单频激光干涉系统性能优化及高精度测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步,激光干涉测量技术在各个领域都得到相当广泛的应用。方面因为微电子、微机械、微光学和现代超精密机械加工工业提出了愈来愈高的测量精度需求并同时要求更大的量程,而其它方法难于胜任,只有激光干涉测量技术可以在大量程内达到高精度的测量准确度;另一方面当代激光干涉测量技术自身具有灵敏度高、量程大及可以适应恶劣环境等优点,同时光波又具有直接对米进行定义且容易溯源的特点,因而在现代工业中得到了非常广泛的应用。
     目前对于单频激光干涉测量技术的研究主要集中于两个方面:一是在计量实验室环境下的对小量程的更高精度测量及分辨率(纳米及亚纳米)测试技术的研究;二是在一般环境下使干涉仪的抗干扰性能更好、可靠性更佳、自动化及集成化程度更高和允许测量速度更高的测试系统的研究。对于以上内容的研究主要归结为以下三个方面:(1)抗干扰性能更强、精度更高的频率稳定方法;(2)背景噪声处理技术及信号处理技术等;(3)可减小或补偿非线性误差,对加工及安装精度要求不苛刻的光路结构及对折射率的影响进行补偿等。
     改善单频激光干涉仪存在的这些弊端,增强其抗干扰能力,优化其非线性误差,不仅可以使其向纳米计量领域发展,还可使单频激光干涉仪走出实验室,跨入工厂的生产车间,从而扩展其应用范围,使其适应现代工业化生产对于低成本、高准确度的要求,以满足科研及生产的需求。所以,对于单频激光干涉系统的研究具有非常重要的理论价值及实际意义。
     本课题研究了单频激光干涉系统的原理、结构、数据处理方法及其优化调校,在此基础上应用该系统研制了可变光程的激光测长机,并应用该激光测长机对量块在不同姿态下的长度变化量进行了测量。
     (1)针对传统的两路信号单频激光干涉系统存在抗干扰能力差,系统稳定性不佳的缺点,本文提出了四路信号单频激光干涉系统。该系统较双频系统结构简单,减小了非线性误差来源,通过光路的设计和采用偏振分光镜,使得反射光完全不返回激光器,从而具有光隔离器的作用。同时,四路信号系统具有良好的对称性,可以有效抑制共模噪声的产生,提升单频激光干涉系统的抗干扰能力和系统的稳定性。
     (2)针对该系统信号的特点,提出四路信号预处理方法。其主要实现的功能包括:光电转换,抗干扰自适应系统,模数转换和非线性误差最小二乘拟和算法等几部分。重点分析了自适应系统并提出非线性误差最小二乘拟和算法,并进行了相关的仿真实验。
     (3)研究了单频激光干涉系统非线性误差的调校方法,总结了调整光路的基本原则。分析了光学元件优化调校对单频激光干涉系统的性能提升的影响。在此基础提出了最优控制优化调校方法,并通过测量实验验证了最优控制优化调校方法可以使该系统获得较为理想的性能指标。
     (4)建立了干涉系统的噪声数学模型,研制了自适应系统,提高仪器的抗干扰能力和测量精度。
     将激光干涉仪应用于测量领域以来,各国学者都对其发展倾注了很多心血,使其得到飞速发展。激光干涉理论的不断丰富和发展,使得各种类型的干涉仪不断推陈出新,且每种激光干涉仪都有其各自的应用领域。论文系统性的研究了激光干涉仪的发展进程及其应用范围,创新性的采用了四路信号系统,并应用四路信号预处理方法、自适应系统抗干扰方法和针对该系统的优化调校方法,来有效提升单频激光干涉系统的性能,使其可以在更广泛的范围内得到应用。实验结果表明,该单频激光干涉系统可有效滤除环境噪声信号,可使系统信噪比达到75dB。同时,利用该系统研制的激光测长机测量准确度达到±(0.3μm+1.5×10-6L),测量重复性为0.2μm。
With the advancement of science and technology, laser interferometer measurement technology has been widely applied in various fields. On the one hand, because the microelectronics, micro-mechanical, micro-optics and modern ultra-precision machinery processing industry bring forward increasingly high measurement accuracy requirements. At the same time, they require a greater measurement range. But the other methods are difficult to competent. This requirements of large measurement range and high precision measurement accuracy can be achieved by laser interferometer only. Moreover, modern laser interferometer measurement technology has the advantage of high sensitivity, large measurement range and adapting the harsh environment. Simultaneously, the "meter" is defined by optical wave directly which is easily traced to the source, so it has been widely range of applications in modern industrial.
