聚合物微流控芯片超声波键合机理与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物微流控芯片除了具有检测速度快、效率高、试剂用量少、易于实现自动化操作等优点外,还具有材料选择范围广、制作工艺简单、成本低、可一次性使用以及生物兼容性好等优点。目前,它是微型便携分析仪器商业化与产业化发展的主要方向。近年来,针对聚合物微流控芯片的制备技术,国内外展开了大量的研究。用于实验室研究的少量芯片制作已经能够实现,但芯片的大规模、批量化生产,尚存在亟待研究和解决的关键技术问题。其中,芯片的键合是实现其批量化和自动化生产的主要瓶颈问题之一。本文以聚合物微流控芯片的超声波键合技术为研究对象,以提高键合质量和键合方法的创新为主要目的,对超声波键合过程中的产热机理、超声波熔融键合方法以及超声波非熔融键合方法进行了较系统的研究。
     基于理论分析和数值计算,对超声波作用下聚合物在玻璃态和粘弹态的产热机理分别进行了研究,搭建了温度测试系统,对键合过程中的温度场进行了测量。根据理论分析以及测温试验,提出超声波键合过程中摩擦和粘弹性复合产热机理的新观点。该观点认为,聚合物在玻璃态时,摩擦热是超声波产热的主要原因,也是整个键合过程的启动热源;当材料温度达到玻璃转化温度(Tg)时,粘弹热使局部温度快速升高导致材料熔融,所以粘弹热是使聚合物熔融的主要热源。依据上述产热机理以及测温试验,文章进一步针对超声振幅对温度场的影响进行了研究。结果表明,超声波键合过程中存在临界振幅,当超声振幅低于该临界振幅时,键合区的最高温度始终低于Tg,并能维持在该温度附近。对超声波键合过程中产热机理的明晰和产热特性的把握,为键合质量的提高和键合方法的创新奠定了基础。
     研究了利用键合辅助结构提高超声波熔融键合质量的方法。设计了三种超声波键合辅助微结构,并对这些复杂的凸凹式三维微结构的制作方法和成形规律进行了研究。通过键合试验,首次利用带熔池和阻流台的配合式辅助键合结构,实现了最小特征尺寸为30μm的微通道键合封装。该方法键合强度接近材料的本体强度、键合时间短(小于0.5s)、键合质量的稳定性和重复性好,适于批量化和自动化生产,但该方法中试件制备复杂,且由于聚合物熔融液的存在,很难用于更小尺度的微结构键合。
     在产热机理研究的基础上,本文首次提出了基于局部溶解性激活的超声波非熔融键合方法和热辅助超声波非熔融键合方法。
     利用键合前期摩擦产热速度慢、易于控制的特点,结合有机溶剂的温变溶解特性,采用分子动力学方法,研究了基于局部溶解性激活的超声波非熔融键合机理。并利用异丙醇(IPA)做为辅助溶剂,对PMMA微流控芯片进行了键合试验。与传统的键合方法相比,由于该方法中超声波振幅较低,导能筋不发生熔融,所以不会出现由于熔融液流延造成的键合质量问题。键合过程中除键合区域外,其它部位均保持室温,所以辅助溶剂不像传统的溶剂键合那样,会对微结构造成损坏。研究结果表明,该方法试件制备简单、易于过程控制、微结构变形量小、键合强度高,是一种适用于聚合物MEMS器件键合的新方法。
     将超声波的产热特点与传统热键合的键合机理相结合,提出了一种无需键合辅助结构的热辅助超声波非熔融键合方法。该方法中,基片与盖片在预加热过程中充分贴合,在超声波作用下界面温度上升并维持在Tg附近,而基片内部的温度却远低于Tg。在界面温度以及超声振动的共同作用下,界面间形成键合。键合试验证明,该方法具有无需键合辅助结构、微结构变形量小、材料适用范围广、可控性高、超声能量在界面自动集中等特点。利用该方法的独特优势,成功实现了对深度只有200nm微通道阵列的键合和多达12层芯片的一次性键合。
Polymer microfluidic chips not only have the advantages of high-speed, high-throughout, small sample consumption and easy to realize automatic operation as other microfluidic devices, they also have their inimitable advantages such as wide choices of materials, ease of fabrication, low cost, disposability and good bio-compatibility and so on. Therefore, polymer microfluidic chips are considered as the most potential for the commercialization and industrialization of portable analytical instruments. Many techniques for the fabrication of polymer microfluidic chips have been studied in the last decay. And small batches of chips used for research in the lab can be realized by these techniques. However, there are still some technical issues in the mass production. Bonding is one of the bottlenecks among these issues. In order to meet the bonding requirements of microfluidic chips and other polymer MEMS devices, ultrasonic bonding methods and the bonding mechanism were systematically studied in this thesis.
