角泵浦Nd:YAG复合板条基模激光器及其光束对称性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究角泵浦的Nd:YAG复合板条基模激光器及其光束对称性。
     在选择适当的增益材料和泵浦源的基础上,论文首先使用光线追迹的数值分析方法重点计算了单角泵浦时激光介质各项参数对泵浦吸收效率和均匀性的影响,给出了各参数的最佳范围并据此设计加工了优化复合板条。实验中,通过使激光器在工作在dωL / dfth< 0的稳区边缘,在满泵浦功率45.9W下得到11.94W激光输出,光光效率26%,两方向光束质量分别为1.18和1.34,首次实现了角泵浦固体激光器的基模运转。
     为了研究角泵浦激光器输出不对称性的热效应根源,论文建立了较为完善的复合板条热力学模型,采用有限差分法计算得到了板条内部的温度分布模型以及热焦距随泵浦功率变化的规律,并在未出激光条件下进行了验证实验,实验结果与理论计算结果基本相符。通过热分析,论文提出三种方法来改善复合板条热焦距的对称性,对于可行性较高的绝热槽热沉方案,数值计算分析结果表明:当绝热槽槽宽0.325 mm,槽深2 mm时,板条两方向的热焦距大致相等。实验结果表明,绝热槽热沉可以使板条两方向热焦距比由原来的3.86倍缩小到2.19倍,一定程度上改善了热焦距的不对称性,同时提出考虑端面效应和提高绝热槽加工精度可以进一步使两方向热焦距大致对称。
     随后,论文采用等价腔分析方法,分析了一种通过改变谐振腔参数来得到对称激光输出的谐振腔设计,并进行了实验验证。实验结果表明,这种谐振腔设计方法可以在一定泵浦功率范围内保持激光输出的对称性。该方法简单实用,同样适用于因非对称散热或非对称泵浦而造成输出不对称的其它泵浦方式。
     论文还对角泵浦固体激光器的温度特性进行了光线追迹分析和实验研究。在LD泵浦电流40A,LD温度15℃至25℃时,激光器输出功率变化小于5%,光束质量基本无变化。进一步由理论分析可以预期,在LD温度为10℃至30℃甚至更大范围内,激光器的基模输出仍将保持相当好的稳定性。理论分析和实验结果均表明角泵浦固体激光器具有较好的温度适应特性。
This thesis focuses on the LD bar corner-pumped TEM00 CW composite Nd:YAG laser and symmetry of the output.
     After the fit gain medium and pump source were been chosen, ray-tracing algorithm was used to simulate the pump absorption efficiency and pump absorption distribution of LD corner-pumped laser with different parameters of Nd:YAG composite slab crystal. The optimized slab was designed and manufactured according to the results of the ray-tracing simulating. Resonator experiment was performed to suppress the oscillation of higher-order modes and realize TEM00 operation. Experiment results showed that the output power was 11.94W with the optical-optical efficiency of above 26%, and the M2 factors of beam quality at width and thickness directions were 1.18 and 1.34, respectively. It was the first time that corner-pumped solid-state lasers operated in fundmental mode.
     For studying the thermal effects which induced the asymmetry of the output of corner-pumped lasers, an appropriate thermodynamics mode was established and finite difference method was used to calculate the temperature distribution of composite slab and the thermal focal length as fuction of pump power. The experimental results agreed well with the calculated results under non-lasing conditions. According to the thermal analysis, heat sink with the adiabatic groove was used to improve the asymmetry of the thermal focal length of composite slab. The numerical analysis indicated that the thermal focal length of two directions could be equal when the width of groove was 0.325 mm and the depth of it was 2 mm. The experiment results showed that the difference of the thermal focal length of two directions decreased from 3.86 times to 2.19 times when the Heat sink with the adiabatic groove was employed. Improving process precision of groove and the calculation taking into account end effect were put forward to ulteriorly improve the asymmetrical thermal focal length.
     At last, the influence of LD temperature fluctuation on the performance of corner-pumped TEM00 laser was investigated by numerical ray tracing method and laser experiment. At a drive current of 40A, when the LD temperature varies from 15℃to 25℃, the fluctuation of output power is less than 5% and the beam quality remains almost invariable. Furthermore, it could be anticipated that the TEM00 output should still remain stabe, with the LD temperature variation in the range between 10 degree and 30 degree or even in a wider range according to the simulation. Both the theoretical analysis and experimental results show that the corner-pumped TEM00 laser has a good tolerance to temperature fluctuation.
