模拟深海环境下有机涂层/低合金钢体系失效过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着陆地矿产资源被过度消耗,世界各国都把目光投向如何开采和利用深海中的矿产资源。有机涂层是深海环境中对海洋工程结构防护的最重要手段之一。深海压力会加速有机涂层的失效,也是导致海洋船舶、石油平台、深潜器等损坏的原因之一。因此,对于深海环境中金属的腐蚀行为和有机涂层失效机制的研究已成为当前各国腐蚀科研人员极为关注的问题。本文主要以模拟深海压力环境为实验背景,采用电化学方法以及物理测试技术研究了低合金钢在不同海水压力下的腐蚀电化学行为及微观形貌,又研究了完好和不同破损程度的有机涂层在模拟深海压力下的劣化过程。采用电化学阻抗谱(EIS)技术测试了电极的阻抗响应随浸泡时间的变化,据此建立相应的等效电路模型,并根据等效电路对各阻抗谱进行解析。同时,将丝束电极(WBE)技术和电化学阻抗谱(EIS)技术联用研究了常压海水浸泡条件下有机涂层的劣化过程。取得主要研究进展和成果如下:
     (1)首先,研究了低合金钢在不同海水压力下的腐蚀电化学行为及微观形貌。结果表明,随着海水压力的增大,两种钢均发生严重的腐蚀。深海压力加速了两种低合金钢的阳极溶解速度。两种钢均由低压下的均匀腐蚀变为高压下的局部腐蚀,但腐蚀形貌有较大差异。高压下的X钢出现明显的“浅碟状”腐蚀坑,而高压下的Y钢出现了明显的隧道形腐蚀坑。
     研究了2.5MPa的海水压力下水在涂层中的传输行为。结果表明,浸泡初期水在涂层中的传输行为符合Fick扩散定律。与常压下水的传输行为区别在于,海水压力加速了水向涂层内渗入,缩短了涂层达到吸水饱和状态所需要的时间,进而导致涂层在吸水饱和状态持续时间缩短。涂层提前达到耐压极限的时间即为“突变点”在lnC_c ~ t~(0.5)曲线出现的时间。此后,涂层电容急剧增大,涂层完全失效。
     研究了2.5MPa的海水压力下人工破损涂层的EIS响应特征。结果表明,在相同破损率和相同浸泡时间条件下,海水压力下涂层的阻抗值明显比常压下涂层的要小,同时随浸泡时间延长,试样的涂层电容呈增加趋势,极化电阻不断减小。高压海水使水等侵蚀性物质更易从破损处向涂层内部渗透,导致涂层与基体附着力降低,从而加速涂层失效。另外,总结了腐蚀产物在破损处的生成与堆积对不同压力下破损涂层腐蚀进程的影响。
     研究了海水交变压力下有机涂层的劣化过程。结果表明,海水交变压力加速了有机涂层的失效,其主要原因是交变压力下水对涂层的渗透和逆渗透加速了涂层从基体金属上的剥离。
     (2)结合WBE和EIS技术对涂层劣化的研究发现,阳极电流在电极表面的长期存在说明电极表面的涂层存在缺陷,从而导致金属发生严重腐蚀。涂层下的电极均会发生电流极性转换现象。涂层丝束电极的总阻抗谱响应主要反映的是局部涂层缺陷最为严重处的电极过程特征,而其它区域的涂层劣化过程和涂层下基体金属的腐蚀反应过程信息均被掩盖。丝束电极(WBE)技术和电化学阻抗谱(EIS)技术联用能够更为详尽地研究涂层的局部劣化过程以及准确提供涂层微区缺陷处金属基体的腐蚀反应过程信息。
With the excessive consumption of land resources, more and more efforts are being devoted to exploit marine resources in the world. Organic coating is one of the most important methods to protect ocean engineering structures in deep-sea environment. The pressure of seawater could accelerate the deterioration process of organic coating, and it may lead to the damage of ships, oil platforms and submersible boats. Therefore, the research of corrosion behaviors of metal and the deterioration mechanism of organic coating is being paid attention to. This dissertation based on the experiment of simulated deep-sea environment. Corrosion electrochemical behaviors and morphology of low alloy steels under different pressure of seawater were investigated by various electrochemical methods and physical testing technologies. The deterioration processes of intact coatings and the coatings with artificial defect and water transport behaviors in coatings under different pressure were investigated. The evolutions of impedance of coating with immersion time were measured by electrochemical impedance spectroscopy (EIS), and electrical equivalent circuits (EEC) corresponding to the different immersion stages were established. The EIS data of coating/metal systems were fitted to suitable EECs. The deterioration processes of coatings under atmospheric pressure of seawater were studied using the wire beam electrode (WBE) method and electrochemical impedance spectroscopy (EIS). The main results and progresses of this work are outlined as following:
     (1) The corrosion electrochemical behaviors and morphology of low alloy steels under different pressure of seawater were investigated. The results showed that with the increase of hydrostatic pressure of seawater, the corrosion resistance of X steel and Y steel were deteriorated, which were attributable to the increase of the anodic reaction rates. And the morphology of two steel changed significantly and differently. Under high pressure of seawater, some shallow-dish shape localized corrosion appeared on the surface of X steel, whereas on the surface of Y steel some tunnel localized corrosion appeared.
     The water transport behavior in the organic coating immersed under 2.5MPa pressure of seawater was investigated. The results suggested that the water transport behavior followed the Fick diffusion laws during the initial period of immersion. Contrast to the water transport behavior under atmospheric pressure, the time that the water uptake of the coating kept a saturation state has been shorten. The“turning point”appeared in the lnC_c ~ t~(0.5) curve when the pressure critical value of coating has been reached. Subsequently, the coating capacitance sharply increased and the coating was complete failure.
