶片阵列安装在泵区管道上方,完成行波压电微泵的制作;将行波压电微泵的泵区管道设计为多级扩散结构的锯齿形管道,在较低的驱动电压下,提高了微泵的最大平均流速和背压,分别达到33.36μL/min和1.13kPa;在相同的测试条件下,与平直结构管道的行波压电微泵的测试数值(24.88μL/min和0.64kPa)相比,新型结构的微泵性能有较大的提高。
     3.对不同纳米粒子及其阵列消光特性的仿真分析。采用离散偶极子近似(DDA)方法和时域有限差分(FDTD)方法,分析了金属纳米粒子的材料、形状、大小以及阵列结构等参数对其LSPR消光特性的影响;利用DDA方法仿真分析了不同间距的球形纳米粒子阵列的LSPR消光特性,分析结果说明消光峰值波长和强度随纳米粒子间距的减小而增大,但在间距较大的情况下,纳米粒子阵列的折射率灵敏度基本不变。因此,当纳米粒子阵列的间距较大时,其局部分布的不均匀不会影响LSPR传感芯片的整体性能。
     4. LSPR生物传感芯片的测试。用柠檬酸钠还原法水相合成球形金纳米粒子,并将金纳米粒子自组装在硅烷化的玻璃基片表面,形成LSPR敏感膜;测试比较不同大小、不同分布密度的金纳米粒子阵列在不同介质中的消光特性,研究不同参数的敏感膜的LSPR消光光谱,从实验结果上说明金纳米粒子间距对折射率灵敏度的影响。
     5.集成化LSPR生物传感系统的制作。以LSPR生物传感芯片为基底,利用紫外线键合工艺将行波压电微泵制作在芯片基底上,用来向敏感膜输送样品;并将检测光纤引入到LSPR敏感膜处,通过光纤将传感区域与片外分光光度计连接在一起,检测LSPR消光光谱,完成集成化LSPR生物传感系统的制作。
     6.生物免疫测量的应用。用行波压电微泵将巯基烷酸、交联剂(EDC/NHS)和羊抗人IgG先后输送到固定有金纳米粒子阵列的LSPR敏感膜处,完成探针分子的修饰,测定各个反应步骤的LSPR消光光谱和折射率灵敏度,制备出高灵敏度的生物传感芯片。
Along with the continuous development of life sciences, biomedical detectionand biochemical analysis have getting more and more attention of the researchers,and the microfluidic systems have also gradually become a research hotspot. Themain work of this paper is fabricating a high sensitivity biochip system, whichintegrated the traveling-wave piezoelectric micropump and Localized SurfacePlasmon Resonance (LSPR) sensing device onto the glass substrate, to achieve theminiaturized and inexpensive test, on the basis of the study of LSPR extinctionproperties of the gold nanoparticles. The novel microchannel structure of thetraveling-wave piezoelectric micropump was designed to improve the micropumpefficiency in the fabrication of the micropump. In order to provide the theoreticalanalysis of the gold nanoparticles at the LSPR sensing area, the extinction propertiesof the gold nanoparticles array was simulated by Discrete Dipole Approximation(DDA) method to obtain the sensitivity influence of the array density. Furthermore,the molecular reaction procedure on the nanoparticles' surface was tested by theextinction properties in the visible region. The research of this paper developed anintegrated LSPR biochip system applied to the biomedical test with the advantages ofminiaturezation, low cost and high sensitivity. The main work includes:
     1. Theoretical simulation of the traveling-wave piezoelectric micropumps. Theamplitude theoretical model of piezoelectric bimorphs and the formationmechanism of microchannels were analyzed in detail, while the piezoelectricbimorphs were selected as the micropump actuators; the piezoelectric bimorphwas modeled by Finite Element Analysis software ANSYS, and the influence ofthe important factors toward the amplitude of the piezoelectric bimorph weresimulated to optimize the design parameters; meanwhile, the inside displacementresponse of the PDMS microchannel was simulated when the piezoelectricbimorphs generated different displacement on the microchannel.