     Based on theoretical analysis and numerical calculation, the heating mechanisms of polymer under ultrasonic vibration in glassy state and viscoelastic state were studied. The temperature field during ultrasonic bonding process was measured. Based on the calculation and experiment results, a new frictional composited with viscoelastic heating mechanism was presented. It reveals that facial friction rather than viscoelastic heat initially start the bonding process in glassy state. Viscoelastic heat becomes dominant when temperature reaches Tg (glass transition temperature) of the material. Viscoelastic heat provides most required heat during the process. Temperature fields at different ultrasonic amplitudes were also discussed based on numerical calculations and temperature measuring experiments. The results indicates that there exists a critical amplitude for the given material and dimensions of energy director. The peak temperature become constant and the polymer does not melt when ultrasonic amplitude is lower than the critical amplitude no matter how long the bonding time is. These findings give a more clear understanding of heating mechanisms in ultrasonic bonding. And it will contribute to the improvement of bonding quality and method innovation of ultrasonic bonding.
     In order to improve the bonding quality of melt based ultrasonic bonding method, different bonding auxiliary microstructures were designed. The fabrication of these complex 3-D microstructures was also studied. Based on bonding experiments, the mating style design including molten bath and flowing block was successfully used to hermetically bond the microchannels with characteristic dimension of 30μm. This method shows many advantages such as very high bonding strength (near the body strength of the material), short bonding time (less than 0.5 s) and stable bonding quality. However, the melt of polymer make it difficult to improve the bonding accuracy further using this method.
     Based on the research of heating mechanism, the non-melt ultrasonic bonding method was firstly proposed. And two novel non-melt ultrasonic bonding methods were presented in this thesis. They were local solubility activated non-melt ultrasonic bonding method and thermal assisted non-melt ultrasonic bonding method.
     The bonding mechanism of the local solubility activated non-melt ultrasonic bonding method was studied according to the heating process under low amplitude ultrasonic and molecular dynamics simulation. PMMA microfluidic chips were successfully bonded with isopropanol (IPA) as the assisted solvent. Comparison to traditional ultrasonic bonding method, lower amplitude was used in this method, which prevented melting of polymer and deformation of microchannel. Additionally, most part of the PMMA substrates kept at room temperature except for the interface between the energy director and cover substrate during the bonding process. So IPA did not damage the microstructures as in common solvent bonding method. The experimental results indicated many advantages of this method such as easy to fabricate the substrates, good controllability of the process, low deformation of the microstructures and high bonding strength. It is a novel bonding method for polymer MEMS devices. However, high selectivity for the polymer and solvent greatly limited the usage of this method.
     A thermal assisted non-melt ultrasonic bonding method without bonding auxiliary structures was proposed according the heating properties during ultrasonic bonding and the bonding mechanism of traditional thermal bonding method. Temperature of the interface rose to around Tg as a result of friction heating from ultrasonic vibration, while the bulk temperature of the substrates was still well below Tg. Combined with ultrasonically oscillating pressure, bonding formed at the interface with little deformation of microstructures. Bonding experiments indicated some advantages of this method such as needless of bonding auxiliary structures, low deformation of the microstructures, good controllability of the process, suitable for almost all thermoplastics and automatically focus of ultrasonic energy at the interface. Considering the special advantages of this method, planar nanochannel array with depth of 200 nm was successfully bonded using this method. And multilayer microfluidic devices with as many as 12 layers were also bonded together at one time using this method.
引文
[1]Thorsen T, Maerkl S J, Qualce S R. Microfluidic large scale integrate chip[J]. Sciences, 2002,298:580-584.