     The EIS response characteristic of the deterioration process of organic coating under 2.5MPa pressure of seawater was studied. The results demonstrated that the impedance of coating with artificial defects at 2.5 MPa pressure decreased faster than that under atmospheric pressure, and with the increase of immersion time, the capacitance of the samples increased, and the resistance decreased at 2.5 MPa pressure, indicating that high sea pressure greatly accelerated the degradation of organic coating. Moreover, the effect of accumulation of corrosion products at defect location of coating to the corrosion process of coating with artificial defect under different pressure was investigated.
     The deterioration processes of organic coating under alternating pressure of seawater were investigated. The results showed that the deterioration process of organic coating has been accelerated under alternating pressure of seawater, and the reason is that the permeation and reversed-permeation of seawater into the coating accelerated the delamination of coating from the substrate metal.
     (2) The current distribution results of the WBE showed that the substrate metal were corroded seriously because the high anode current appeared in the interface in a long time. And there were the phenomena of polarity transition of current on the coating/steel interface. During the entire coating deterioration process, the EIS characteristics were dominated by the substrate corrosion process of the most serious defect, and the coatings and underlying corrosion process were“averaged”out. Through the combination of the WBE and EIS, the local deterioration of the coating and corrosion process of the substrate metal could be exactly detected.
引文
[1]许立坤,李文军,陈光章.深海腐蚀试验技术.实验与技术,2005, 29(7): 1-3
    [2]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社,1984, 222
    [3] Nguyen Tinh N. A mathematical model for the cathodic blistering of organic coatings on steel immersed in electrolytes. J. Coatings Tech. l99l, 63(794): 43-52
    [4] Karyakina M I, Kuzmak A E. Protection by Organic Coatings: Criteria, Testing Methods and Modelling. Progress in Organic Coatings, 1990, 18: 325-388
    [5] Kraljic M, Mandic Z, Duic L. Inhibition of steel corrosion by polyaniline coatings. Corrosion science, 2003, 45: 181-198
    [6] Zin I M, Lyon S B, Hussain A. Under-film corrosion of epoxy-coated galvanized steel: An EIS and SVET study of the effect of inhibition at defects. Progress in Organic Coatings, 2005, 52: 126-135
    [7] Hernandez M A, Galliano F, Landolt D. Mechanism of cathodic delamination control of zinc-aluminum phosphate pigment in waterborne coatings. Corrosion Science, 2004, 46: 2281-2300
    [8] Amiurdin A, Thieny D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Progress in Organic Coatings, 1995, 26: 1-28
    [9] Ranjbar Z, Moardina S, Attar M R M Z. Progress in Organic Coatings, 2004, 51: 8
    [10] Le Pen C, Laebannae C, Peberer N. Progress in Organic Coatings, 2000, 39: 16
    [11]王受谦,杨淑贞,防腐蚀涂料与涂装技术,北京:化学工业出版社,2002.
    [12]阎瑞,耿志,吴行,等.潜艇表面涂层失效机理的研究.海军工程大学学报, 2005, 17(5): 38-42
    [13]张金涛.有机涂层中水传输与涂层金属失效机制的电化学研究:[博士学位论文] .杭州:浙江大学化学系,2005
    [14] Leidheiser Jr H, Wang W, Igetoft L. Determination of corrosion rates by electrochemical DC and AC methods. Corrosion Science. 1981, 21(9): 647-672
    [15] Leidheiser Jr H. Towards a better understanding of corrosion beneath organic coatings. Corrosion Science, 1983, 39: 189-201
    [16] Vander Weijde D H, Van Westing E P M, De Wit J H W. EIS measurements on artificial blisters in organic coatings. Electrochim Acta. 1996, 41(7-8):1103-1107
    [17]薛丽莉.水性环氧涂层碳钢体系腐蚀电化学行为研究:[博士学位论文] .哈尔滨:哈尔滨工程大学,2008
    [18]边洁.有机涂层附着力与金属表面预处理研究的新进展.山东机械, 2004, 1: 25-27
    [19] Worsley D A, Williams D, Ling J S G. Mechanistic changes in cut-edge corrosion induced by variation of organic coating porosity. Corrosion Science, 2001, 43: 2335-2348
    [20]赵增元.联合应用电化学阻抗谱和Kelvin探针研究有涂层劣化:[硕士论文] .青岛:中国海洋大学化学化工学院,2007
    [21] Bin Liu, Ying Li, Haichao Lin, Chu-nan Cao. Effect of PVC on the diffusion behaviour of water through alkyd coatings. Corrosion Science 2002(44): 2657-2664
    [22]江世平.新型防锈颜料的发展.上海涂料,1997(3): 24-27
    [23]黄尚顺,黄科林,李克贤,等.磷酸盐防锈颜料的研究进展.企业科技与发展,2009(22):24-26
    [24] Yang L X, Liu E C, Han E H. Effects of P/B on the properties of anticorrosive coatings with different particles size. Progress in Organic Coatings, 2005, 53: 91-98
    [25] Schwartz C J, Bahadur S. Studies on the tribological behavior and transfer film--counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles. Wear, 2000, 237: 261-273
    [26] Tato W, Landor D. Electrochemicalde termination of the porosity of single and duplex coatings of titanium and titanium nitride on brass. Journal of Electrochemical Society, 1998, 145(12): 4173-4181
    [27] Attila Kiss, Erika Fekete, Bela Pukanszky. Aggregation of CaCO3 particles in PP composites: Effect of surface Coating. Composites Science and Technology, 2007, 67: 1574-1583