     2. Design and fabrication of the traveling-wave piezoelectric micropump. The micropump substrate and microchannel mold were fabricated with PMMA bymicromachining technology, and the microchannel was formed by liquid polymermaterial PDMS using injection molding process; the traveling-wave piezoelectricmicropump would be done while the microchannel was bonded onto the substateby thermal bonding process, and the piezoelectric bimorphs array was fixed onthe pump area of the microchannel; the pump area configuration of themicrochannel was designed as a saw-tooth stucture of multi-stage diffuser, whichwas improved the maximum flow rate and the maximum back pressure of themicropump at the lower voltage, the average flow rate and back pressurerespectively reached33.36μL/min and1.13kPa; with the same testing conditions,these two parameters of straight microchannel were respectively24.88μL/minand0.64kPa, which are much smaller than those of saw-tooth microchannel.
     3. The simulation of the extinction properties of different nanoparticles andnanoparticles arrays. The LSPR extinction of nanoparticles with differentmaterial, shape, size and array structure were simulated by Discrete DipoleApproximation (DDA) and Finite-Difference Time-Domain (FDTD) method; theextinction properties of spherical nanoparticles arrays with different spacing weresimulated by DDA method, and the simulation results indicate that the extinctionwavelength and intensity were increasing with the decreasing nanoparticlesspacing, but the refractive index (RI) sensitivity remained a constant essentiallywhen the nanoparticles spacing was large enough. Therefore, the local unevendistribution of the nanoparticles array would not change its RI sensitivity as thespacing between nanoparticles is large enough.
     4. The testing of the LSPR biosensor chip. The spherical gold nanoparticles wassynthetized by sodium citrate reduction method, and fixed on the silanized glasssubstrate by self-assembly technology, forming a monolayer of gold nanoparticlesarray; the extinction properties of gold nanoparticles arrays in different mediumwas tested, and the influence to the RI sensitivity of the biosensor chip withdifferent array spacing was researched.
     5. The fabrication of integrated LSPR biosensing system. The traveling-wavepiezoelectric micropump, which applied to deliver the sample to the sensing area, was integrated on the LSPR biosensor chip by ultraviolet bonding process, andthe optical fiber was introduced into the LSPR sensing area; thus, the LSPRsensor and the off-chip optical detection equipment were connected together toforming the integrated LSPR biosensing system.
     6. The application of Biological immune measurement. The mercapto acid,crosslinking agent (EDC/NHS) and goat anti-human IgG were successivelytransported to the LSPR sensing membrane of gold nanoparticles array bytraveling-wave piezoelectric micropump to modify the probe molecules, and theLSPR extinction spectrum of each step of the modifying reaction procedure wastest by spectrophotometer to obtain the biosensor chip with higher sensitivity.
引文
[1]张仁元,黄金,李昌明,等.基于硅结构的微混合器研究进展与应用.材料导报,2004,18(003):67-69
    [2] Thorsen T, Maerkl S J, and Quake S R. Microfluidic large-scale integration. Science,2002,298(5593):580-584
    [3] Psaltis D, Quake S R, and Yang C. Developing optofluidic technology through the fusion ofmicrofluidics and optics. Nature,2006,442(7101):381-386
    [4] Leslie D C, Easley C J, Seker E, et al. Frequency-specific flow control in microfluidic circuitswith passive elastomeric features. Nature Physics,2009,5(3):231-235
    [5]宋益宽.基于磁流变液微驱动控制技术研究:[硕士学位论文].上海:同济大学,2009
    [6] Chung B G, Manbachi A, Saadi W, et al. A gradient-generating microfluidic device for cellbiology. Journal of visualized experiments: JoVE,2007,7:271
