热镀锌钢材在海洋大气中的氢渗透行为及脆化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于镀层对钢材基体具有良好的防腐作用,热浸镀钢材在各种腐蚀环境中均获得了广泛的研究和应用;然而,当镀层出现破损时,镀锌层在对基体提供阴极保护的同时,很可能会导致碳钢表面因保护电位过负而有氢析出。考虑到海洋大气是钢材发生氢致延迟断裂的敏感介质,热镀锌钢材在此环境中应用时存在的安全隐患应引起足够重视。本文以目前广泛使用的热镀锌钢材为研究对象,首次采用混合丝束电极技术证实了海洋大气环境中镀锌层出现破损或存在缺陷时,钢材基体表面会析氢,并以此建立了一种用以检测析氢电流密度的方法;制备了用于研究海洋大气环境中氢渗透行为的双面电解池,研究了气氛温度、湿度、试样表面亚硫酸盐沉积量以及镀层缺陷比例等因素对热镀锌钢材氢渗透行为的影响,得到了用以推测最大氢渗透电流和氢渗透总量的数学模型:通过慢应变速率拉伸试验(SSRT)配合断口形貌分析,探讨了不同环境因素对钢材基体力学性能的影响,结果表明:
     (1)海洋大气环境中,热镀锌钢材缺陷处的基体表面会有氢析出,且随钢材基体暴露面积的增加,析氢电流先增大后减小,干湿交替的大气环境条件对钢材表面的氢析出有促进作用。
     (2)气氛温度、湿度、试样表面的亚硫酸盐沉积量及镀层缺陷比例对热镀锌钢材的氢渗透行为影响显著。随着海洋大气环境的气氛温度、湿度的升高,试样的氢渗透行为被加速,并且温度与湿度之间存在明显的协同效应;亚硫酸盐在试样表面的沉积进一步促进了热镀锌钢材的氢渗透行为;而随镀层缺陷面积的增大,热镀锌钢材的渗氢电流逐渐减小:干湿交替循环的海洋大气环境对热镀锌钢材的氢渗透行为存在明显的加速作用,干、湿时间在每个循环中所占的比例对其氢渗透行为影响显著。
     (3)热镀锌钢材在海洋大气中的氢渗透能降低材料的强度,增大其氢脆敏感性,其断口形貌随着暴露时间的延长由韧性断裂变为脆性断裂;高温、高湿且干湿循环交替的大气环境对其氢脆敏感性提高最大。
As an effective protection measure, zinc coating prevents corrosion of steel through a barrier effect and a galvanic effect. On the other hand, it also acts as a barrier for hydrogen entry into steel substrate because the reduction of water on zinc coating is more hardly than that on iron and the diffusivity of hydrogen in zinc is also smaller compared with iron. However, if zinc coating was damaged and exposed to corrosive environment, such as marine atmosphere, the exposed steel substrate would act as cathodic sites where hydrogen was generated by the reduction of water molecule. For engineering purpose, therefore, it is necessary to estimate the amount of hydrogen absorbed by galvanized steel into the substrate steel when exposed to marine atmospheric environment. In this article, a new technology, which was called hybrid wire beam electrode (WBE), was used to prove that hydrogen must generate on the steel surface if zinc coating damaged. Hydrogen permeation current curve of hot-dip galvanized steels in marine atmosphere was also measured using a modified Devanathan-Stachurski cell. Influences of temperature, humidity, coating defect and amount of sulphite on samples'surface were also investigated. The stress-strain curves of galvanized steel with different hydrogen charging conditions were obtained by SSRT, and their mechanical properties was compared. Fractography were also carried out to investigate the effect of hydrogen permeation zinc coating with defect in seawater on the mechanical properties of steel substrate. The results as follows:
     (1) The hybrid-WBE was developed and measured the hydrogen generation current density. The results showed that the hydrogen generation current became larger firstly and then reduced as follows as the surface of steel increasing. The wet-dry marine atmosphere can accelerate the hydrogen generation.
     (2)The atmospheric environment at elevated temperature and humidity accelerates the hydrogen permeation process; meanwhile, cathodic protection of zinc coating to the exposed steel surface promotes the hydrogen absorption of the defective coated steels; the deposition of sulphite can also accelerates the hydrogen permeation process.
     (3) Self hydrogen permeation behavior of Galvanized coating in marine atmosphere can reduce their percentage elongation after fracture. With longer hydrogen charging time, the materials showed higher susceptibility to hydrogen embrittlement.