    [2]Malic L, Brassard D, Veres T, et al. Integration and detection of biochemical assays in digital microfluidic LOC devices[J]. Lab chip,2010,10:418-431.
    [3]杨友麒.微尺度和纳米尺度过程系统工程的进展和挑战[J].现代化工,2007,27:1-9.
    [4]Kikutani Y, Ueno M, Hisamoto H, et al. Continuous-flow chemical processing in three-dimensional microchannel network for on-chip integration of multiple reactions in a combinatorial mode[J]. QSAR.Comb.Sci.,2005,24:742-757.
    [5]邓延倬,何金兰.高效毛细管电泳[M].北京:科学出版社,1996.
    [6]Skeggs L T. An automatic method for calorimetric analysis[J]. Am. J. Clin. Pathol. 1957,28:311-322.
    [7]Ruzicka J, Hansen E H. Flow injection analysis part 1:a new concept of fast continuous flow analysis[J]. Anal. Chim. Acta.,1975,78:145-157.
    [8]Ruzicka J, Hansen E H. Integrated microconduits for flow injection analysis[J]. Anal. Chim. Acta.,1984,161:1-25.
    [9]Pace S J, Wilmington D. Silicon semiconductor wafer for analyzing micronic biological samples[P]. U.S.Patent,4908112,1990.
    [10]Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems:a novel concept for chemical sensing[J]. Sensors and Actuators B,1990,1:244-248.
    [11]Manz A, Harrison D J, Verpoorte E M J, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems:capillary electrophoresis on a chip[J]. J. Chromatogr. A,1992,593:253-258.
    [12]Jacobson S C, Hergenroeder R, Koutny L B, et al. Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices [J]. Anal. Chem.,1994, 66:1107-1113.
    [13]Jacobson S C, Ramsey J M. Electrokinetic focusing in microfabricated channel structures [J]. Anal.Chem.,1997,69:3212-3217.
    [14]Woolley A T, Mathies R A. Ultra-high-speed DNA sequencing using capillary electrophoresis chips[J]. Anal. Chem.,1995,67:3676-3680.
    [15]Woolley A T, Sensabaugh G F, Mathies R A. High-speed DNA genotyping using microfabricated capillary array electrophoresis chips[J]. Anal. Chem.,1997, 69:2181-2186.
    [16]Liu S, Shi Y, Ja W W, et al. Optimization of high-speed DNA sequencing on microfabricated capillary electrophoresis channels[J]. Anal. Chem.,1999,71:566-573.
    [17]Woolley A T, Lao K, Glazer A N, et al. Capillary electrophoresis chips with integrated electrochemical detection[J]. Anal. Chem.,1998,70:684-688.
    [18]Burns M A, Johnson B N, Brahmasandra S N, et al. An integrated nanoliter DNA analysis Device[J]. Science,1998,282:484-487.
    [19]Kamholz A E. Proliferation of microfluidics in literature and intellectual property [J]. Lab Chip,2004,4:16-20.
    [20]Ng N T, Wu Z G. Micromixer-a review[J]. J. Micromech. Microeng.,2005,15:1-16.
    [21]Douglas B, Weibel, Maarten K, et al. Torque-Actuated Valves for Microfluidics [J]. Anal. Chem.,2005,77:4726-4733.
    [22]Whitesides G M. The origins and the future of microfluidics[J]. Nature,2006,442: 368-373.
    [23]Breslauer D N, Lee P J, Lee L P. Microfluidic-based systems biology [J]. Mol. Biosyst. 2006,2:97-112.
    [24]P Yager, T Edwards, E Fu, et al. Microfluidic diagnostic technologies for global public health[J]. Nature,2006,442:412-418.
    [25]方肇伦.微流控分析芯片[M].北京:科学出版社,2003.
    [26]林炳承,秦建华.微流控芯片实验室[M].北京:科学出版社,2006.
    [27]方肇伦.微流控分析芯片的制作及应用[M].北京:化学工业出版社,2005.
    [28]C Haber. Microfluidics in commercial applications:an industry perspective[J]. Lab Chip.,2006,6:1118-1121.
    [29]Manz A, Fettinger J C, Verpoorte E, et al. Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze[J]. TrAC Trends in Analytical Chemistry,1991,10:144-149.