     Currently, the research of laser interferometer measurement technology is mainly focused on two aspects:
     One aspect is the research of small range, high precision measurement and nanometer resolution in the metrology laboratory environment. On the other aspect, the research focus to be better anti-jamming performance, better reliability, higher degree of automation and measurement speed. The above content is mainly attributed to three aspects:
     (l)The frequency stabilization method of stronger anti-interference performance;
     (2)Background noise processing technology and signal processing techniques etc.
     (3)The method of reducing or compensating nonlinearity error, lower the structure requirements of the light path and compensating the influence of index of refraction etc.
     Improve existence drawbacks of the single frequency laser interferometer, enhance its anti-jamming capability, optimize the nonlinear error, not only make it develop into the field of nano-metrology, and this research can also make it go out the lab, expand its scope of application. It is adaptted them to modern industrial production requirements for low-cost, high accuracy. So, the study of single frequency laser interferometer system has a very important theoretical value and practical significance.
     This issue mainly study the principle, structure, data processing method and its optimization adjustment for single frequency laser interferometer system.We develop laser measuring machine of adjustable optical path, and apply the research of laser interferometer to measure length of gauge blocks.
     (1)There are some defects of anti-jamming capability and poor stability for traditional two channels signal single frequency laser interferometer system. Four channels signal system is advanced by this article. The system has more simpler structure and smaller nonlinearity error than dual frequency laser interferometer system. By designing the light path and adopting polarizing beam splitter(PBS), there are no reflected light return to laser source. So the system has the function of opto-isolated. At the same time, four channels signal system has favorable symmetry capability. The source of common-mode noise has been controlled. The capability of anti-jamming and stability is improved.
     (2)Pretreatment of four channels signal system is advanced for single frequency laser interferometer system. The main features include:photoelectric conversion system, anti-jamming self-adaptation system, analog-to-digital conversion part, least squares algorithm of nonlinearity error etc. The article mainly researched the anti-jamming self-adaptation system and least squares algorithm for ellipse fitting, and the simulation experiment is made.
     (3)The optimization adjustment method to improve single-frequency laser interferometer is advanced. The method to adjust light path is summarized. Optical elements are adjusted to enhance the system performance. Consequently, the structure and stability are optimized by decrease the nonlinearity, and the accuracy is advanced also.
     (4)Noise mathematical model for the system is founded. The experimental results show that, the noise of the signal can be disposed by this anti-jamming self-adaptation system. Accordingly, high-precision tracking to the direct current component is achieved.
     Laser interferometer has been applied to the field of measurement for several years, scholars from various countries have devoted a lot of time and effort to its development,and the system has been rapid development. Along with laser interferometer theory is enriched and developed, types of interferometer continue to appear. Each kind of laser interferometer has its own applications. The article has research the development process and its scope of application of the laser interferometer. Four channels signal system is adopted by the study inventively. At the same time, pretreatment of four channels signal system, anti-jamming self-adaptation system and optimization adjustment method are adopted to improve the performance of the system. So that single frequency laser interferometer system can be applied in a broader range. The experimental results show that, the noise of the signal can be disposed by this system, system signal-to-noise achieve to75dBo The accuracy of laser measuring machine which installed by single frequency laser interferometer system achieves to±(0.3μm+1.5×10-6L), and the measurement reproducibility is0.2μm.
引文
[1]杨国光.近代光学测试技术.杭州:浙江大学出版社,1997,84-89
    [2]Benyong Chen.Xiaohui Cheng.Dacheng Li. Dual-wavelength interferometric technique with subnanometric resolution.Appl.Opt.2002,41(28) 5933-5937
    [3]黄呈辉,张戈,魏勇,等.670.7nm电光调Q Nd:YAP/LBO激光器.红外与激光工程,2009,04:679-681
    [4]丁征,衣学斌,梁田,等.LD泵浦的YAG热键合调Q激光器.红外与激光工程,2008,03:464-467
    [5]金国藩,李景镇.激光测量学.北京:科学出版社,2000.