引文
[1]A.R. Marder. The metallurgy of zinc-coated steel [J]. Progress in Materials Science,2000,45(3):191-271
    [2]顾国成,吴文森.钢铁材料的防蚀涂层[M]. 北京:科学出版社,1987
    [3]Y. LI. Corrosion behavior of hot dip zinc and zinc-aluminium coatings on steel in seawater [J]. Bulletin of Materials Science,2001,24 (4):101
    [4]L.Q. Zhu, F.Yang, N Ding. Corrosion resistance of the electro-galvanized steel treated in a titanium conversion solution. Surface & Coatings Technology,2007, 201(11):7829
    [5]唐晓.热浸镀钢材在海水中的氢渗透行为及其对材料力学性能的影响.中国科学院海洋研究所博士论文,2006
    [6]Z. Panossian, L. Mariaca, M. Morcillo, et.al. Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere [J]. Surface and Coatings Technology,2005,190 (2-3):244
    [7]H.E Townsend, A.R.Borzillo. Thirty-year atmospheric corrsion proformance of 55% aluminum-zinc alloy-coated sheet steel [J]. Materials Performance,1996, 35(4):30
    [8]E. Dubuisson,L. Philippe, F. Dalard, et al. Corrosion of galvanised steel under an electrolytic drop [J]. Corrosion Science,2007,49 (2):910-919
    [9]B.Veeraraghavan, H. Kim, B. Haran, et al. Comparison of mechanical, corrosion, and hydrogen permeation properties of electroless Ni-Zn-P alloys with electrolytic Zn-Ni and Cd coatings [J]. Corrosion,2003,59(11):p.1003
    [10]杨德钧,沈卓身.金属腐蚀学,冶金工业出版社,北京,1999
    [11]孙跃,胡津.金属腐蚀与控制,哈尔滨工业大学出版社,哈尔滨,2003
    [12]孙茂才.金属力学性能,哈尔滨工业大学出版社,哈尔滨,2003
    [13]张际标.大气腐蚀起始过程中的微液滴现象研究. 中国科学院海洋研究所博士论文,2005
    [14]L.L.Shreir, R.A.Jarman, G.T. Burstein. Corrosion (3rd Edtion), Oxford Butterworth Heinemann,1994,2:40
    [15]U.R.Evans. Electrochemical mechanism of atmospheric rusting. Nature,1965, 206:980
    [16]U.R.Evens,华保定译.《金属的腐蚀与氧化》,北京:机械工业出版社1976:401
    [17]U.R. Evens. An Introduction to Metallic Corrosion (Third Edition), Edward Arnold Ltd.,1982:13
    [18]Y.L. Huang, Y.Y Zhu. Hydrogen ion reduction in the process of iron rusting. Corrosion Science,2005,47(6):1545
    [19]于青,35CrMo高强度钢在海洋大气中的氢渗透行为与环境致脆机理研究.中国科学院海洋研究所博士论文.2008
    [20]C. Zheng, Y. Huang, C. Huo, Q. Yu. Hydrogen permeation behavior and corrosion monitoring of steel in cyclic wet-dry atmospheric environment [J]. Materials and Corrosion,2007.58(9):716
    [21]顾国成,刘邦津.热浸镀[M],北京:化学工业出版,1988
    [22]H.E. Townsend, A.R. Borzillo. Thirty-year atmospheric corrosion proformance of 55% aluminum-zinc alloy-coated sheet steel [J]. Materials Performance,1996,35(4):30
    [23]张杰.热浸镀锌及其合金海水中腐蚀行为研究.中国科学院研究生院博士学位论文[D].青岛,2005
    [24]刘秀晨,安成强.金属腐蚀学[M].国防工业出版社,2002.9:p212
    [25]N.D. Tomashov. Development of the electrochemical theory of metallic corrosion [J]. Corrosion,1964,20(76):7
    [26]廖国栋,吴国华,苏少燕.金属材料暴露试验与人工加速试验腐蚀速率的研究[J].环境试验.2005,12(5):13
    [27]I. Dehri, M. Erbil. The effect of relative humidity On the atmospheric corrosion ofdefective organic coating materials-an EIS study with anew approach[J]. Corrosion Science,2000(9),42:969
    [28]朱惠斌,黄燕萍.海洋大气环境中钢铁表面的防腐蚀[J].全面腐蚀控制,2003,17(4):26
    [29]K.P. Trethewey, J. Chamberlain. Corrosion for science engineering[M]. Secondedition, England:Associated Companies throughout the world.1995
    [30]夏兰廷,黄桂桥,张三平等.金属材料的海洋腐蚀与防护[M].北京:冶 金工业出版社,2003,3
    [31]K. Kaneko, K. Inouye. The mechanism of chemisorption of SO2 on iron (III) hydroxide oxides. Corrosion Science,1981,21(9/10):639
    [32]M.A. Arshadi, J.B. Johnson and G.C. Wood. The influence of an sobutane-SO2 pollutant system on the earlier stages of the atmospheric corrosion of metals. Corrosion Science,1983,23(7):763