    [7] Liu S, Shi Y, William W J, et al. Optimization of high-speed DNA sequencing onmicrofabricated capillary electrophoresis channels. Analytical chemistry,1999,71(3):566-573
    [8] Zheng B, Roach L S, and Ismagilov R F. Screening of protein crystallization conditions on amicrofluidic chip using nanoliter-size droplets. Journal of the American Chemical Society,2003,125(37):11170-11171
    [9] Hong J W and Quake S R. Integrated nanoliter systems. Nature biotechnology,2003,21(10):1179-1183
    [10]何红伟.基于纳米压印技术的悬浮阵列生物芯片的研究:[硕士学位论文].天津:天津大学,2009
    [11] Kirby B J. Micro-and nanoscale fluid mechanics: transport in microfluidic devices. New York:Cambridge University Press,2010.80-87
    [12] Squires T M and Quake S R. Microfluidics: Fluid physics at the nanoliter scale. Reviews ofmodern physics,2005,77(3):977
    [13]方肇伦.微流控分析芯片的制作及应用.北京:化学工业出版社,2005
    [14] Xia Y and Whitesides G M. Soft lithography. Annual review of materials science,1998,28(1):153-184
    [15] Harrison D J, Manz A, Fan Z, et al. Capillary electrophoresis and sample injection systemsintegrated on a planar glass chip. Analytical chemistry,1992,64(17):1926-1932
    [16] Jacobson S C, Koutny L B, Hergenroeder R, et al. Microchip capillary electrophoresis with anintegrated postcolumn reactor. Analytical chemistry,1994,66(20):3472-3476
    [17] Woolley A T and Mathies R A. Ultra-high-speed DNA sequencing using capillaryelectrophoresis chips. Analytical chemistry,1995,67(20):3676-3680
    [18] Woolley A T, Hadley D, Landre P, et al. Functional integration of PCR amplification andcapillary electrophoresis in a microfabricated DNA analysis device. Analytical chemistry,1996,68(23):4081-4086
    [19] Woolley A T, Sensabaugh G F, and Mathies R A. High-speed DNA genotyping usingmicrofabricated capillary array electrophoresis chips. Analytical chemistry,1997,69(11):2181-2186
    [20]杨锶毅.用于生物芯片的微流控系统研究:[硕士学位论文].天津:南开大学,2010
    [21]沙菁,侯丽雅,章维一,等.微流体系统驱动技术的研究进展.微纳电子技术,2007,43(12):586-591
    [22]王瑞金.微通道中流体扩散和混合机理及其微混合器的研究:[博士学位论文].杭州:浙江大学,2005
    [23] Shoji S, Nakagawa S, and Esashi M. Micropump and sample-injector for integrated chemicalanalyzing systems. Sensors and Actuators A: Physical,1990,21(1-3):189-192
    [24] Van Lintel H, Van de Pol F, and Bouwstra S. A piezoelectric micropump based onmicromachining of silicon. Sensors and Actuators,1988,15(2):153-167
    [25] Zengerle R, Richter A, and Sandmaier H. A micro membrane pump with electrostatic actuation.in: Micro Electro Mechanical System '92. Germany: IEEE,1992.19-24
    [26] Unger M A, Chou H P, Thorsen T, et al. Monolithic microfabricated valves and pumps bymultilayer soft lithography. Science,2000,288(5463):113-116
    [27] Van de Pol F, Van Lintel H, Elwenspoek M, et al. A thermopneumatic micropump based onmicro-engineering techniques. Sensors and Actuators A: Physical,1990,21(1-3):198-202
    [28] Smits J G. Piezoelectric micropump with three valves working peristaltically. Sensors andActuators A: Physical,1990,21(1-3):203-206
    [29] Esashi M, Shoji S, and Nakano A. Normally closed microvalve and mircopump fabricated on asilicon wafer. Sensors and Actuators,1989,20(1):163-169
    [30] Hou W, Zheng X, Das B, et al. Simulation of the fluidic features for diffuser/nozzle involved in aPZT-based valveless micropump. Chinese Journal of Scientific Instrument,2008,29(1):1-4
    [31]冯焱颖,周兆英.微流体驱动与控制技术研究进展.力学进展,2002,32(1):1-16
    [32] Suzuki T, Hata H, Shintaku H, et al. Visualization and optimization for fluid flow of travelingwave micropump using microPIV and numerical simulation. in: Proceedings of microTAS2005.USA,2005.1108-1110
    [33] Suzuki T, Teramura Y, Hata H, et al. Development of a micro biochip integrated traveling wavemicropumps and surface plasmon resonance imaging sensors. Microsystem Technologies,2007,13(8):1391-1396
    [34]姜春香.超声行波微流体驱动模型的动力学分析及声固耦合分析:[硕士学位论文].济南:山东大学,2008