    [28] Haruyama S, Sudo S. Electrochemical impedance for a large structure in soil. Eletrochimica Acta, 1993, 38(14): 1857-1865
    [29] Fuente D de la, Bohm M, Houyoux C, Rohwerder M, Morcillo M. The settling of critical levels of soluble salts for painting. Progress in Organic Coatings, 2007, 58: 23-32
    [30] Mrcilo M, Podriguez F J, Bastidas J M. The influence of cholorides, sulphates and nitrates at the coating steel interface on underfilm corrosion. Progress in Organic Coatings, 1997, 31: 245-353
    [31] Kittel J, Celati N, Keddam M, Takenouti H. New methods for the study of organic coatingsby EIS New insights into attached and free films. Progress in Organic Coatings, 2001, 41: 93–98
    [32] Thu Q Le, Takenouti H, Touzain S. EIS characterization of thick flawed organic coatings agedunder cathodic protection in seawater. Electrochimica Acta, 2006, 51: 2491-2502
    [33]王金鑫.浅谈表面处理对钢结构防护涂层附着力的影响.中国涂料,2008, 23(5): 66-68
    [34] Leggat R B, Taylor S A, Taylor S R . Ashesion of epoxy to hydrotalcite conversion coatings: l. Correlmion with wettability and electrokinetic measurements. Colloids and Surfaces A: Physicochem, Eng, Aspects, 2002, 210: 69-81
    [35] Fedrizzi L, Rodriguez F J, Rossi S. The use of electrochemical techniques to study the corrosion behaviour of organic coatings of steel pretreated with sol-gel ziconia films. Electrochimica Acta, 2001, 46: 3715-3724
    [36]张金涛,胡吉明,张鉴清,等.金属涂装预处理新技术与涂层性能研究方法进.表面技术,2005, 34(1): 1–5
    [37] Deflorian F, Rossi S, Fedrizzi L. Silane pre-treatments on copper and aluminium. Electrochimica Acta, 2006, 51(27): 6097-6103
    [38]陶福山,2l世纪工业涂装展望,材料保护,2000(1): 65-67
    [39] Lavaert V, De Cock M, Moors M, Wettinck E. rogress in Organic Coatings, 2000, 38: 213
    [40] Mario Del Grosso Destreria, Lorenzo Fedrizzic. Water up-take evaluation of new waterborne and high solid epoxy coatings. Part II: electrochemical impedance spectroscopy. Progress in Organic Coatings, 1999, 37: 69 - 81
    [41] Funke W. Corrosion Tests for Organic Coatings-A Review of their Usefulness and Limitations Assessment of water uptake in coil coatings by capacitance measurements.J. Oil Colour Chemists Assoc, 1979, 62: 63–67
    [42] Wessling B, Posdorfer Joerg. Corrosion prevention with an organic metal (polyaniline): corrosion test results. Electrochimica Acta, 1999, 44: 2139– 2147
    [43] Miszczyk A, Schauer T. Electrochemical approach to evaluate the interlayer adhesion of organic coatings. Progress in Organic Coatings, 2005, 52:298–305
    [44] Nazarov A. P, Thierry D. Scanning Kelvin probe study of metal/polymer interfaces. Electrochimica Acta, 2004, 49:2955–2964
    [45] Leng A, Streckel H., Stratmann M.The delamination of polymeric coatings from Steel. Part 1:Calibration of the Kelvinprobe and basic delamination mechanism. Corrosion Science, 1999, 41: 547–578
    [46] Leng A, Streckel H, Stratmann M.The delamination of polymeric coatings from steel. part 2 :first stage of delamination, effect of type and concentration of cations on delamination, chemical analysis of the interface. Corrosion Science, 1999, 41:579
    [47] Leng A, Streckel H, Stratmann M.The delamination of polymeric coatings from steel. part 3: effect of the oxygen partial pressure on the delamination reaction and current distribution at the metal/polymer interface. Corrosion Science, 1998, 41(3): 599-620
    [48] Nazarov A P, Thierry D. Scanning Kelvin probe study of metal/polymer interfaces. Electrochim.Acta, 2004, 49: 2955-2964
    [49] Flavio Deflorian, Stefano Rossi. An EIS study of ion diffusion through organic coatings. Electrochim. Acta, 2006, 5l: 1736-1744
    [50] Koehler E L.The mechanism of cathodic disbondment of protective organic coatings-aqueous displacement at elevated pH. Corrosion, 1984, 40(1): 5-8
    [51]梁彩风,郁春娟,张晓云.海洋大气及污染海洋大气对典型钢腐蚀的影响.海洋科学,2005, 29(7): 42-44
    [52]于青.35CrMo高强度钢在海洋大气中的氢渗透行为与环境致脆机理研究:[博士学位论文].青岛,中国科学院海洋研究所,2008
    [53] ?zcan M, Dehri I, Erbil M. EIS study of the effect of high levels of SO2 on the corrosion of polyester-coated galvanised steel at different relative humidities. Progress in Organic Coatings, 2002, 44:279–285
    [54]刘学庆.海洋环境工程钢材腐蚀行为与预测模型的研究:[博士学位论文].青岛,中国科学院海洋研究所,2004
    [55]王光雍,王海江,李兴濂,等.自然环境的腐蚀与防护—大气·海水·土壤.1997年第一版.北京:化学工业出版社,1997: 79, 87, 89, 101-103, 105
    [56]张正斌,刘莲生.海洋物理化学.1989年第一版.北京:科学出版社,1989: 521
    [57] Miszczyk A, Darowicki K. Accelerated ageing of organic coating systems by thermal treatment. Corrosion Science. 2001, 43: 1337-1343
    [58] Perera D Y, Eynde D. E.Considerations on a cautilever (beam) method for measuring the internal stress in organic coatings. Journal of coatings technology. 1981, 53: 39-44
    [59] Perera D Y, Eynde D. E.Solvent influence on the development of internal stress in a thermoplastic coating. Journal of coatings technology. 1983, 55: 37-43
    [60] King D, Bell JP. Thermal Shock Failure in Thick Epoxy Coatings. The Journal of Adhesion, 1988, 26 (1): 37-58
    [61] Nakamura Y, Tabata H, Suzuki H, Iko K, Okuboto M, Matsumoto T. Internal stress of epoxy resin modified with acrylic core-shell particles prepared by seeded emulsion polymerization. Journal of Applied Polymer Science, 1986, 32(5): 4865-4871