    [33]M. Sehumacher. Seawater Corrosion Handbook [M]. USA, New Jersey:Park Ridge,1979,2
    [34]刘刚,张奎志,曲政等.某滨海电厂钢结构腐蚀防护[J].腐蚀与防护,2004,25(9):400
    [35]I. Dehri, M. Erbil. The effect of relative humidity On the atmospheric corrosion of defective organic coating materials-an EIS study with anew approach [J]. Corrosion Science,2000,42(9):969
    [36]朱惠斌,黄燕萍.海洋大气环境中钢铁表面的防腐蚀[J].全面腐蚀控制,2003,17(4):26
    [37]K.P. Trethewey, J Chamberlain. Corrosion for science engineering[M]. Secondedition, England:Associated Companies throughout the world.1995
    [38]夏兰廷,黄桂桥,张三平等.金属材料的海洋腐蚀与防护[M].北京:冶金工业出版社,2003,3
    [39]李焰,刘猛,张玉志,张大磊.热镀锌钢材在海水中的氢渗透行为和脆性研究[J].中国有色金属学报,已录用
    [40]N. Taniguchi, M. Kawasaki. Influence of sulfide concentration on the corrosion behavior of pure copper in synthetic seawater[J]. Journal of Nuclear Materials,2008.379(1-3):p154
    [41]B.F. Brown. Stress-corrosion cracking, A perspective review of the problem, AD71589,16,1970, p.1
    [42]J.W. Oldfield, B. Todd. Ambient Temperature Stress Corrosion Cracking of Austenitic Stainless Steel in Swimming Pools [J]. Material performance.1990,29 (12):57
    [43]蔡秀光.应力腐蚀的危害及其控制.福建化工,2006,2:41
    [44]R.N. Parkins. J. Iron and Steel Inst,1952,172:149
    [45]H.H. Uhlig, J. Sava., Trans. Amefr. Soc. Metala.1963,56,361
    [46]F.S. Lang. Corrosion.1962,18,378t
    [47]W, R. Deker, H. Grefen. Stahl and Eisen.1956,76, p1616
    [48]左景伊.应力腐蚀破裂[M].西安:西安交通大学出版社,1989
    [49]克舍H.金属腐蚀[M].北京:化学工业出版社,1980
    [50]T. P. Hoar, J. G. Hines, JISI,1954,177,148
    [51]A. J. Mcevily, A. P. Bond, J. Elect. Chem. Soc.1965,112:131
    [52]N. A. Nielsen, Physical metallurgy of stress corrosion fracture, Intersci,1959: 341
    [53]M. Pourbaix. Significance of Protection Potential in Pitting and Intergranular Corrosion [J]. Corrosion,1970,26(4):431
    [54]李久青,杜翠薇等,腐蚀试验方法及监测技术,北京:中国石化出版社.2007:129
    [55]R. N. Parkins. Slow strain rate testing-25years experience, Slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications, ASTM STP1210, Russell D. Kane, Editor, Philadephia, 1993:7
    [56]R. N. Parkins. Development of slow strain rate testing and its implications, Stress corrosion craeking:slow strain rate technique, ASTM STP665, G. M. Ugiansky, J. H. Payer, Eds., American Society for Testing and Materials, Philadephia,1979:5
    [57]J. H. Payer, W. E. Berry, W. K. Boyd. Evaluation of slow strain-rate stress corrosion tests results, Stress corrosion cracking:slow strain rate technique, ASTM STP665, G. M. Ugiansky and J. H. Payer, Eds., American Society for Testing and Materials, Philadephia,1979:61
    [58]Schofied, J.Michael, Bradshaw, Roy, R.A. Cottis. Stress corrosion cracking of duplex stainless steel weldments in sour conditions [J]. Materials Performance, 1996,35, (4):65
    [59]D. A. Meyn, P. S. Pao, Slow strain rate testing of precacked titanium alloys in salt water and inert environment, Slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications, ASTM STP1210, Russell D. Kane, Editor, Philadephia,1993:p158
    [60]H. Erilsson, S. Berhandsson. Applicability of duplex stainless steels in sour environments [J]. Corrosion,1991,47(9):719
    [61]J. A. Beavers, G. H. Koch. Limitations of slow strain rate testing technique, Slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications, ASTM STP1210, Russell D. Kane, Editor, Philadephia,1993:p22
    [62]A. Ikeda,T. Kaneko,Y. Ando. On the evaluation method of sulfide stress cracking susceptibility of carbon and low alloy steels [J]. Corrosion Science,1987, 27(10/11):1099