    [6]杨志文.光学测量(第3版).北京:北京理工大学出版社,2002:56-110.
    [7]殷纯永.现代干涉测量技术.天津:天津大学出版社,2003:102-156
    [8]迟桂纯等,激光在计量测试技术中的应用.成都:成都科技大学出版社,1994:104-112
    [9]丁俊华等,激光原理及应用。北京:清华大学出版社,2002:56-70
    [10]黄强辉,曹益平.采用四象限探测器检测干涉条纹正交信号的新方法.中国激光,2009,36(5):1166-1170
    [11]薛江蓉.单频激光干涉测长系统抗干扰性及细分技术的研究[硕士学位论文],南京:南京理工大学,2004
    [12]邵珺,叶景峰,胡志云,等.振动干扰下光路失调的数值计算.光学精密工程,2011,19(3):529-535
    [13]杨军,刘志海,苑立波.波片对偏振激光干涉仪非线性误差的影响.光子学报,2008,37(2):364-369
    [14]Benyong Chen.Xiaohui Cheng.Dacheng Li. Dual-wavelength interferometric technique with subnanometric resolution. Appl.Opt,2002.41(28) 5933-5937
    [15]赵美蓉,曲兴华,陆伯印.光程差倍增的纳米级精度激光干涉仪.中国激光.2000,27(5):43-434.
    [16]C.M.Wu,C.S.Su,G.S.Peng et al.Polarimetric nonlinearity-free,homodyne interferometer for vibration measurement. Metrologia,1996,33(6):533-537
    [17]许婕,徐毅,叶孝佑.激光干涉仪非线性的测量.计量学报,2003,24(4),271-274.
    [18]Chen B, Cheng X, Li D. Dual-wavelength interferometric technique with subnanometric resolution.Appl.Opt,2002,41(28):5933-5937
    [19]韦丰,陈本永,丁启全.大范围高精度的纳米测量现状与发展趋势.光学技术.2005,31(2):302-306
    [20]王力,侯文玫.单频激光干涉仪四通道信号接收系统.计量学报,2006,27(4):313-316
    [21]韩旭东,艾华,龙科慧.一种新型单频激光干涉系统的研究.光电工程,2002,29(5):49-51
    [22]陈津平.微型激光干涉仪应用于纳米测量机.北京:计量技术,2002,6-8
    [23]赵美蓉,曲兴华,陆伯印.光程差倍增的纳米级精度激光干涉仪.中国激光,2000,24(5):431-434
    [24]Xinqun Liu,Warwick Clegg, David F.L. Jenkins, et.al. Polarization Interferometer for Measuring Small Displacement. IEEE Transaction on instrumetation and measurement 2001,50(4):868-871
    [25]王力,侯文玫.基于Koester棱镜的单频干涉仪.计量技术,2006(11):29-32
    [26]T Keem, S Gonda, Misumi, QHuang, and TKurosawa. Removing nonlinearity of a homodyne interferometer by adjusting the gains of its quadrature detector systems, Appl. Opt.2004(43):2443-2448
    [27]RuimingLi,Tadashi Aruga. An Interferometer System Scheme for the Fast Measurement. SPIE1998, Vol.3482:908-913
    [28]楚兴春,吕海宝,杜列波,周卫红.莫尔条纹交点跟踪计数细分法.宇航计测技术.2004,24(6):1-
    [29]吴健,林德教,殷纯永等.用于减少漂移的纳米定位干涉仪集成系统.中国激光.2002,29(8):707-710.
    [30]韦丰,陈本永,丁启全.大范围高精度的纳米测量现状与发展趋势.光学技术.2005,3,31(2):302-308.