    [62] Haruyama, Hirayara R, Haruyama S. Electrochemical impedance for degraded coated steel having pores. Corrosion, 1991, 47(12): 952-958
    [63] Fedrizzi L, Bergo A, Deflorian F. Assessment of protective properties of organic coatings by thermal cycling.Progress in Organic Coatings, 2003, 48:271–280
    [64] Miszczyk A, Darowicki K. Effect of environmental temperature variations on protective properties of organic coatings. Progress in Organic Coatings, 2003, 46: 49–54
    [65] Hartmut Ochs, J(o|¨)rg Vogelsang. Effect of temperature cycles on impedance spectra of barrier coatings under immersion conditions. Electrochimica Acta, 2004, 49: 2973–2980
    [66] Valérie Sauvant-Moynot, Sébastien Duval, Nelly Gimenez, Jean Kittel. Hot wet aging of glass syntactic foam coatings monitored by impedance spectroscopy. Progress in Organic Coatings, 2007, 59(3): 179-185
    [67] Shimogori K, Satoh H, Kamikubo F. Investigation of Hydrogen Absorption--Embrittlement of Titanium Used in Actual Equipment. Titanium--Science and Technology, 1984, 2: 1111-1118
    [68]胡士信.阴极保护工程手册.北京:化学工业出版社.1999, 1: 9-12
    [69]王庆璋,杜敏编.海洋腐蚀与防护技术.青岛:青岛海洋大学出版社.2000, 11: 124-130
    [70] Isabel C. P. Margarit, Oscar R. Mattos. About coatings and cathodic protection: Properties of the coatings influencing delamination and cathodic protection criteria. Electrochimica Acta, 1998, 44: 363 - 371
    [71] Thu Q Le, Takenouti H, Touzain S. EIS characterization of thick flawed organic coatings aged under cathodic protection in seawater. Electrochimica Acta, 2006, 51(12): 2491–2502
    [72] Souto R M, Llorente M L, Fern′andez-M′erida L. Accelerated tests for the evaluation of the corrosion performance of coil-coated steel sheet: EIS under cathodic polarisation. Progressin Organic Coatings, 2005, 53: 71–76
    [73]刘刚,张奎志,曲政,等.某滨海电厂钢结构腐蚀防护.腐蚀与防护,2004, 25(9): 400-401, 408
    [74] Tsuru T, Nishikata A, Wang Jia. Electrochemical studies on corrosion under a water film. Materials Science and Engineering, 1995, A198:161-168
    [75] Nishikata A,Yamashita Y, Katayama H, Tsuru T, Usami A, Tanabe K, Mabuchi H. An electrochemical impedance study on atmospheric corrosion of steels in a cycle wet-dry condition. Corrosion Science, 1995, 37(12): 2059-2069
    [76] Veracruz R P, Nishikata A, Tsuru T. Pitting corrosion mechanism of stainless steels under wet-dry exposure in chloride-containing environment. Corrosion Science, 1998, 40(1): 125-139
    [77] Park J H, Lee G D, Ooshige H, Nishikata A, Tsuru T. Monitoring of water uptake in organic coatings under cyclic wet–dry condition. Corrosion Science, 2003, 45:1881–1894
    [78] Bierwagen G, Allahar K, Hinderliter B, Alda M P Simoes. Ionic liquid enhanced electrochemical characterization of organic coatings. Progress in Organic Coatings, 2008, 63: 250-259
    [79] Allahar K N, Hinderliter B R, Bierwagen G P. Cyclic wet drying of an epoxy coating using an ionic liquid. Progress in Organic Coatings, 2008, 62: 87–95
    [80] Lendvay-Gyorik G., Pajkossy T, Lengyel B. Corrosion-protection properties of water-borne paint coatings as studied by electrochemical impedance spectroscopy and gravimetry. Progress in Organic Coatings, 2006, 56: 304-310
    [81] Beccaria A M, Poggi G, Gingaud D, Castello G. Effect of some surface treatments on kinetics of aluminum corrosion in NaCl solutions at various hydrostatic pressures, Brit. Corros. J. 1986, 21: 19–22
    [82] Beccaria A M, Fiordiponti P, Mattongno D. The effect of hydrostatic pressure on the corrosion of nickel in slightly alkaline solutions containing Cl- ions, Corros. Sci. 1989, 29: 403–413
    [83] Beccaria A M, Poggi G, Gingaud D, Castello P. In?uence of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminum alloy in sea water, Brit.Corros. J. 1994, 29: 65–69
    [84] Beccaria A M, Poggi G, Arfelli M, Mattongno D. The effect of salt concentration on nickel corrosion behavior in slightly alkaline solutions at different hydrostatic pressures, Corrosion Science, 1993, 34: 989–1005
    [85] Beccaria A M, Poggi G, Castello G. In?uence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steel in sea water, Brit. Corros. J. 1995, 30: 283–287
    [86] Chen S, Hartt W, Deepwater cathodic protection: Part 1-laboratory simulation experiments, Corrosion, 2002, 58: 38–48
    [87] Beccaria A M, Poggi G. Influence of hydrostatic pressure on pitting of aluminum in sea water, Brit. Corros. J. 1985, 20: 183–186
    [88] Zhang Tao, Yang Yange, Shao Yawei, Meng Guozhe, Wang Fuihui. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe–20Cr alloy, Electrochim. Acta. 2009, 54: 3915–3922
    [89] Yang Yange, Zhang Tao, Shao Yawei, Meng Guozhe, Wang Fuihui. Effect of hydrostatic pressure on the corrosion behaviour of Ni–Cr–Mo–V high strength steel. Corrosion Science, 2010, 52: 2697-2706
    [90]阎瑞,耿志,吴行,等.潜艇表面涂层失效机理的研究.海军工程大学学报, 2005, 17 (5) : 38-42
    [91]曹楚南,张鉴清,电化学阻抗谱导论,北京:科学出版社,2002, 7