    [35]刘国华,常露,张维,等. SPR传感技术的发展与应用.仪表技术与传感器,2006,11:1-5
    [36] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species.Chemical reviews,2008,108(2):462-493
    [37] Homola J. Present and future of surface plasmon resonance biosensors. Analytical andBioanalytical Chemistry,2003,377(3):528-539
    [38] Kretschmann E and Raether H. Radiative decay of non radiative surface plasmons excited bylight(Surface plasma waves excitation by light and decay into photons applied to nonradiativemodes). Zeitschrift Fuer Naturforschung, Teil A,1968,23:2135
    [39]张维,徐宁,谢海燕,等.基于二元光学的多通道SPR传感芯片及其系统设计.传感技术学报,2009,8:1099-1104
    [40] Thompson D. Michael Faraday's recognition of ruby gold: the birth of modern nanotechnology.Gold Bulletin,2007,40(4):267-269
    [41] Yan Q, Qin W, Wang C, et al. Plasmon-enhanced polymer bulk heterojunction solar cells withsolution-processable Ag nanoparticles. Optoelectronics Letters,2011,7(6):410-414
    [42] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: theinfluence of size, shape, and dielectric environment. The Journal of Physical Chemistry B,2003,107(3):668-677
    [43] Haes A J and Van Duyne R P. A unified view of propagating and localized surface plasmonresonance biosensors. Analytical and Bioanalytical Chemistry,2004,379(7):920-930
    [44] Anker J, Hall W, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nature materials,2008,7(6):442-453
    [45] Kedem O, Tesler A B, Vaskevich A, et al. Sensitivity and Optimization of Localized SurfacePlasmon Resonance Transducers. ACS nano,2011,5(2):748-760
    [46] Xia Y and Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallicnanostructures. Mrs Bulletin,2005,30(5):338-348
    [47] Stewart M E, Anderton C R, Thompson L B, et al. Nanostructured plasmonic sensors. Chemicalreviews,2008,108(2):494-521
    [48]周伟.贵金属纳米颗粒的局域表面等离子共振现象的仿真和分析:[硕士学位论文].天津:南开大学,2011
    [49] Jung L S, Campbell C T, Chinowsky T M, et al. Quantitative interpretation of the response ofsurface plasmon resonance sensors to adsorbed films. Langmuir,1998,14(19):5636-5648
    [50] Malinsky M D, Kelly K L, Schatz G C, et al. Chain length dependence and sensing capabilitiesof the localized surface plasmon resonance of silver nanoparticles chemically modified withalkanethiol self-assembled monolayers. Journal of the American Chemical Society,2001,123(7):1471-1482
    [51] Haes A J, Zou S, Schatz G C, et al. A nanoscale optical biosensor: the long range distancedependence of the localized surface plasmon resonance of noble metal nanoparticles. TheJournal of Physical Chemistry B,2004,108(1):109-116
    [52] Haes A J, Zou S, Schatz G C, et al. Nanoscale optical biosensor: short range distance dependenceof the localized surface plasmon resonance of noble metal nanoparticles. The Journal of PhysicalChemistry B,2004,108(22):6961-6968
    [53] Haake H M, Schütz A, and Gauglitz G. Label-free detection of biomolecular interaction byoptical sensors. Fresenius' Journal of Analytical Chemistry,2000,366(6):576-585
    [54] Pérez-Luna V H, O'Brien M J, Opperman K A, et al. Molecular recognition between geneticallyengineered streptavidin and surface-bound biotin. Journal of the American Chemical Society,1999,121(27):6469-6478
    [55] Haes A J and Van Duyne R P. A nanoscale optical biosensor: sensitivity and selectivity of anapproach based on the localized surface plasmon resonance spectroscopy of triangular silvernanoparticles. Journal of the American Chemical Society,2002,124(35):10596-10604
    [56] Riboh J C, Haes A J, McFarland A D, et al. A nanoscale optical biosensor: real-timeimmunoassay in physiological buffer enabled by improved nanoparticle adhesion. The Journal ofPhysical Chemistry B,2003,107(8):1772-1780
    [57] Jung L S and Campbell*C T. Sticking probabilities in adsorption of alkanethiols from liquidethanol solution onto gold. The Journal of Physical Chemistry B,2000,104(47):11168-11178