引文
[1] W. Koechner. Solid-state laser engineering. 5th rev. and updated ed, New York: Springer, 1999.
    [2]周炳琨.激光原理.第5版,北京:国防工业出版社, 2007.
    [3]吕百达.固体激光器件.北京:北京邮电大学出版社, 2002.
    [4]李适民.激光器件原理与设计.北京:国防工业出版社, 1998.
    [5]蓝信钜.激光技术.北京:科学出版社, 2005.
    [6]魏光辉,杨培根.激光技术在兵器工业中的应用.北京:兵器工业出版社, 1995.
    [7]袁启明.激光技术在医学领域的应用与发展.现代医学仪器与应用2007, 19(5): 26-32.
    [8] T. H. Maiman. Stimulated optical radiation in ruby. Nature 1960, 187: 493-494.
    [9] Fan T Y, Byer R L. Diode laser-pumped solid-state lasers. IEEE J. of Q. E., 1988, 24(6): 895-912.
    [10] O. Svelto. Principles of lasers. 4th ed, New York: Plenum Press, 1998.
    [11]曹三松.高功率半导体激光器评述.激光技术2000, 24(4): 203-207.
    [12]巩马理,李晨,柳强等.一种用于板条的角泵浦方法及其固体激光增益模块.中国专利: 02129485. 2, 2002-08-23.
    [13] Mali Gong, Chen Li, Qiang Liu, et al. Corner pumping method for solid-state lasing materials operated at low absorption coefficient. US Patent: 10 /719072, 2003206227.
    [14] J. M. Eggleston, T. J. Kane, K. Kuhn, et al. The slab geometry laser-part I: Theory. IEEE J. of Q. E., 1984, 20(3): 289-301.
    [15] T. J. Kane, J. M. Eggleston, R. L. Byer. The slab geometry laser-part II: Thermal effects in a finite slab. IEEE J. of Q. E., 1985, 21(8): 1195-1210.
    [16] Mali Gong, Chen Li, Qiang Liu, et al. 200-W corner-pumped Yb:YAG slab laser. Appl. Phys. B, 2004, 79: 265-267.
    [17] Qiang Liu, Mali Gong, Fuyuan Lu, et al. 520-W continuous-wave diode corner-pumped composite Yb:YAG slab laser. Optics Letters, 2005, 30(7): 726-728.
    [18] Qiang Liu, Mali Gong, Fuyuan Lu, et al. Corner-pumped Yb:yttrium aluminum garnet slab laser emitted up to 1 kW. Appl. Phys. Lett., 2006, 88(10): 101113-1-3.
    [19] Mali Gong, Fuyuan Lu, Qiang Liu, et al. Efficient corner-pumped Yb:YAG_YAG composite slab laser. Appl. Optics, 2006, 45(16): 3806-3810.
    [20] Fuyuan Lu, Mali Gong, Haizhong Xue, et al. Analysis on the temperature distribution andthermal effects in corner-pumped slab lasers. Optics and Laser Engineering, 2007, 45: 43-48.
    [21] Fuyuan Lu, Mali Gong, Haizhong Xue, et al. Optimizing the composite slab sizes in corner-pumped lasers. Optics and Laser Technology, 2007, 39(5): 949-952.
    [22]吕静姝,闫平,巩马理等.热键合技术及其在激光方面的应用.光学技术, 2002, 28(4): 355-359.
    [23]巩马理,陆富源,柳强等.二极管泵浦准三能级固体激光器的新进展.量子电子学报, 2005, 22(4): 516-524.
    [24]柳强,巩马理,李晨等.角抽运Yb:YAG激光器.物理学报, 2005, 54(2): 721-725.
    [25]柳强,巩马理,陆富源等.高功率二极管角抽运Yb:YAG板条激光器.激光与光电子学进展, 2005, 42 (12): 17.
    [26]盛大成,巩马理,柳强等.角抽运板条固体激光器热效应的分析.激光技术, 2006, 30(1): 86-89.
    [27]薛海中,陆富源,薛梅等. Yb:YAG板条激光器谐振腔设计与光束质量测量.激光技术, 2006, 30(6): 585-588.
    [28] Beach R J. Theory and optimization of lens ducts. Appl. Optics, 1996, 35(12): 2005-2015.
    [29] Patel F D, Honea E C, Speth J, et al. Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG. IEEE J of Q. E., 2001, 37(1):135-144.