    [92]曹楚南.腐蚀电化学原理,北京:化学工业出版社,2004, 4
    [93] Walter G W. A review of impedance plot methods used for corrosion performance analysis of painted metals. Corrosion Science, 1986, 26(9): 681-703
    [94] Deflorian F, Fedrizzi L, Bonora P L. Determination of the reactive area of organic coated metals: physical meaning and limits of the break-point method. Elecortchim. Acta, 1993, 38(12): 1609-1613
    [95] Mansfeld F. Models for the impedance behavior of protective coatings and cases of localized corrosion. Eleccrthim. Acta, 1993, 38(14):1891-1897
    [96] Mansfeld F. J. Appl. Eelcortehem., 1995, 25:187
    [97] Xiao H, Han L T, Lee C C, Mansfeld F, Corrsion, 1997, 53(5): 412
    [98] Nie Tang, Wim J. van Ooij, George Górecki. Comparative EIS study of pretreatment performance in coated metals. Progress in Organic Coatings, 1997, 30:225-263
    [99] Mansfeld E, Jeaniaquet S L, Kendig M W. An electrochemical impedance spectroscopy study of reactions at the metal/coating interface. Corrosion Science, 1986, 26(9): 735
    [100] Kendig M, Scully J. Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals. Corrosion Science, 1990, 46(1): 22
    [101] Chen J, Aoki K, Totsuka T, Utsunomiya T. Effect of dispersion agent on the degradation of a waterborne paint on steel studied by scanning acoustic microscopy and impedance. Corrosion Science, 2002, 44: 179
    [102] Scantlebury J D, Galic K. Capacitance of a solid sulfortated epoxy resin-coated electrode. Journal of Applied Electrochemisrry, 1999, 29: 1457-1461
    [103] Bierwagen G P, Tallman D E. Choice and measurement of crucial aircraft coatings system properties. Progress in Organic Coatings, 2001, 41: 201-216
    [104] Mansfeld F, Kenging M, Tsi S. Evalvation of corrosion behavior of coated Metals with AC impedence measurements. Corrosion, 1982, 38: 478-485
    [105]张鉴清,孙国庆,曹楚南.评价有机涂层防护性能的EIS数据处理.腐蚀科学与防护技术,1994, 6(4):318–325
    [106] Kendig M, Sculy J. Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals. Corrosion Science, 1990, 46(1): 22-29
    [107] Zoltowski P. A new approach to measurement modeling in electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 1994, 375: 45-57
    [108] Gonzalez J E G, Mirza Rosen J C. Determination of the adhesion properties of an alkyd pigmented coming by electrochemical impedance spectroscopy. Journal of Adhesion Science and Technology, 1999, 13: 379-391
    [109] Berthier E, Diard J E, Michel R. Distinguishability of equivalent circuits containing CPES. Journal of Applied Electrochemistry, 2001, 510: 1-11
    [110] Kittel J, Celati N, Keddamb M, Takenouti H. Influence of the coatingsubstrate interactions on the corrosion protection: characterization by impedances pectroscopy of the inner and outer parts of a coating. Progress in Organic Coatings, 2003, 46(2): 135-147
    [111] Yang X F, Vang C, Tallman D E, Bierwagen G P, Croll S G, Rohlik S. Weatheringdegradation of a polyurethane coating. Polymer Degradation and Stability, 2001, 74(2): 341-351
    [112] Scantlebury J D, Gali K, The application of AC impedance to study the performance of lacquered aluminium specimens in acetic acid solution, Progress in Organic Coatings, 1997, 3l (3): 201-207
    [113] Geenen F M, De Wit J H W, Van Westing E P M. An impedance spectroscopy study of the degradation mechanism for a model epoxy coating on mild steel. Progress in Organic Coatings, 1990, 18(3): 299-312
    [114] Huayam R, Hatuyama S, Electrochemical impedance for degraded coated steel having pores. Corrosion Science, 1991, 47: 952-958
    [115] Reinhard G, Rammelt U, Rammer K. Analysis of impedance spectra on corroding metals. Corrosion Science, 1986, 26(2): 109-120
    [116] D.H. van der Weijde, E.P.M. van Westing, J.H.W. de Wit. Electrochemical techniques for delamination studies. Corrosion Science, 1994, 36(4): 643-652
    [117] Franquet A, LePen C, Terryn H, Vereecken J. Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium. Eleetrochimica Acta, 2003, 48: 1245-1255
    [118] Bonora P L, Deflorian F, Fedrizzi L. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochimica Acta, 1996, 41(7-8): 1073-1082
    [119]程学群,尉丹,杨丽霞,等.评价有机涂层耐蚀性能的两种方法初探.腐蚀与防护,2004, 25(1): 9-12
    [120]杨丽霞,张三平,林安,等.有机涂层渗水率及金属界面腐蚀的研究进展.材料保护,2001,34(10): 28-30
    [121] Conde A, De Damborenea J J. Electrochemical impedance spectroscopy for studying the degradation of enamel coatings. Corrosion Science, 2003, 44(7):1555-1567
    [122] Deflorian F, Fedrizzi L, Rossi S, Buratti F, Bonora P L. Electrochemical characterization of organic coatings for automotive industry. Progress in Organic Coatings, 2000, 39: 9-13
    [123] Zhao X, Wang J, Wang Y H, Kong T, Zhong L, Zhang W. Analysis of deterioration process of organic protective coating using EIS assisted by SOM network. Electrochemistry Communications, 2007, 9: 1394-1399
    [124] Zhang Wei, Wang Jia, Zhao Zengyuan, Jiang Jing. Study on deterioration process of organic coatings by EIS and SKP. Chemical Journal of Chinese Universities, 2009, 30: 762-766