    [31]张贤达.现代信号处理.北京:清华大学出版社,2002,263-280
    [32]W ang C H,Augousti A T,Mason J. Real time evaluation and correction of nonlinear errors in single frequency interferometers.Transactions of the Institute of Measurement and Control,2000,22(5):405-412
    [33]陈洪芳,丁雪梅,钟志等.激光外差干涉检偏器旋转误差对非线性误差的影响.中国激光,2005,32(9):1251-1285
    [34]钟志,谭久彬,陈洪芳等.偏振分光镜传输系数不等对非线性误差的影响.光电工程,2005,32(9):27-30
    [35]程方,范光照,刘玉圣.纳米测量中的光栅信号细分技术.计量测试与检定.2006,16(3):15-175
    [36]Schmitz T, Evans C, DaviesA, Estler WT. Displacement uncertainty in interferometric radius measurements. Ann CIRP2002,451-455
    [37]P L Oliver, D Serge. Polarization compensation:a Passive approach to redueing heterodyne interferometer nonlinearity. Opt.Lett.2002,27:797-799
    [38]J Stone, S D.PhilliPs. Corrections for wavelength variations in precision interferometric displaeement measurements.Res.Natl.Inst.Stand.Teehnol.1996:671-674
    [39]M.A.zumbege. Frequeney stability of a Zeeman stabilized Laser, AppliedOPties, VOI.24, No.13
    [40]H. p. Ho, K. C. Lo, Y. Y. Hung. Quantitative phase demodulation from a free running Michelson interferometer by using a novel quadrature moore grating with misaligriment error compensation, optical Engineering 2006,45(7):75-81
    [41]叶声华.激光在精密计量中的应用.北京:机械工业出版社,1980:205-217
    [42]吴栋.干涉仪自适应抗振的空间移相术.北京:光学学报,2003:392-396
    [43]李月,杨宝俊.混沌振子系统(L-Y)与检测.北京:科学出版社,2007:123-139
    [44]薛向尧,高云国,韩光宇,等.水平式激光发射系统指向误差的修正.光学精密工程,2011,19(3):536-543.
    [45]Dai G,Pohlenz F,Danzebrink H U,et al. Improving the performance of interferometers in metrological scanning probe microscopes. Meas Sci Technol,2004,15:444-450
    [46]劳达宝,杨学友,邾继贵.扫描平面激光坐标测量系统校准方法的优化.光学精密工程,2007:231-235
    [47]李庆波,王政平,孙伟民等.用偏振片测量反射相移的方法及其理论分析.哈尔滨工程大学学报,2002,23(3):59-62
    [48]Nonlinearity in measurements of length by optical interferometry.Meas.Sci.Technol.1996,7:62--68
    [49]吕显瑞,黄庆道.最优控制理论基础.北京:科学出版社,2008:12-40
    [51]马宏王金波.仪器精度理论.北京:北京航空航天大学出版社,2009:390-417
    [52]李建双等.“共光路”校准激光干涉仪的测长不确定度.计量学报,58-61
    [53]杜振辉,蒋诚志,桂垣,王斌.激光干涉仪测量长度.河北建筑工程学院学报,2003,21(2):1-37
    [54]JJF1059-1999,测量不确定度评定与表示2011,19(4):870-876
    [55]廖宜水.激光干涉仪测量测长机示值误差时阿贝误差的影响.中国计量,2008,(2):89-108
    [56]茅振华,王鹏翔,裘越.激光干涉仪在测长机检定中的应用.计量技术,1999,(9):36-38
    [57]潘嘉声,梁小什.测长机分米刻度尺示值误差测量结果的扩展不确定度.实用测试技术.2001,(5):5-8
    [58]JJG146-2003,《量块》检定规程,北京
    [59]JJF1064-2004,《坐标测量机》校准规范,北京
    [60]皮萨连科.材料力学手册.北京:机械工业出版社,1981,156-160
    [61]Calibration Specification for Coordinate Measuring Machine.5-8
    [62]李竟勇.有限元法.北京:北京邮电大学出版社,1999,114-131
    [63]C.M.Wu,C.S.Su,G.S.Peng, et al.. Polarimetric nonlinearity-free, homodyne interferometer for vibration measurement. Metrologia,1996,33(6):533-537
    [64]刘佳.柔顺性触觉再现装置的刚度标定和误差分析.计量学报,324-328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700