    [58] Hall D. Use of optical biosensors for the study of mechanistically concerted surface adsorptionprocesses. Analytical Biochemistry,2001,288(2):109-125
    [59] Jung L S, Nelson K E, Stayton P, et al. Binding and dissociation kinetics of wild-type and mutantstreptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir,2000,16(24):9421-9432
    [60] Brockman J M, Nelson B P, and Corn R M. Surface plasmon resonance imaging measurementsof ultrathin organic films. Annual review of physical chemistry,2000,51(1):41-63
    [61] McFarland A D and Van Duyne R P. Single silver nanoparticles as real-time optical sensors withzeptomole sensitivity. Nano Letters,2003,3(8):1057-1062
    [62] Van Duyne R P, Haes A J, and McFarland A D. Nanoparticle optics: sensing with nanoparticlearrays and single nanoparticles. in: Proceedings of the SPIE,2003.197-207
    [63] Shumaker-Parry J S, Zareie M H, Aebersold R, et al. Microspotting streptavidin anddouble-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions bysurface plasmon resonance microscopy. Analytical chemistry,2004,76(4):918-929
    [64] Mock J J, Smith D R, and Schultz S. Local refractive index dependence of plasmon resonancespectra from individual nanoparticles. Nano Letters,2003,3(4):485-491
    [65] Karlsson R and Stahlberg R. Surface plasmon resonance detection and multispot sensing fordirect monitoring of interactions involving low-molecular-weight analytes and for determinationof low affinities. Analytical Biochemistry,1995,228(2):274-280
    [66] Smith E A, Thomas W D, Kiessling L L, et al. Surface plasmon resonance imaging studies ofprotein-carbohydrate interactions. Journal of the American Chemical Society,2003,125(20):6140-6148
    [67] Yonzon C R, Stuart D A, Zhang X, et al. Towards advanced chemical and biologicalnanosensors—an overview. Talanta,2005,67(3):438-448
    [68]周伟,张维,王程,等.贵金属纳米颗粒LSPR现象研究.传感技术学报,2010,23(5):630-634
    [69] Zhu S, Luo X, Du C, et al. Hybrid metallic nanoparticles for excitation of surface plasmonresonance. Journal of applied physics,2007,101(6):064701-064701-5
    [70] Endo T, Kerman K, Nagatani N, et al. Multiple label-free detection of antigen-antibody reactionusing localized surface plasmon resonance-based core-shell structured nanoparticle layernanochip. Analytical chemistry,2006,78(18):6465-6475
    [71] Stuart D A, Haes A J, Yonzon C R, et al. Biological applications of localised surface plasmonicphenomenae. in: IEE Proc.-Nanobiotechnol.,2005.13-32
    [72] Bi N, Sun Y, Tian Y, et al. Analysis of immunoreaction with localized surface plasmon resonancebiosensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2010,75(3):1163-1167
    [73] Willets K A and Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing.Annu. Rev. Phys. Chem.,2007,58:267-297
    [74] Prodan E, Nordlander P, and Halas N. Electronic structure and optical properties of goldnanoshells. Nano Letters,2003,3(10):1411-1415
    [75] Okamoto T, Yamaguchi I, and Kobayashi T. Local plasmon sensor with gold colloid monolayersdeposited upon glass substrates. Optics Letters,2000,25(6):372-374
    [76] Yonzon C R, Jeoung E, Zou S, et al. A comparative analysis of localized and propagating surfaceplasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalizedself-assembled monolayer. Journal of the American Chemical Society,2004,126(39):12669-12676
    [77] Nath N and Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecularinteractions in real time on a surface. Analytical chemistry,2002,74(3):504-509
    [78] Hutter E and Fendler J H. Exploitation of localized surface plasmon resonance. AdvancedMaterials,2004,16(19):1685-1706
    [79] Nath N and Chilkoti A. Label-free biosensing by surface plasmon resonance of nanoparticles onglass: optimization of nanoparticle size. Anal. Chem.,2004,76(18):5370-5378