    [125] Haruyama,Hirayara R, Haruyama S. Electrochemical impedance for degraded coated steel having pores, Corrosion, 1991,47(12): 952-958
    [126] Mansfeld F. Determination of coating deterioration with EIS. PartⅠ: Basic relationships. Corrosion, 1991, 47: 958-963
    [127] Duarte R G, Castela A S, Ferreira M G S. Influence of ageing factors on the corrosion behaviour of polyester coated systems—A EIS study. Progress in Organic Coatings, 2007, 59: 206–213
    [128] Hirayama R, Haruyama S. Therapeutic Ultrasound: A Precise Noninvasive Therapy for Glaucoma. Corrosion, 1991, 47: 952–958
    [129] Zhang X, Wang F, Du Y. Protective performance of epoxy resin modified with coal tar coating studied by electrochemical impedance spectroscopy. Progress in Organic Coatings, 2005, 53: 302–305
    [130] Lobnig R E, Villalba W, Goll K, Vogelsang J, Winkels I, Schmidt R, Zanger P, Soetemann J. Development of a new experimental method to determine critical pigment–volume–concentrations using impedance spectroscopy. Progress in Organic Coatings, 2006, 55: 363–374
    [131] Mcintyre J M, Ha Q, Pham. Electrochemical impedance spectroscopy; a tool for organic coatings optimizations. Progress in Organic Coatings, 1996, 27: 201–207
    [132] De Rosa R L, Earl D A, Bierwagen G P. Statistical evaluation of EIS and ENM data collected for monitoring corrosion barrier properties of organic coatings on Al-2024-T3. Corrosion Science, 2002, 44: 1607–1620
    [133] Yasuda H, Yu Q S, Chen M. Interfacial factors in corrosion protection: an EIS study of model systems. Progress in Organic Coatings, 2001: 41: 273–279
    [134] Gao Z M, Song S Z, Xu Y H. J. Chin. Corros Prot., 2005, 25: 106–109
    [135] Mahdavian M, Attar M M, Another approach in analysis of paint coatings with EIS measurement: Phase angle at high frequencies. Corrosion Science, 2006, 48: 4152–4157
    [136] Zuo Y, Pang R, Li W, Xiong J P, Tang Y M. The evaluation of coating performance by the variations of phaes angles in middle and high frequency domains of EIS. Corrosion Science,2008, 50: 3322-3328
    [137] Sebastien Touzain. Some comments on the use of the EIS phase angle to evaluate organic coating degradation. Electrochim. Acta, 2009, 55(21): 6190-6194
    [138] Zou F, Thierry D. Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings. Electrochim. Acta, 1997, 42(20-22): 3293-3301
    [139] Guillaumin V, Landolt D. Effect of dispersion agent on the degradation of a water borne paint on steel studied by scanning acoustic microscopy and impedance. Corrosion Science, 2002, 44 (1): 179-189
    [140] Dehri L,Howard R L, Lyonl S B. Local electrochemical impedance at the cut-edge of coil-coated galvanized steel after corrosion testing. Corrosion Science, 1999, 41(l): 141-154
    [141] Jean-Baptiste Jorcin, Emmanuel Aragon, Céline Merlatti and Nadine Pébère. Delaminated areas beneath organic coating: A local electrochemical impedance approach. Corrosion Science, 2006, 48 (7): 1779-1790
    [142] Walter Pernkopf, Markus Sagl, Günter Fafilek, Jürgen O. Besenhard, Hermann Kronberger, Gerhard E. Nauer, Applications of microelectrodes in impedance spectroscopy. Solid State Ionics, 176 (25-28), 2005, 2031-2036
    [143] Bernard R, Appleman J. Survey of accelerated test methods for anti-corrosive coatings performance. J Coat Techno, 1990, 62(787): 57
    [144] Annergren I, Thierry D, Zou F. Localized Electrochemical Impedance Spectroscopy for Studying Pitting Corrosion on Stainless Steels. The Electrochem. Society, 1997, 144(4): 1208-1215
    [145] Annergren L, Zou F, Thierry D. Application of localised electrochemical techniques to study kinetics of initiation and propagation during pit growth. Electrochimica Acta, 1999, 44(24): 4383-4393
    [146] Dong C F, Fu A Q, Li X G, Cheng YF. Localized EIS characterization of corrosion of steel at coating defect under cathodic protection. Electrochimica Acta, 2008, 54: 628-633
    [147] Macedo M C S S, Margarit Mattos I C P, Fragata F L, Jorcin J B, Pébère N, Mattos O R. Contribution to a better understanding of different behaviour patterns observed with organic coatings evaluated by electrochemical impedance spectroscopy. Corrosion Science, 2009, 51(6): 1322-1327
    [148] Tan Y J, Wang T, Liu T, Aung N N. Studying and evaluating anti-corrosion coatings and inhibitors using the wire beam electrode method in conjunction with electrochemical noise analysis. Anti-Corrosion Methods and Material, 2009, 53 (1): 30-42
    [149] Pernkopf W, Sagl M, Fafilek G, Besenhard J O, Kronberger H, Nauer G E. Applications of microelectrodes in impedance spectroscopy. Solid State Ionics, 2005, 176(25-28): 2031-2036
    [150] Blott B H, Lee T J. A two frequency vibrating capacitor method for contact potential difference measurements. J. Sci.Instrum.,1969, 46 (2): 785-796
    [151] Besocke K, Berger S. Piezoelectric driven Kelvin probe for contact potential difference studies. Rev. Sci, Instrum. 1976, 47(7): 840-842
    [152] Stratmann M. The investigation of the corrosion properties of metals,covered with adsorbed electrolyte layers- a new experimental technique. Corrosion Science, 1987, 27(8): 869-872