    [63]P. N. Parkins. Strain Rate Effects in SCC [J]. Corrosion,1990,46(3):12
    [64]R. N. Parkins. Stress Corrosion Cracking-The Slow Strain Rate Technique. [M] Ed by Vgiansky, Payer,1977
    [65]J. A. Beavers, G. H. Koch. Limitation of the slow strain rate test for stress corrosion cracking testing [J]. Corrosion,1992,48(3):256
    [66]M.A.V. Devnathan, Z. Stachurski. A technique for the Evaluation of Hydrogen Embrittlement Characteristics of Electroplating Baths [J]. Journal of the Electrochemical Society,1963,110(8):886
    [67]R. Nishimura, D. Shiraishi, Y. Maeda, Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet-dry SO2 environment [J], Corrosion Science.2004,46(3):225
    [68]曹楚南.腐蚀电化学原理,北京:北京工业出版社,2004
    [69]Al. Th. Kermanidis, D.G. Stamatelos, G.N. Labeas, Sp. G. Pantelakis. Tensile behaviour of corroded and hydrogen embrittled 2024 T351 aluminum alloy specimen [J]. Theoretical and Applied Fracture Mechanics,2006,45(1):148
    [70]刘白30CrMnSiA高强度钢氢脆断裂机理研究.机械材料工程,2001,25(9):18
    [71]S. Jayalakshmi, K.B. Kim, E. Fleury. Effect of hydrogenation on the structural, thermal and mechanical properties of Zr50-Ni27-Nb18-Co5 amorphous alloy [J], Journal of Alloys and Compounds,2006,417(2):195
    [72]王毛球,董瀚.氢对高强度钢缺口拉伸强度的影响[J].材料热处理学,2006,27(4):57
    [73]S.M. Beloglazov. Peculiarity of hydrogen distribution in steel by cathodic charging [J], Journal of Alloys and Compounds,2003,356-357(2):240
    [74]N. Elina, A. Shachar, B. Tal, et al. Contact fatigue failure analysis of shot-peened gears [J]. Engineering Failure Analysis,2002,9(4):167
    [75]J.P. Chateau, D. Delafosse, T. Magnin. Numerical simulations of hydrogen-dislocation interactions in fcc stainless steels. Part Ⅱ:hydrogen effects on crack tip plasticity at a stress corrosion crack [J]. Acta Materialia,2002,50(2): 1523
    [76]Y.L. Huang, A. Nakajima, A. Nishikata, et al. Proceedings of the International Symposium of Marine Corrosion and Control, China Ocean Press,2000:p.112
    [77]Woodtli. Engineering Damage due to hydrogen embrittlement and stress corrosion cracking [J]. Failure Analysis,2000,7(9):427
    [78]R.M. Schroeder. I.L. Miiller. Stress corrosion cracking and hydrogen embrittlement susceptibility of an eutectoid steel employed in prestressed concrete [J].Corrosion Science,2003,45(5):1969
    [79]M.V. Biezma. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J]. International Journal of Hydrogen Energy,2001, 26(3):515
    [80]J.V. Sharp, J. Billingham, M.J. Robinson. The risk management of high-strength steels in jack-ups in seawater [J]. Marine Structures,2001,14(7): 537
    [81]J.L. Albarran, L.Martinez, H.F. Lopez. Effect of heat treatment on the stress corrosion resistance of a microalloyed pipeline steel [J]. Corrosion Science,1999, 41(4):1037
    [82]T.Y. Zhang, Y.P. Zhang. Effects of absorption and desorption on hydrogen permeation-I. Theoretical modeling and room temperature verification [J]. Acta Materialia,1998,46(14):5023
    [83]Y.P. Zhang. T.Y. Zhang. Effects of absorption and desorption on hydrogen permeation-Ⅱ. Experimental measurements of activation energies [J].Acta Materialia,1998,46(14):5035
    [84]B.Veeraraghavan, H. Kim, B. Haran, et al. Comparison of mechanical, corrosion, and hydrogen permeation properties of electroless Ni-Zn-P alloys with electrolytic Zn-Ni and Cd coatings [J].Corrosion,2003,59(11):p.1003
    [85]郑传波.海洋结构用钢在海洋大气中的氢脆机制研究.中国科学院海洋研究所博士论文,2008.