    [80] Minh Hiep H, Endo T, Kerman K, et al. A localized surface plasmon resonance basedimmunosensor for the detection of casein in milk. Science and Technology of AdvancedMaterials,2007,8(4):331-338
    [81] Lin T J, Huang K T, and Liu C Y. Determination of organophosphorous pesticides by a novelbiosensor based on localized surface plasmon resonance. Biosensors and Bioelectronics,2006,22(4):513-518
    [82] Shin Y B, Lee J M, Park M R, et al. Analysis of recombinant protein expression using localizedsurface plasmon resonance (LSPR). Biosensors and Bioelectronics,2007,22(9):2301-2307
    [83] Ogawa J, Kanno I, Kotera H, et al. Development of liquid pumping devices using vibratingmicrochannel walls. Sensors and Actuators A: Physical,2009,152(2):211-218
    [84]田仙花,王林,刘磊,等.金和银纳米粒子二维周期阵列的光学性质.光散射学报,2011,22(4):321-328
    [85] MA J, TAN R, FANG Y, et al. LSPR spectral properties of Au nano-ring arrays and single Aunanoparticles. Chinese Journal of Optics and Applied Optics,2010,3(1):75-78
    [86] Huang C, Bonroy K, Reekmans G, et al. Localized surface plasmon resonance biosensorintegrated with microfluidic chip. Biomedical microdevices,2009,11(4):893-901
    [87] Huang C, Putzeys J, Ye J, et al. Lable-free biosensor based on localized surface plasmonresonance in a multi-channel microfluidic chip. in: IEEE Sensors Applications Symposium:IEEE,2009.43-46
    [88] Zou J, Ye X Y, Zhou Z Y, et al. A novel thermally-actuated silicon micropump. in: InternationalSymposium on Micromechatronics and Human Science. Japan: IEEE,1997.231-234
    [89]吴浩.超声行波圆环模型的动力学分析及流固耦合分析:[硕士学位论文].济南:山东大学,2009
    [90] Schmid G. Clusters and colloids: from theory to applications: Wiley-VCH,2008
    [91] Creighton J A and Eadon D G. Ultraviolet–visible absorption spectra of the colloidal metallicelements. J. Chem. Soc., Faraday Trans.,1991,87(24):3881-3891
    [92] Faraday M. The Bakerian lecture: experimental relations of gold (and other metals) to light.Philosophical Transactions of the Royal Society of London,1857,147:145-181
    [93] Mie G. Contribution on optical properties of turbid solutions, with special reference to colloidalmetallic solutions. Ann. Phys,1908,25:337-445
    [94] Link S and El-Sayed M A. Spectral properties and relaxation dynamics of surface plasmonelectronic oscillations in gold and silver nanodots and nanorods. J. phys. chem. B,1999,103(40):8410-8426
    [95] Kreibig U and Vollmer M. Optical properties of metal clusters: Springer,1995
    [96] Kerker M. The scattering of light and other electromagnetic radiation. London: Academic Press,1969
    [97] Boliren C F and Huffman D R. Absorption and scattering of light by small particles. New York: JWiley&Sons,1983
    [98] Gans R. über die form ultramikroskopischer Goldteilchen. Annalen der Physik,1912,342(5):881-900
    [99] Gans R. über die Form ultramikroskopischer Silberteilchen. Annalen der Physik,1915,352(10):270-284
    [100] Link S, Mohamed M, and El-Sayed M. Simulation of the optical absorption spectra of goldnanorods as a function of their aspect ratio and the effect of the medium dielectric constant. TheJournal of Physical Chemistry B,1999,103(16):3073-3077
    [101] DeVoe H. Optical properties of molecular aggregates. I. Classical model of electronic absorptionand refraction. The Journal of Chemical Physics,1964,41:393-400
    [102] Purcell E M and Pennypacker C R. Scattering and absorption of light by nonspherical dielectricgrains. The Astrophysical Journal,1973,186:705-714
    [103] Draine B T and Flatau P J. Discrete-dipole approximation for scattering calculations. JOSA A,1994,11(4):1491-1499
    [104] Draine B T and Flatau P J. Discrete-dipole approximation for periodic targets: theory and tests.JOSA A,2008,25(11):2693-2703
    [105] Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations inisotropic media. Antennas and Propagation, IEEE Transactions on,1966,14(3):302-307