    [153] Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-1. Verification of the experimental technique. Corrosion Science, 1990, 30(6-7): 681-696
    [154]王燕华,张涛,王佳,等.Kelvin探头参比电极技术在大气腐蚀研究中的应用.中国腐蚀与防护学报,2004, 24(1): 60-64
    [155]安英辉,董超芳,肖葵,等. Kelvin探针测量技术在电化学研究中的应用进展.腐蚀科学与防护技术,2008, 20(6): 441-444
    [156] Stratmann M.Streckel H.Monitoring of blistering of organic coatings by a contact-free measurement.Werkstoffe and Korrosion, 1992, 43: 316-320
    [157] Stratmann M. Wolpers M. Streckel H. et a1. Use of a scanning Kelvin probe in the investigation of electrochemical reactions at the metal/polymer interface. Ber, Bunsenges Phys. Chem., 1991, 95: 1365-1375
    [158]王佳,水流彻.使用Kelvin探头参比电极技术进行薄液层下电化学测量.中国腐蚀与防护学报.1995, 15(3): 173-170
    [159] Furbeth W, Stratmano M. The delaminatin of po1ymeric coatings from electrogalvanised steel-a mechanistic approach. Part 3: delaminatin kinetics and influence of CO2. Corrosion Science, 2001(43): 243-254
    [160] Furbeth W, Stratmann M. The delaminatin of po1ymeric coatings from electrogalvanisedsteel-a mechanistic approach: Part 2: delamination from a defect down to steel. Corrosion Science, 2001(43): 229-241
    [161]赵霞.有机涂层失效过程的电化学阻抗谱特征研究:[博士论文].青岛,中国海洋大学化学化工学院,2007
    [162]高志明,宋诗哲.小波噪声电阻与EIS结合评价涂覆层性能.中国腐蚀与防护学报,2008, 28(4): 193-196
    [163] Beaocci U, Huet F. Noise analysis applied to electrochemical systems. Corrosion, 1995, 51: 131-145
    [164] Nieuwenhove R V. Electrochemical noise measurements under pressurized water reactor conditions. Corrosion, 2000, 56(2): 161-167
    [165] Cheng Y F, Luo J L. Passivity and pitting of carbon steel in chromate solutions. Electrochimica Acta, 1999, 44(26): 4795-4804
    [166] Mills D J, Mabbutt S. Investigation of defects in organic anticorrosive coatings using electrochemical noise measurement. Progress in Organic Coatings, 2000, 39(1): 41-48
    [167] Woodcock C P, Mills D J, Singh H T. Use of electrochemical noise method to investigate the anti-corrosive properties of a set of compliant coatings. Progress in Organic Coatings, 2005, 52(4): 257-262
    [168] Henry Leidheiser Jr., Wendy Wang and Lars lgetoft. The mechanism for the cathodic delamination of organic coatings from a metal surface. Progress in Organic Coatings, 1983, 11(1): 19-40
    [169] Granata R D, Kovaleski K J, Scully J R.et a1. Electrochemical impedance: Analysis Society or Testing and Material. Philadelphia, PA, 1993, 462-464
    [170]张鉴清,张昭,王建明,等.电化学噪声的分析与应用电化学噪声的分析原理.中国腐蚀与防护学报,2001.21(5): 310-320
    [171] Aung Naing Naing, Tan Yongjun, Liu Tie. Novel corrosion experiments using the wire beam electrode: (II) Monitoring the effects of ions transportation on electrochemical corrosion processes. Corrosion Science, 2006, 48(1): 39–52
    [172] Aung Naing Naing, Tan Yongjun. A new method of studying buried steel corrosion and its inhibition using the wire beam electrode. Corrosion Science, 2004, 46(12): 3057–3067
    [173] Battocchi D, He J, Bierwagen G P, Tallman D E. Emulation and study of the corrosionbehavior of Al alloy 2024-T3 using a wire beam electrode (WBE) in conjunction with scanning vibrating electrode technique (SVET). Corrosion Science, 2005, 47(5): 1165–1176
    [174] Tan Yongjun, Aung Naing Naing, Liu Tie. Novel corrosion experiments using the wire beam electrode. (I) Studying electrochemical noise signatures from localized corrosion processes. Corrosion Science, 2006, 48(1): 23–38
    [175] Tan Yongjun. An experimental comparison of three wire beam electrode based methods for determining corrosion rates and patterns. Corrosion Science, 2005, 47(7): 1653–1665
    [176]林昌健,卓向东,陈纪东,等.阵列电极法测量聚合物/金属界面电位分布.中国腐蚀与防护学报,1997,17(1): 7-10
    [177]董泽华,郭兴蓬,刘宏芳,等.用丝束电极研究SRB微生物诱导腐蚀的电化学特征.中国腐蚀与防护学报,2002, 22(1): 48-52
    [178]张大磊,王伟,李焰.热镀锌钢材的电偶腐蚀行为—划痕型缺陷.材料研究学报,2009, 23(4): 343-346
    [179] Zhang X, Wang W, Wang Jia. A novel device for the wire beam electrode method and its application in the ennoblement study. Corrosion Science, 2009, 51: 1475-1479
    [180] Zhang X, Wang W, Wang Jia. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method. Electrochimica Acta, 2009, 54: 5598-5604
    [181] Zhang W C, Evans K E. Numerical prediction of the mechanical properties of anistropic composite materials. Computers & Structures, 1988, 29(3): 413-42
    [182] Malogorzata Zubielewicz, Witold Gnot. Mechanisms of non-toxic anticorrosive pigments in organic waterborne coatings. Progress in Organic Coatings, 2004, 49: 358-371
    [183] Galliano E, Landor D. Evaluation of corrosion protection properties of additives for waterborne epoxy coatings on steel. Progress in Organic Coatings, 2002, 44: 217-225
    [184] Vrentas J S, Vrentas C M. Predictive methods for self-diffusion and mutual diffusion coefficients in polymer-solvent systems. European Polymer Journal, 1998, 34: 797-803
    [185] Vrentas J S, Vrentas C M.. Integral sorption in glassy polymers. Chemical Engineering Science, 1998, 53: 629-638