    [30]Becker H, Lowack K, Manz A. Planar quartz chips with submicron channels for two-dimensional capillary electrophoresis applications[J]. J. Micromech. Microeng. 1998,8:24-28.
    [31]刘军山.PMMA集成毛细管电泳芯片制作工艺研究[D].大连理工大学博士学位论文.大连,2005.
    [32]Becker H, Gaertner C. Polymer microfabrication methods for microfluidic analytical applications[J]. Electrophoresis.2000,21:12-26.
    [33]Tsao C W, DeVoe D L. Bonding of thermoplastic polymer microfluidics [J]. Microfluid Nanofluid.2009,6:1-16.
    [34]Becker H, Locascio L E. Polymer microfluidic devices[J]. Talanta,2002,56:267-287.
    [35]Zhang Z B, Luo Y, Wang X D, et al. A low temperature ultrasonic bonding method for PMMA microfluidic chips[J]. Microsyst. Technol.,2010,16:533-541.
    [36]Wabuyele M B, Ford S M, Stryjewski W, et al. Single molecule detection of double-stranded DNA in poly (methylmethacrylate) and polycarbonate microfluidic devices[J]. Electrophoresis.2001,22:3939-3948.
    [37]Schrott W, Slouka Z, Cervenka P, et al. Study on surface properties of PDMS microfluidic chips treated with albumin[J]. Biomicrofluidic,2009,3:1-15.
    [38]Tsao C W, Hromada L, Liu J, et al. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment[J]. Lab Chip.,2007,7:499-505.
    [39]Luo Y, Wang X D, Yang F. Microfluidic chip made of COP and comparison to PMMA microfluidic chip[J]. J. Mater. Process. Tech.,2008,208:63-69.
    [40]Li J M, Liu C, Zhu L Y, et al. Hot embossing/bonding of a PET microfluidic chip[J]. J. Micromech. Microeng.,2008,18:1-10.
    [41]Mecomber J S, Hurd D, Limbach P A. Enhanced machining of micron-scale features in microchip molding masters by CNC milling[J]. International Journal of Machine Tools and Manufacture,2005,45:1542-1550.
    [42]Ulrich P, Markus B, Andreas F, et al. Comparison of multilayer stamp concepts in UV-NIL [J]. Microelectron. Eng.,2006,83:944-947.
    [43]Mateusz L H, Guy W J, Shawn D L, et al. Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices[J]. Microfluid Nanofluid, 2007,3:1-11.
    [44]Koerner T, Brown L, Xie R, et al. Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels[J]. Sensors and Actuators B,2005,107: 632-639.
    [45]Martynova L, Locascio L, Gaitan M, et al. Fabrication of plastic microfluid channels by imprinting methods[J]. Anal. Chem.,1997,69:4783-4789.
    [46]Liu J S, Liu C, Guo J H, et al. Electrostatic bonding of a silicon master to a glass wafer for plastic microchannel fabrication[J]. J. Mater. Process. g Tech.,2006,178: 278-282.
    [47]Heyderman L J, Schift H, David C, et al. Flow behavior of thin polymer films used for hot embossing lithography[J]. Microelectronic Engineering,2000,54:229-245.
    [48]Joseph L C, Marcus T E, Andres J G. Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates[J]. Biomaterials,2006,27: 2487-2494.
    [49]Bogdanski N, Schulz H, Wissen M.3D-Hot embossing of undercut structures- an approach to micro-zippers[J]. Microelectronic Engineering,2004,74:190-195.
    [50]Juang Y J, Lee L J, Koelling K W. Hot embossing in microfabrication part Ⅰ:experimental [J]. Poly. Eng. Sci.,2002,42:539-550.
    [51]王晓东,罗怡,刘冲等.塑料(PMMA)微流控芯片微通道热压成形工艺参数的确定[J].中国机械工程,2005,16:2061-2063.
    [52]罗怡,王晓东,刘冲等.微流控芯片制作及电特性研究[J].高技术通讯,2005,15:31-34.
    [53]Perry J L, Kandlikar S G. Review of fabrication of nanochannels for single phase liquid flow[J]. Microfluid Nanofluid,2006,2:185-193.