    [30]吕百达.高功率固体激光谐振腔研究的进展.激光与红外, 1997, 27(1):7-10.
    [31] Du K, Wu N, Xu J, et al. Partially end-pumped Nd:YAG slab laser with a hybrid resonator. Opt. Lett., 1998, 23(5):370-372.
    [32] Newman R. Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs. J. of Appl. Phys., 1963, 34(2): 437-439.
    [33] Ross M. YAG laser operation by semiconductor laser pumping. Proc. of IEEE, 1968, 56(2): 196-197.
    [34] Rosenkrantz L. GaAs diode-pumped Nd:YAG laser. J. of Appl. Phys., 1973, 43(11): 4603-4605.
    [35] Susumu Konno, Shuichi Fujikawa, Koji Yasui. 80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser. Appl. Phys. Lett., 1997, 70(20): 2650-2651.
    [36] Robert S. Afzal, Anthony W. Yu, John J. Zayhowski, et al. Single-mode high-peak-power passively Q-switched diode-pumped Nd:YAG laser. Optics Lett., 1997, 22(17): 1314-1316.
    [37] Errico Armandillo, Callum Norrie, Alberto Cosentino, et al., Diode-pumped high-efficiency high-brightness Q-switched Nd:YAG slab laser. Optics Lett., 1997, 22(15): 1168-1170.
    [38]周复正,陈有明,胡文涛等.大功率半导体激光侧面泵浦Nd:YAG板条激光器.中国激光,1994,A21(11): 865-868.
    [39] K. Yasui, S. Konno, S. Fujikawa, et al. Resonator technology for >100 W TEM00 mode operation in solid-state lasers. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3611: 114-118.
    [40] K. Furuta, S. Fujikawa, S. Konno, et al. 1-kW high-beam-quality Nd:YAG rod laser with cascaded-coupling of bifocusing compensation resonators. (Institute of Electrical and Electronics Engineers Inc., Long Beach, CA, United States, 2002), pp. 177-178.
    [41] Y. Hirano, Y. Koyata, S. Yamamoto, et al. 208-W TEM00 operation of a diode-pumped Nd:YAG rod laser. Opt. Lett., 1999, 24: 679-681.
    [42] D. Golla, M. Bode, S. Knoke, et al. 62-W cw TEM00 Nd:YAG laser side-pumped by fiber-coupled diode lasers. Optics Lett., 1996, 21(3): 210-212.
    [43]周复正,沈丽清,范滇元等.半导体激光泵浦固体激光器进展.激光与红外, 1992, 22(2): 1-6.
    [44]王卫民,高清松,罗斌等.二极管侧泵浦高效率连续波10W单横模激光器.强激光与粒子束, 2002, 14(1): 57-59.
    [45] C. PFISTNER, P. ALBERS, H. P. WEBER. Efficient Nd:YAG Slab Longitudinally Pumped by Diode Lasers. IEEE J. of Q. E., 1990, 26(5): 827-829.
    [46] T. Y. Fan and A. Sanchez. Scalable, End-Pumped, Diode Laser Pumped Nd:YAG Laser. Optics Lett., 1989, 14(19): 1507-1509.
    [47] P. Y. Wang. Beam-shaping optics deliver high-power beams. Laser Focus World, 2001, 37(12): 115-118.
    [48] Justin L. Blows, Judith M. Dawes, James A. Piper. A simple, thermally-stabilized, diode end-pumped, planar Nd:YAG laser. Optics Communications, 1999, 162: 247-25.
    [49] W. A. Clarkson and D. C. Hanna. Efficient Nd:YAG laser end pumped by a 20-W diode-laser bar. Optics Lett., 21(12): 869-871.
    [50] Maik Frede, Ralf Wilhelm, Martina Brendel, et al. High power fundamental mode Nd:YAG laser with efficient birefringence compensation. Optics Express, 2004, 12(15): 3581-3589.
    [51] Fan T Y. Heat generation in Nd:YAG and Yb:YAG. IEEE J of Q. E., 1993, 29(6): 1457-1459.
    [52] Krupke W F. Ytterbium solid-state lasers - The first decade. IEEE J of Select Topic Quantum Electronics, 2000, 6(6): 1287-1296.
    [53] Sumida D S, Betin a A, Bruesselbach H, et al. Diode-pumped Yb:YAG catches up with Nd:YAG. Laser Focus World, 1999, 35(6): 63-66.