    [186] Van Westing E P M, Ferrari G M, Wdewit J H. The determination of coating performance with impedance measurements-Ⅱwater uptake of coatings. Corrosion Science, 1994, 36(6):957-977
    [187] De Rosa L, Monetta T, Mitton D B, Bellucci F. Monitoring degradation of Single and multilayer organic coatings. Journal of Electrochemical Society, 1998, 145: 3830-3838
    [188] Thomas N L. The barrier properties of paint coatings. Progress in Organic Coatings, 1991, 19: 101-121
    [189] Van der wel G.K, Adan O C G. Moisture in organic coatings-a review. Progress in Organic Coatings, 1999, 37:1-14
    [190] Bellueei F, Nieodemo L. Corrsion, 1993, 49(3): 235
    [191] Perez C, Collazo A, Lzquierdo M, Merino E, X.R. Characterisation of the barrier properties of different paint systems, PartⅡnon-ideal diffusion and water uptake kinetics. Progress in Organic Coatings, 1999, 37: 169-177
    [192] Thomas N L. The barrier properties of paint coatings. Progress in Organic Coatings, 1991, 19: 101-121
    [193] Samoa M A. Methanol absorption in ethyler-vinylel alcohol copolymers: relation between solvent diffusion and changes in glass transition temperature in glassy polymeric materials. Macromolecules, 1996, 29: 2275-2288
    [194] Long E A, Richman D. Concentration gradients for diffusion of vapors in glassy polymers and their relation to time dependent diffusion phenomena. Journal of the American Chemical Society, 1960, 82: 513-519
    [195] Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM Standard G31, 1999
    [196] Raman A, Kuban B, Razvan A. The application of infrared spectroscopy to the study of atmospheric rust systems- I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products. Corrosion Science, 1991, 31 (12): 1295-1306
    [197] Dunnwald J, Otto A. An investigation of phase transitions in rust layers using Raman spectroscopy. Corrosion Science, 1989, 29 (10): 1167-1176
    [198]胡涛,路欣,阎研,等.用纯铁氧化法生长的铁氧化物样品的拉曼光谱研究.光谱学与光谱分析, 2004, 24(9): 1072-1074
    [199]肖珩,汪崧,黄震中,等.新型耐海水腐蚀低合金钢10CrCuSiV锈层分析研究报告.北京科技大学学报,1997, 9 (5): 476-481
    [200]李言涛,李延旭,侯保荣,等.低合金钢在海洋各腐蚀区带的锈层研究.海洋与湖沼, 1998 ,29 (6): 651-655
    [201] Antony H, Perrin S, Dillmann Ph, Legrand L, ChausséA. Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artifacts. Electrochimica Acta, 2007, 52 (27): 7754-7759
    [202] Stratmann M, Müller J. The mechanism of the oxygen reduction on rust-covered metal substrates. Corrosion Science, 1994, 36: 327-359
    [203] Stratmann M, Hoffmann K. In situ M?βbauer spectroscopic study of reactions within rust layers, Corrosion Science, 1989, 29 (11-12): 1329-1352
    [204] Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-Ⅱ. Experimental results. Corrosion Science, 1990, 30: 697-714
    [205] Hu J M, Zhang J Q, Xie D M, Cao C N , Acta Phys. -Chim. Sin. 2003, 19: 144-149.
    [206] Hu J M, Zhang J Q, Cao C N. Determination of water uptake and diffusion of Cl? ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy. Progress in Organic Coatings, 2003, 46: 273-279.
    [207] Zhang J T, Hu J M, Zhang J Q, Cao C N. Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution. Progress in Organic Coatings, 2004, 49: 293-301.
    [208] Zhang J T, Hu J M, Zhang J Q, Cao C N. Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS. Progress in Organic Coatings, 2004, 51: 145-151.
    [209]王成,吴航,杨怀玉,等.有机涂层在模拟深海环境中的电化学行为的研究.腐蚀科学与防护技术, 2009, 21(4): 351-353
    [210]孙晓华.模拟深海环境下有机涂层的失效行为研究:[硕士论文],北京:北京科技大学,2010
    [211] Brasher D M, Kinsbury A H. Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water-uptake. J. Appl. Chem, 1954, 4: 62-72
    [212] Chen J, Aoki K, Totsuka T. Capacitance of a solid sulfonated epoxy resin-coated electrode.Journal of Applied Electrochemisrry, 1999, 29: 1457-1461
    [213] Zhang Jianqing, Cao Chunan. Study and evaluation on coatings by electrochemical impedance spectroscopy. Corrosion and Protectio. 1998, 19(3): 99-104
    [214]胡吉明,张鉴清,谢德明,等.环氧树脂涂覆LY12铝合金在NaCl溶液中的阻抗模型.物理化学学报,2003, 19: 144-149
    [215] Deflorian F, Fedrizzi L, Bonora P L, Br. J. Corros. 1997, 32: 145-149
    [216] Kittel J, Celati N, Keddam M, Takenouti H. New methods for the study of organic coatings by EIS: New insights into attached and free films. Progress in Organic Coatings, 2001, 41: 93-98.
    [217] Miskovic-Stankovic V B, Stanic M R, Drazic D M. Corrosion protection of aluminium by a cataphoretic epoxy coating. Progress in Organic Coatings, 1999, 36: 53-63
    [218] Miskovic-Stankovic V B, Zotovic J B, Kacarevic -Popovic Z, Maksimovic M D. Corrosion behaviour of epoxy coatings electrodeposited on steel electrochemically modified by Zn–Ni alloy. Electrochim. Acta. 1999, 44: 4269- 4277.
    [219] Destreri M D G, Vogelsang J, Fedrizzi L, De?orian F. Water up-take evaluation of new waterborne and high solid epoxy coatings. Part II: electrochemical impedance spectroscopy. Progress in Organic Coatings, 1999, 37: 69-81
    [220]张伟.干湿交替环境中有机涂层失效过程的研究:[博士论文],青岛:中国海洋大学化学化工学院,2010
    [221]张伟,王佳,李玉楠,等. WBE联合EIS技术研究缺陷涂层下金属腐蚀.物理化学学报,2010, 26, 1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700