    [54]McCormick R M, Nelson R J, Alonso-Amigo M G, et al. Microchannel electrophoretic separations of DNA in injection molded plastic substrates[J]. Anal. Chem.,1997,69: 2626-2630.
    [55]Piotter V, Hanemann T, Ruprecht R, et al. Injection molding and related techniques for fabrication of microstructures[J]. Microsystem Technol.,1997,3:129-133.
    [56]Weber L, Ehrfeld W, Freimuth H, et al. Micro-moulding- processes, moulds, applications [J]. Kunststoffe Plast Europe.1998,88:60-63.
    [57]Paulus A, Williams S J, Sassi A P, et al. Integrated capillary electrophoresis using glass and plastic chips for multiplexed DNA analysis[J]. Proc. SPIE,1998 3515:94-103.
    [58]Yuan C H, Shiea J. Sequential electrospray analysis using sharp-tip channels fabricated on a plastic chip[J]. Anal. Chem.,2001,73:1080-1083.
    [59]Lai S, Wang S, Luo J, et al. Design of a compact disk-linked microfluidic platform for enzyme-linked immunosorbent assay[J]. Anal. Chem.,2004,76:1832-1837.
    [60]Roberts M A, Rossier J S, Bercier P, et al. UV laser machined polymer substrates for the development of microdiagnostic systems[J]. Anal. Chem.,1997,69:2035-2042.
    [61]Srinivasan R. Ultraviolet laser ablation of polyimide films[J]. Polym. Degrad. Stab., 1987,17:193-203.
    [62]Schmidt H, Ihlemann J, Luther K, et al. Modeling of velocity and surface temperature of the moving interface during laser ablation of polyimide and poly (methyl methacrylate) [J]. Appl. Surf. Sci.,1999,138:102-106.
    [63]Rossier J S, Gokulrangan G, Girault H H, et al. Characterization of protein adsorption and immunosorption kinetics in photoablated polymer microchannels[J]. Langmuir,2000, 16:8489-8494.
    [64]Xu N, Lin Y, Hofstadler S A, et al. A microfabricated dialysis device for sample cleanup in electrospray ionization mass spectrometry[J]. Anal. Chem.,1998,70:3553-3556.
    [6,5]Tsai D M, Lin K W, Zen J M, et al. A new fabrication process for a microchip electroresis device integrated with a three-electrode electrochemical detector [J]. Electroqhoresis, 2005,26:3007-3012.
    [66]Brister P C, Weston K D. Patterned solvent delivery and etching fir the fabrication of plastic devices[J]. Anal. Chem.,2005,77:7478-7482.
    [67]Lee L P, Berger S A, Pruitt L, et al. Key elements of a transparent Teflon microfluidic system[C]. MicroTotal Analysis Systems'98, Kluwer, Dordrecht,1998:245-248.
    [68]Rossier J S, Schwarz A, Bianchi F, et al. Polymer microstructures:prototyping, low-cost mass fabrication and analytical applications[C]. MicroTotal Analysis Systems 2000, Kluwer, Dordrecht,2000:159-162.
    [69]Chen Z F, Gao Y H, Lin J M, et al. Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template[J]. J. Chromatogr. A,2004,1038:239-245.
    [70]Muck A, Wang J, Jacobs M, et al. Fabrication of poly (methyl methacryrlate) microfluidic chips by atmospheric molding[J]. Anal. Chem.,2004,76:2290-2297.
    [71]Kelly R T, Woollry A T. Thermal bonding of polymeric capillary electrophoresis micro devices in water[J]. Anal. Chem.,2003,75:1941-1945.
    [72]Liu J, Yang S, Lee C S, et al. Polyacrylamide gel plugs enabling 2-D microfluidic protein separations via isoelectric focusing and multiplexed sodium dodecyl sulfate gel electrophoresis[J]. Electrophoresis,2008,29:2241-2250.
    [73]Tan H Y, Loke W K, Tan Y T, et al. A lab-on-a-chip for detection of nerve agent sarin in blood[J]. Lab Chip,2008,8:885-891.
    [74]Park D S W, Hupert M L, Witek M A, et al. A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification[J]. Biomed Microdevices,2008, 10:21-33.
    [75]Tsao C W, Liu J, DeVoe D L. Droplet formation from hydro dynamically coupled capillaries for parallel microfluidic contact spotting[J]. J. Micromech. Microeng.,2008,18:25-13.