    [86]刘猛,热浸镀钢材在海水中的氢渗透行为与脆性研究.中国科学院海洋研究所硕士论文,2008.
    [1]H.E.Townsend, A.R.Borzillo, Thirty-year atmospheric corrosion performance
    of 55 aluminum-zinc alloy coated sheet steel [J]. Materials Performance,1996, 35(4):30
    [2]E.Dubuisson, P.Lavie, F.Dalard, Corrosion of galvanised steel under an electrolytic drop [J]. Corrosion Science,2007,49(2):910
    [3]Y.LI, Corrosion behaviour of hot dip zinc and zinc-aluminium coatings on steel in seawater [J]. Bulletin of Materials Sciences,2001,24(4):355
    [4]张杰,于振花,李焰.Zn-55% Al-Si合金镀层钢丝在海水中的耐蚀性能[J].材料研究学报,2008,22(4):347
    [5]J.M. Lee. Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte [J]. Electrochimica Acta,2006,51(16):3256
    [6]R.Adzic, in Electrocatalysis, J. Lipkowski, P. N. Ross, Eds. (New York, Wiley-VCH,1998), p.197
    [7]M.B.Vukmirovic, N.Vasiljevic, N.Dimitrov, et al. Diffusion-limited current density of oxygen reduction on copper [J]. Journal of the electrochemical society, 2003,150(1):B10
    [8]T. Tsuru, A. Nishikata, J. Wang. Electrochemical studies on corrosion under a water film. Material Science and Engineering A,1995,198 (1-2):161
    [9]王佳,水流彻.使用Kelvin探头参比电极技术进行薄液层下电化学测量[J],中国腐蚀与防护学报,1995,15(3):173
    [10]E.Palma, J.M.Puente, M.Morcillo, The atmospheric corrosion mechanism of 55%Al-Zn coating on steel [J]. Corrosion Science,1998,40(1):61
    [11]Y.J. Tan. Wire beam electrode:A new tool for studying localised corrosion and other heterogeneous electrochemical processes [J]. Corrosion Science,1999, 41(2):229
    [12]Q.D.Zhong. Electrochemical technique for investigating temporarily protective oil coatings [J]. Progress in Organic Coatings,1997,30(4):213
    [13]Q.Le Thu, G.Bonnet, C. Compere. Modified wire beam electrode: a useful tool to evaluate compatibility between organic coatings and cathodic protection [J]. Progress in Organic Coatings,2005,52(2):118
    [14]X. Zhang, W. Wang, J. Wang. A novel device for the wire beam electrode method and its application in the ennoblement study [J]. Corrosion Science, (2009),51(9):1475
    [15]A.Tahara, T.Kodama. Potential distribution measurement in galvanic corrosion of Zn/Fe couple by means of Kelvin probe [J]. Corrosion science,2000, 42(4):655
    [16]A.P.Yadav, H.Katayama, K.Noda, et al. Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte, Electrochimica Acta,2007,52(9):3121
    [17]G. Salvago, G. Bollini. Localized corrosion probability in stainless steels after cathodic protection in seawater [J]. Corrosion,1999,55(4):397
    [18]李焰,刘猛,张玉志,张大磊.热镀锌钢材在海水中的氢渗透行为和脆性研究[J],中国有色金属学报,已录用
    [1]A. P. Yadav, A. Nishikata, T. Tsuru. Degradation mechanism of galvanized steel in wet-dry cyclic environment containing chloride ions [J]. Corrosion Science, 2004,46(2):361
    [2]Graedel T E. Corrosion mechanisms for zinc exposed to the atmosphere [J]. Journal of Electrochemical Society,1989,136(4):193C
    [3]N.D. Tomashov. Mechanism of electrochemical corrosion of metals under insulating coating.2. kinetics of cathodic processes on insulated metals in electrolytes [J]. Corrosion,1964,20(7):T218
    [4]A.K. Neufeld, L.S. Cole, A.M. Bond, et al. The initiation mechanism of corrosion of zinc by sodium chloride particle deposition [J].Corrosion Science, 2002,44 (3):555