    [106] Taflove A. Application of the finite-difference time-domain method to sinusoidal steady-stateelectromagnetic-penetration problems. Electromagnetic Compatibility, IEEE Transactions on,1980(3):191-202
    [107]刘少斌,刘崧,洪伟.色散介质时域有限差分方法.北京:科学出版社,2010.38-41
    [108]段进,倪栋,王国业. ANSYS10.0结构分析从入门到精通.北京:兵器工业出版社,2006.5-8
    [109]沈德新,张峰,张春权,等.聚二甲基硅氧烷中真空氧等离子体表面改性与键合.厦门大学学报:自然科学版,2006,44(6):792-795
    [110] Bhattacharya S, Datta A, Berg J M, et al. Studies on surface wettability of poly (dimethyl)siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength.Microelectromechanical Systems, Journal of,2005,14(3):590-597
    [111] Zhang W, Wang C, Yue Z, et al. Travelling-wave piezoelectric micropump with low resistancemicrochannel. Electronics letters,2011,47(19):1065-1066
    [112] Guan Y, Zhang G, and Jin J. Efficiency analysis and simulation studies of a piezoelectricmicropump with novel microvalve. in: International Conference on Nano/Micro Engineered andMolecular Systems: IEEE,2008.323-328
    [113] Schwarz U, Balaban N, Riveline D, et al. Calculation of forces at focal adhesions from elasticsubstrate data: the effect of localized force and the need for regularization. Biophysical journal,2002,83(3):1380-1394
    [114] Suzuki I K and Hidetoshi Hata H S. Improving the Performance of a Traveling WaveMicropump for Fluid Transport in Micro Total Analysis Systems. Complex Medical Engineering,2006:3-12
    [115] Palik E D and Ghosh G. Handbook of optical constants of solids: Academic press,1998
    [116] Rakic A D, Djuri ic A B, Elazar J M, et al. Optical properties of metallic films for vertical-cavityoptoelectronic devices. Applied optics,1998,37(22):5271-5283
    [117] Wilcoxon J and Samara G. Tailorable, visible light emission from silicon nanocrystals. AppliedPhysics Letters,1999,74:3164
    [118] Gai H, Wang J, and Tian Q. Modified Debye model parameters of metals applicable forbroadband calculations. Applied optics,2007,46(12):2229-2233
    [119] Aizpurua J, Hanarp P, Sutherland D, et al. Optical properties of gold nanorings. Physical reviewletters,2003,90(5):57401
    [120] Zhang W, Wang C, Zhou W, et al. The Analysis of Ag Nanospheres and Arrays LSPRPhenomena Based on DDA and FDTD Method. Applied Mechanics and Materials,2012,110:3860-3866
    [121] Turkevich J, Stevenson P C, and Hillier J. A study of the nucleation and growth processes in thesynthesis of colloidal gold. Discuss. Faraday Soc.,1951,11(0):55-75
    [122] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse goldsuspensions. Nature,1973,241(105):20-22
    [123] Ji X, Song X, Li J, et al. Size control of gold nanocrystals in citrate reduction: the third role ofcitrate. Journal of the American Chemical Society,2007,129(45):13939-13948
    [124] Grzelczak M, Pérez-Juste J, Mulvaney P, et al. Shape control in gold nanoparticle synthesis.Chem. Soc. Rev.,2008,37(9):1783-1791
    [125] Jana N R, Gearheart L, and Murphy C J. Wet chemical synthesis of high aspect ratio cylindricalgold nanorods. The Journal of Physical Chemistry B,2001,105(19):4065-4067
    [126] Jana N R, Gearheart L, and Murphy C J. Seeding growth for size control of5-40nm diametergold nanoparticles. Langmuir,2001,17(22):6782-6786
    [127]张晓锋. LSPR生物传感器的制备与测试:[硕士学位论文].天津:南开大学,2011
    [128] Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles in atwo-phase liquid¨Cliquid system. J. Chem. Soc., Chem. Commun.,1994,7:801-802
    [129] Frasconi M, Mazzei F, and Ferri T. Protein immobilization at gold–thiol surfaces and potentialfor biosensing. Analytical and Bioanalytical Chemistry,2010,398(4):1545-1564
    [130] Fujiwara K, Watarai H, Itoh H, et al. Measurement of antibody binding to protein immobilizedon gold nanoparticles by localized surface plasmon spectroscopy. Analytical and BioanalyticalChemistry,2006,386(3):639-644

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700