    [76]Sun Y, Kwok Y C, Nguyen N T. Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation[J]. J. Micromech. Microeng.,2006,16:1681-1688.
    [77]Sung W C, Lee G B, Tzeng C C et al. Plastic microchip electrophoresis for genetic screening:the analysis of polymerase chain reactions products of fragile X (CGG)n alleles[J]. Electrophoresis,2001,22:1188-1193.
    [78]Ahn C H, Choi J W, Beaucage G, et al. Disposable Smart lab on a chip for point-of-care clinical diagnostics[J]. Proc IEEE,2004,92:154-173.
    [79]Wu S. Polymer Interface and Adhesion[M]. New York:Marcel Dekker,1982.
    [80]Abgrall P, Low L N, Nguyen N T. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding[J]. Lab Chip,2007,7:520-522.
    [81]Brown L, Koerner T, Horton J H, et al. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents[J]. Lab Chip,2006,6:66-73.
    [82]Nikolova D, Dayss E, Leps G, et al. Surface modification of cycloolefinic copolymers for optimization of the adhesion to metals [J]. Surf. Interface. Anal.,2004,36:689-693.
    [83]Klintberg L, Svedberg M, Nikolajeff F, et al. Fabrication of a paraffin actuator using hot embossing of polycarbonate[J]. Sens. Actuators A,2003,103:307-316.
    [84]Wang Y R, Chen H W, He Q H, et al. A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection[J]. Electrophoresis,2008,29:1881-1888.
    [85]Bhattacharyya A, Klapperich C M. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices[J]. Lab Chip,2007,7:876-882.
    [86]Wu Z Y, Xanthopoulos N, Reymond F, et al. Polymer microchips bonded by 0-2-plasma activation[J]. Electrophoresis,2002,23:782-790.
    [87]Truckenmuller R, Henzi P, Herrmann D, et al. (2004b) Bonding of polymer microstructures by UV irradiation and subsequent welding at low temperatures [J]. Microsyst. Technol. 2004,10:372-374.
    [88]Witek M A, Wei S, Vaidya B, et al. Cell transport via electromigration in polymer-based microfluidic devices[J]. Lab Chip,2004,4:464-472.
    [89]Boglea A, Olowinsky A, Gillner A. Fiber laser welding for packaging of disposable polymeric microfluidic-biochips[J]. Appl. Surf. Sci.,2007,254:1174-1178.
    [90]Ussing T, Petersen L V, Nielsen C B, et al. Micro laser welding of polymer using low power laser diodes[J]. Int. J. Adv. Manuf. Technol.,2007,33:198-205.
    [91]Pfleging W, Baldus 0, Bruns M, et al. Laser-assisted welding of transparent polymers for micro-chemical engineering and life science[J]. Proc. SPIE,2005,5713:479-488.
    [92]Watanabe W, Onda S, Tamaki T, et al. Joining of transparent materials by femtosecond laser pulses[J]. Proc. SPIE,2007,6460:1-6.
    [93]Wu C Y, Avraham B. Microwave welding of high-density polyethylene using intrinsically conductive polyaniline[J]. Polym. Eng. Sci.,1997,37:738-743.
    [94]Yarlagadda P K D V, Tan C C. An investigation into welding of engineering thermoplastics using focused microwave energy[J]. J. Mater. Process. Technol.,1998,74:199-212.
    [95]Lei K F, Ahsan S, Budraa N, et al. Microwave bonding of polymer-based substrates for potential encapsulated micro/nanofluidic device fabrication[J]. Sensor. Actuat. A, 2004,114:340-346.
    [96]Yussuf A A, Sbarski I, Hayes J P, et al. Microwave welding of polymeric-microfluidic devices[J]. J. Micromech. Microeng.,2005,15:1692-1699.
    [97]杨士勤,阎久春.超声波塑料焊接机的能量控制模式[J].焊接学报,1995,16:118-123.
    [98]韦鹤,王晓东,刘冲等.塑料微流控芯片的超声波焊接键合的仿真[J].中国机械工程,2005,16:82-85.