    [54] Brown D C. Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers. IEEE J of Q. E., 1997, 33(5): 861-873.
    [55] Brioschi F, Nava E, Reali G C. Gain shaping and beam quality in diode-laser multiarray side-pumped solid-state lasers. IEEE J of Q. E., 1992, 28(4): 1070-1074.
    [56] Ajer H, Landrs S, Rustad G, et al. Efficient diode-laser side-pumped TEM00 mode Nd:YAG laser. Optics Lett., 1992, 17(24): 1785-1787.
    [57] Jianhui Gu, Siu-Chung Tam, Yee-loy Lam, et al. Pump uniformtiy study of a side-pumped DPSS laser. SPIE, 2001, 267: 89-95.
    [58]蔡志强,姚建铨. LD侧泵激光器抽运光和温度分布数值研究.光电子.激光, 2004, 15(11): 1305-1310.
    [59]郭云宵,巩马理,薛海中,等. LD环形侧面抽运介质吸收能量分布特性研究.激光技术, 2006, 30(6): 570-577.
    [60]王强,曾晓东,安毓英.大功率激光二极管双峰结构远场分布模型.光学学报, 2005, 5(5): 619-622.
    [61] Zeni L, Campopiano S, Cutolo A, et al. Power semiconductor laser diode arrays characterization. Opt. Lasers Eng., 2003, 39(2): 203-217.
    [62] Sebastian J, Beister G, Bugge F, et al. High power 810 nm GaAsP/AlGaAs diode lasers with narrow beam divergence. IEEE J of Select Topic Quantum Electronics, 2001, 7(2): 334-339.
    [63]王强.大功率激光二极管光束特性研究.西安:西安电子科技大学.
    [64] DILAS Diode Laser Inc. The manual of conduction Cooled Diode Laser Bar 808nm, 50W.
    [65] R. J. Beach. Theory and optimization of lens ducts. Applied Optics, 1996, 35: 2005-2015.
    [66]李晨.准三能级固体激光器的角泵浦方法及热特性研究.北京:清华大学, 2004.
    [67]陆富源.高功率二极管泵浦Yb:YAG激光器的特性研究.北京:清华大学, 2006.
    [68] W. A. Clarkson. Thermal effects and their mitigation in end-pumped solid-state lasers. J. phys. D: Appl. Phys., 2001, 34: 2381-2395.
    [69] S. C. Tidwell, J. F. Seamans and M. S. Highly efficient 60-W TEM00 CW diode-end-pumped Nd:YAG laser. Opt. Lett., 1993, 18: 116-118.
    [70] D. R. Walker, C. J. Flood and H. M. van Driel. Efficient continuous-wave TEM00 operation of a transversely diode-pumped Nd:YAG laser. Opt. Lett., 1994, 19: 1055-1057.
    [71] R. J. Shine Jr., A. J. Aifrey and R. L. Byer. A 40W cw, TEM00 mode, diode-laser-pumped, Nd:YAG zig-zag miniature-slab laser. Proc. SPIE, 1995, 2379: 112-119.
    [72] H. Yang. 41 W CW TEM00 (M2=1.2) 1064 nm beam generation from a diode-side-pumped Nd:YAG laser by use of a dual-telescopic optics configuration. Opt. Comm., 2002, 204: 263-266.
    [73]吕百达.激光光学光束描述、传输变换与光腔技术物理.第3版,北京:高等教育出版社, 2003.
    [74]邹晶,赵圣之,杨克建等. CCD测量LD端面抽运Nd:GdVO4固体激光器热焦距,激光技术, 2006, 30(4): 422-424.
    [75] Blows J L, Omatsu T, Dawes J, et al. Heat generation in Nd:YVO4 with and without laseraction. IEEE Photonics Technology Letters. 1998, 10 (12): 1727-1729.
    [76] H. G. Danielmeyer, M. Blatte, P. Balmer. Fluorescence quenching in Nd:YAG. Applied Physics, 1973, 1: 269-274.
    [77] I. O. Musgrave, W. A. Clarkson, D. C. Hanna. Detailed study of thermal lensing in Nd:YVO4 under intense diode end-pumping (Institute of Electrical and Electronics Engineers Inc., Baltimore, MD, 2001).
    [78] Hodgson N, Griswold K, Jordan W, et al. High power TEM00 mode operation of diode-pumped solid state lasers. Proceedings of SPIE-The international Society for Optical Engineering, 1999, 3611: 119-131.