    [5]A.P. Yadav, A. Nishikata, T. Tsuru. Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness [J]. Corrosion Science,2004,46(1):169
    [6]K.L. Lin, C.F.Yang, J.T. Lee Correlation of microstructure with corrosion and electrochemical behavior of batch-type hot-dip Al-Zn coatings:Part Ⅰ. Zn and 5%Al-Zn coatings [J]. Corrosion,1991,47(1):9
    [7]廖景娱.金属构件失效分析[M].化学工业出版社,北京,2003:211-212
    [8]K.L. Lin, C.F. Yang, J.T. Lee. Correlation of microstructure with corrosion and electrochemical behavior of batch-type hot-dip Al-Zn coatings (Part Ⅰ) [J]. Corrosion,1991,47(1):9
    [9]刘猛.热浸镀钢材在海水中的氢渗透行为与脆性研究.中国科学院海洋研究所硕士论文,2008
    [10]王佳.无机盐微粒沉积和大气腐蚀的发生和发展[J].中国腐蚀与防护学报,2004:24(3):155
    [11]张际标,王佳,王艳华.海盐粒子沉积下碳钢的大气腐蚀初期行为[J].海洋科学,2005,29(7):17
    [12]I. Dehri, M. Erbil. The effect of relative humidity on the atmospheric corrosion of defective organic coating materials:an EIS study with a new approach [J]. Corrosion Science,2000,42(6):969
    [13]D.H. Colemn, B.V. Popov, R.E. White. Hydrogen permeation inhibition by thin layer Zn-Ni alloy electrodeposition [J]. Journal of Applied Electrochemistry,1998,28(9):889
    [14]A.P. Yadav, H. Katayama, K. Noda, et al. Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte [J]. Electrochimica Acta,2007,52(9):3121
    [15]John Wagner. Cathodic Protection Design I, NACE International, Houston, TX, 1993
    [16]H. Kim, B. N. Popov, K. S. Chen. Comparison of corrosion-resistance and hydrogen permeation properties of Zn-Ni, Zn-Ni-Cd and Cd coatings on low-carbon steel [J]. Corrosion Science,2003,45(7):1505-1521
    [17]G. Reumont, J. B. Vogt, A. lost, J. Foct. The effects of an Fe-Zn intermetallic-containing coating on the stress corrosion cracking behavior of a hot-dip galvanized steel. Surface and Coatings Technology,2001,139(6): 265-271
    [18]王佳.使用Kelvin探头参比电极技术进行薄液层下电化学测量.中国腐蚀与防护学报,1995,15(3:173
    [19]Eiji Tada, Satomi Satoh, Hiroyuki Kaneko. The spatial distribution of Zn2+ during galvanic corrosion of a Zn/steel couple. Electrochimica Acta,2004,49(14):2279
    [20]Chuanbo Zheng, Yanliang Huang, Qing Yu. Hydrogen permeation behavior and corrosion monitoring atmospheric of steel in cyclic wet-dry environment [J]. Materials and corrosion,2007,58(9):696
    [21]魏绪钧,冯法伦.有色冶金试验研究方法.东北大学出版社,沈阳.1996:70
    [1]Jarmila Woodtli, Rolf Kieselbach. Damage due to hydrogen embrittlement and stress corrosion cracking. Engineering Failure Analysis[J],2000,7:427—450.
    [2]刘白.30CrMnSiA高强度钢氢脆断裂机理研究.机械材料工程,2001,25(9):18
    [3]W.T. Tsai, S.L. Chou. Environmentally assisted cracking behavior of duplex stainless steel in concentrated sodium chloride solution [J]. Corrosion Science, 2000,42(10):1741—1762.
    [4]刘猛,热浸镀钢材在海水中的氢渗透行为与脆性研究.中国科学院海洋研究所硕士论文,2008.
    [5]唐晓,热浸镀钢材在海水中的氢渗透行为及其对材料力学性能的影响.中国科学院海洋研究所博士论文,2008.
    [6]GB/T 228—2002.金属材料室温拉伸试验方法[S].
    [7]李焰,刘猛,张玉志,张大磊.热镀锌钢材在海水中的氢渗透行为和脆性研究[J].中国有色金属学报,已录用
    [8]刘白.氢对位错运动的影响[J].材料科学与工程,2001,19(1):63-66
    [9]Y. Liang, D. C. Ahn, P. Sofronis. et al. Effect of hydrogen trapping on void growth and coalescence in metals and alloys [J]. Mechanics of Materials,2008, 40(3):115-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700