    [99]Truckenmuller R, Ahrens R. An ultrasonic welding based process for building up a new class of inert fluidic micro sensors and actuators from polymers [J]. Sensor. Actuat. A, 2006,132:385-392.
    [100]Rotting 0, Ropke W, Becker H, et al. Polymer microfabrication technologies[J]. Microsystem Technologies.,2002,8:32-36.
    [101]Han J, Lee S H, Puntambekar A, et al. UV adhesive bonding techniques at room temperature for plastic lab-on-a-chip[C]. Proceedings of 7th International Conference Micro Total Analysis Systems. Squaw Valley, CA,2003,1113-1116.
    [102]Dang F, Shinohara S, Tabata 0, et al. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method[J]. Lab Chip,2005,5: 472-478.
    [103]Lu C, Lee L J, Juang Y J. Packaging of microfluidic chips via interstitial bonding technique[J]. Electrophoresis,2008,29:1407-1414.
    [104]Huang F C, Chen Y F, Lee G B. CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods [J]. Electrophoresis,2007, 28:1130-1137.
    [105]Paul D, Pallandre A, Miserere S, et al. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates [J]. Electrophoresis,2007, 28:1115-1122.
    [106]Dang F, Tabata 0, Kurokawa M, et al. High performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding[J]. Anal. Chem.,2005,77:2140-2146.
    [107]Shah J J, Geist J, Locascio L E, et al, Capillarity induced solvent-actuated bonding of polymeric microfluidic devices[J]. Anal. Chem.,2006,78:3348-3353.
    [108]Sun X H, Peeni B A, Yang W, et al. Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding[J]. J. Chromatogr. A,2007, 1162:162-166.
    [109]Mair D A, Rolandi M, Snauko M, et al. Room-temperature bonding for plastic high-pressure microfluidic chips[J]. Anal. Chem.,2007,79:5097-5102.
    [110]Kelly R T, Pan T, Woolley A T. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips[J]. Anal. Chem. 2005,77:3536-3541.
    [111]Koesdjojo M T, Tennico Y H, Reincho V T. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer[J]. Anal. Chem.,2008, 80:2311-2318.
    [112]Hsu Y C, Chen T Y. Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices[J]. Biomedical Microdevices,2007,9:513-522.
    [113]罗怡,王晓东,王立鼎.聚合物微流控芯片的键合技术与方法[J].中国机械工程,2008,19:3012-3017.
    [114]田修波,汤宝寅,杨士勤.超声波塑料焊机声学系统连接界面破坏及PⅢ强化[J].焊接学报,1999,20:233-238.
    [115]张宗波,罗怡,王晓东等.塑料超声波焊接及其用于聚合物MEMS器件键合的研究进展[J].焊接,2008,8:98-115.
    [116]MengesG, Potente H. Study on the weldability of thermoplastic materials by ultrasound[J]. Welding in the World,1971,9:46-59.
    [117]Aliosio C J, Wahl D G, Whetsel E E. A Simplified Thermoviscoelastic analysis of ultrasonic bonding[C]. Annual Technical conference, Society of Plastic Engeering.1972: 26-32.
    [118]Nonhof C J, Luiten G A. Estimates for process conditions during the ultrasonic welding of thermoplastics[J]. Polym. Eng. Sci.,1996,36:1177-1183.
    [119]杨士勤,董庆刚,田修波等.超声波焊接聚乙烯接头温度场的计算系检测[J].焊接学报,1995,16:14-19.
    [120]Tsujino J, Hongoh M, Tanaka R, et al. Ultrasonic plastic welding using fundamental and higher resonance frequencies[J]. Ultrasonics,2002,40:375-378.
    [121]Adachi K, Masanaka, Ikeya M, et al. Development of torsional-vibration systems used for high frequency ultrasonic plastic welding[J]. IEEE Ultrasonics symposium,1995, 14:1063-1069.
    [122]J Tsujino, T Uchida, K Yamano, et al. Welding characteristics of ultrasonic plastic welding using two-vibration system of 90 kHz and 27 or 20 kHz and complex vibration systems[J]. Ultrasonic,1998,36:67-74.
    [123]P Khuntontong. Fabrication of Polymer Micro Devices by Ultrasonic Hot Embossing[M]. Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar, 2008
    [124]Ng S H, Wang Z F, Rooij N.F. Microfluidic connectors by ultrasonic welding[J]. Microelectron. Eng.,2009,86:1354-1357.