    [79] Peng X, Xu L, Asundi A. Power scaling of diode-pumped Nd:YVO4 lasers. IEEE J of Q. E., 1997, 33 (5): 861-873.
    [80] Li Z G, Xiong Z, Huang W L, et al. Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers. IEEE J of Q. E., 2003, 39 (8): 979-986.
    [81] Sennaroqlu A. Determination of the stimulated-emission cross section in an end-pumped solid-state laser from laser-induced saturation data. Optics Lett., 2001, 26 (8): 500-502.
    [82] Martel G, Ozkul C, Sanchez F. Experimental and theoretical evidence of pump-saturation effects in low power end-pumped Nd:YVO4 microchip laser. Optics Communications, 2000, 185 (4-6): 419-430.
    [83] Hello P, Durand E, Fritschel P K, et al. Thermal effects in Nd:YAG slabs 3D modeling and comparison with experiments. Journal of Modern Optics, 1994, 41 (7): 1371-1390.
    [84] Bermudez G J C, Pinto-Robledo V J, Kir’yanov, et al. The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4 laser. Optics Communications, 2002, 210 (1-2): 75-82.
    [85]郭宽良.计算传热学.合肥:中国科学技术大学出版社, 1988.
    [86] Patankar S V.传热和流体流动的数值方法.合肥:安徽科学技术出版社, 1984.
    [87] Croft D R, Lilley D G.传热的有限差分方程计算.北京:冶金工业出版社, 1982.
    [88]赵镇南.传热学.北京:高等教育出版社, 2002.
    [89]张玲,杨少辰,李文博. LD侧面泵浦Nd:YAG激光器的热效应研究.激光与红外, 2003, 33 (1): 37-39.
    [90] Xie W, Tam S, Yang H, et al. Heat transfer for diode side-pumped YAG slabs. Optics and Laser Technology, 1999, 31 (7): 521-528.
    [91]王军荣,闵敬春,宋耀祖.二维板状激光介质热效应的理论分析.工程热物理学报, 2005, 26 (3): 480-482.
    [92]竹内洋一郎.热应力.北京:科学出版社, 1977. 46-52.
    [93] Ma Z, Li D, Wu N, et al. Thermal effects of the diode end-pumped Nd:YVO4 slab. OpticsCommunications, 2007, 275 (1): 179-185.
    [94] Cousins A K. Temperature and thermal stress scaling in finite-length end-pumped laser rods. IEEE Journal of Q. E., 1992, 28 (4): 1057-1069.
    [95] Ma Z, Li D, Wu N, et al. Thermal effects of the diode end-pumped Nd:YVO4 slab. Optics Communications, 2007, 275 (1): 179-185.
    [96]周仁忠.自适应光学.北京:国防工业出版社, 1996.
    [97] Sato Y, Taira T. The studies of thermal conductivity in GdVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method. Optics Express, 2006, 14 (22): 10528-10536.
    [98] Fan S, Zhang X, Wang Q, et al. Improved method of calculating thermal lens focal length in‘Top-hat’end-pumped solid-state lasers. Chinese Journal of Lasers, 2006, 33 (9): 1180-1184.
    [99] Peng X, Xu L, Asundi A. Thermal lensing effects for diode-end-pumped Nd:YVO4 and Nd:YAG lasers. Optical Engineering, 2004, 43 (10): 2454-2461.
    [100]徐弼军,陆璇辉,薛大建,等.热透镜效应和谐振腔参数的选择对激光输出的影响.光学仪器, 2002, 24 (4-5): 47-51.
    [101] Chenais S, Balembois F, Druon F, et al. Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements. IEEE J of Q. E., 2004, 40(9): 1217-1234.
    [102]魏志义,王水才.激光热焦距的高精度测量.应用激光, 1990, 1(5): 223-224.
    [103]范滇元,余文炎.激光束的像散补偿.激光, 1982, 9(4): 212-216.
    [104] V. Magni. Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability. Appl. Opt., 1986, 25: 107–117.
    [105] Ophir-Spiricon Inc. M2-200/200s-FW Users Guide.
    [106] R. A. Fields, M. Birnbaum, C. L. Fincher. Highly efficient Nd:YVO4 diode-laser end-pumped laser. Appl. Phys. Lett., 1987, 51: 1885.
    [107]张文平,李明山,尚卫东等.二极管泵浦激光器中的二极管温控精度.红外与激光工程, 2008, 37(1): 69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700