    [125]J Kim, B Jeong, M Chiao et al. Ultrasonic bonding for MEMS sealing and packaging[J]. IEEE Transactions on advanced packaging,2009,32:461-467.
    [126]Becker K, Pungs L, Lamberts K. Heat analysis of a plastic bar during ultrasonic welding[J]. Kunststoffe,1973,63:100-112.
    [127]Benatar. A, Gutowski. T. Ultrasonic Welding of Graphite APC-2 Composites [J]. Polym. Eng. Sci.,1989,29:1705-1721.
    [128]Nesterenko N P, Senchenkov I K. Current state and prospects of improvement of ultrasound welding of polymers and thermoplastic composite material[J]. Welding Research Abroad,2004,50:28-34.
    [129]Wang X L, Yan J C, Li R Q, et al. FEM investigation of the temperature field of energy director during ultrasonic welding of PEEK[J]. J. Thermoplast. Compos.,2006,19: 593-607.
    [130]Suresh K S, Rani M R, Prakasan K, et al. Modeling of temperature distribution in ultrasonic welding of thermoplastics for various joint designs [J]. Journal of Materials Processing Technology,2007,186:138-146.
    [131]Tolunary M N, Dawson P B, Wang K K. Heating and bonding mechanisms in ultrasonic welding of thermoplastics [J]. Polym. Eng. Sci.,1983,23:726-733.
    [132]过梅丽,赵得禄.高分子物理[M].北京:北京航空航天大学出版社,2005.
    [133]Ferry J D. Viscoelastic properties of polymer,3nd Ed. New York:Wiley,1980.
    [134]刘薇,金日光,励杭泉.高分子材料时温等效方程的研究[J].北京化工学院学报,1991,18:24-36.
    [135]Grewell D A, Benatar A, Park J B.塑料及其共混物焊接[M].北京:化学工业出版社,2006.
    [136]Frantz J. Joining plastics in sound way[J]. Mach. Design.1997,69:61-65.
    [137]Limm W, Hong S H. Modeling of additive diffusion in poly (ethylene terephthalate) (PET)[J]. Polymer Preprints,1995,36:689-690.
    [138]Ng S H, Tjeung R T, Wang Z F, et al. Thermally activated solvent bonding of polymers[J]. Microsyst Technol.,2008,14:753-775.
    [139]Qiu L, Xiao H. Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs[J]. J. Hazard. Mater.,2009, 164:329-336.
    [140]Qing X, Kai L Y. Calculation of solubility parameters of organic solvents by molecular dynamics simulation[J]. Journal of Jiangsu polytechnic university,2004,16:40-42.
    [141]Ijantkar A S, Natarajan U. Atomistic simulations of the structure and thermodynamic properties of poly (1,2-vinyl-butadiene) surfaces[J]. Polymer,2004,45:1373-1378.
    [142]Takeda K, Tanaka H, Tsuchiya T, et al. Molecular movement during welding for engineering plastics using langevin transducer equipped with half-wave-length step horn[J]. Ultrasonics,1998,36:75-78.
    [143]Wang X D, Ge L J, Lu J J, et al. Fabrication of enclosed nanofluidic channels by UV cured imprinting and optimized thermal bonding of SU-8 photoresist [J]. Microelectron. Eng.,2009,86:1347-1349.
    [144]Li J M, Liu C, Liang Y, et al. Multi-layer PMMAmicrofluidic chips with channel networks for liquid sample operation[J]. J. mater. Proc. Techn.,2009,209:5487-5493.
    [145]Eddings M A, Johnson M A, Gale B K. Determining the optimal PDMS-PDMS bonding technique for microfluidic devices[J]. J. Micromech. Microeng.,2008,18:26-30.
    [146]Hernan V, Fuentest, Woolley A T. Phase-changing sacrificial layer fabrication of multilayer polymer microfluidic devices[J]. Anal. Chem.,2008,80:333-339.
    [147]Lai J J, Yuan H, Yi X J et al. Laser bonding of multilayer polymer microfluidic chips[J]. Pro. of SPIE,2005,5628:56-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700