有机涂层下船用钢电偶腐蚀规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型海洋工程(如海上石油钻井平台、跨海大桥、船舶等)的机械结构系统中通常会采用不同的材料,这些材料在海水或潮湿的海洋大气中会引起不同程度的电偶腐蚀。金属材料在实际应用中常采用防腐涂层进行保护,但现有金属材料的室内和实海暴露试验多采用裸样,与实际工况环境相差甚远,不能完全反映实际环境下的腐蚀规律。
     有机涂层的防护性能在实际体系的电偶腐蚀过程中起着重要的作用。涂层物理屏蔽能力降低,界面腐蚀电化学反应以及涂层的剥离都影响着涂层下偶对体系的电偶腐蚀进程。本论文的主要研究工作包括:
     应用电化学阻抗谱技术,结合线性极化技术,电偶电位和电偶电流测量,对比研究了涂层/钢-裸钢体系的电偶腐蚀过程。根据阻抗谱响应建立与涂层失效各个阶段相对应的等效电路模型,分析浸泡过程中涂层失效与电偶腐蚀电化学参数的相关性。研究发现,当涂层的物理屏蔽能力很强即涂层渗水阶段,体系的电偶电流密度几乎为零,裸钢处于自腐蚀状态;当基底金属腐蚀反应发生后,体系的电偶电流密度迅速增大,裸钢腐蚀速率增大;裸钢对涂层体系起保护作用时,涂层阻抗在试验周期内不再下降,体系的电偶电流密度趋于稳定。
     结合阻抗谱技术和阵列电极技术,分别研究裸钢和涂层下阵列电极的偶合电流、电位和阻抗分布特征及其与涂层失效过程的相关性。研究表明由于钢丝的空间位置不同,在电偶腐蚀中存着阴阳极分布的不均匀性。对于裸钢体系,由于阴阳极极化作用,使得电偶腐蚀驱动力减小,偶合电流密度逐渐减小,并且随着浸泡的进行,阳极区会发生转移。对于涂层体系,阳极电流出现在涂层的缺陷处,阴极电流被整个涂层平分。随着腐蚀过程的发展,自腐蚀电位较负的一侧出现阳极电流,虽然早期缺陷区仍表现为阳极区,但电流密度已经减小,阴极电流逐渐向缺陷处附近涂层扩展,这说明在浸泡后期,自腐蚀电位较负的一侧会对较正的一侧产生保护作用。阻抗谱测试结果表明,涂层下阵列电极阻抗响应主要反映了缺陷区电极过程特征,直至涂层完好区也出现剥离和鼓泡的失效现象。而阴极区涂层性能和涂层下金属腐蚀反应信息被“掩盖”。但是通过检测电极表面的电流密度分布,能够监测涂层和涂层下的局部电化学过程。
Various materials are be used in the mechanical structure of great coastal engineering projects (e.g., offshore oil rig, sea-crossing bridge, ships, etc). Under the action of corroding medium, such as wet air and seawater, these materials will emerge varied galvanic corrosion. Organic coatings have been used extensively for corrosion protection of metal. However, most outdoor exposure and indoor accelerated corrosion tests were performed using bare metal, which are fare away from the real working condition, and can’t reflect the discipline of the real environment completely.
     The protective function of the organic coating plays an importantly role during the galvanic corrosion in real system. The galvanic corrosion of the coupled system was mainly influenced by the loss of adhesion between coating and metal , electrochemical reactions at interface, and the stripping of coating from surface of metal, etc. Consequently, the main researches in this article are listed as following:
     (1) The galvanic corrosion process of coating/steel-steel system was studied by EIS, LPR, galvanic potential and galvanic current. According to the EIS responses at every stage, the equivalent circuit models were established. Meanwhile, the relevance between electrochemical parameters and degradation of the organic coating was analyzed. Within this context, several appearances have been found: the current density of galvanic nearly reached zero, when resistance of the coating was very large, and meanwhile the bare steel was under free-corrosion state; when electrochemical reactions happened under the coating, the current density of galvanic increased quickly and the corrosion rate of the steel was accelerated; at the beginning of bare steel to protect the coating system, the resistance of the coating changed slowly and never decreased during the experiment period, until the current density of galvanic became steady.
     (2) For coating steel and bare steel, by using EIS and WBE technology, the relevance between coating degradation and distribution of current and potential was also researched. It was studied that some otherness existed during the galvanic corrosion because of the space difference of the steel wire. For the bare system, the driving force of the couple and the galvanic current density were decreased by the polarization. The zone of the anode and the cathode changed during the immersion. For the coating system, the current distribution results of the WBE show that the high anode current existed at the defect of the coating, the cathodic current dispersed over the coating. The anode current was found in the region of negative Ecorr with the development of the corrosion. Although the early defect region was still anode area, the current density diminished, and the cathode current expanded to the area near the defect. It showed that in the late immersion, the negative part would protect the positive part. During the entire coating deterioration process, the EIS diagrams were dominated by the substrate corrosion process of the defect, the coatings and the underlying electrochemical process were“averaged”out. However, through detecting the current distribution information on the metal surface, the local electrochemical process occurring in the coatings and the underlying could be monitored.
引文
[1]钟积礼船板钢接触腐蚀的研究.1979年腐蚀与防护学术报告会议论文集(海水、工业水、生物部分).北京:科学出版社.1982.32
    [2]刘道新,材料的腐蚀与防护.西安:西北工业大学出版社,2005.12
    [3]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社,1984.141-142
    [4]孙宝库.海水管系材料电偶腐蚀及电绝缘控制技术研究.[硕士学位论文].青岛:中国海洋大学.2009
    [5] Mansfeld F and Kenkel J.V.Corrosion Science,1975,Vol.15: 239
    [6]Mansfeld F. The relationship between galvanic current and dissolution rates.Corrosion,1973,29(10):403
    [7] Mansfeld F. Area relationships in galvanic corrosion.Corrosion,1971,27(10):436
    [8]罗兆红等.腐蚀与防护,1996,17(4):162
    [9] Mansfeld F. Galvanic interaction between active and passive Titanium.Corrosion,1973, 29(2):56
    [10]董震松,张巍,李久青,程菲.镁合金大气电偶腐蚀初期规律.中国有色金属学报.2004.04:554-561
    [11]徐桂英,王凤平,唐丽娜.镁合金阳极在氯化钠溶液中电偶腐蚀的电化学震荡行为.梁宁师范大学学报.2007,04(30):455-457
    [12]曾荣昌,陈君,张津.镁合金电偶腐蚀研究极其进展.材料导报,2008,22(1):107~110
    [13]孙成,李洪锡,张淑泉等.土壤盐浓差对碳钢/铝合金电偶腐蚀行为影响.材料科学与工程.2001.19(01):67-69
    [14]赵华莱,姜放,李殉等.酸性油气井生产管柱结构材料电偶腐蚀行为研究.天然气与石油.2008,16(4):16-18
    [15]贾庆生.油田杆管腐蚀实验分析.石油机械.2009.37(6):78-80
    [16]王春丽,吴建华,李庆芬.海洋环境电偶腐蚀研究现状与展望.中国腐蚀与防护学报.2010.30(5):416-420
    [17]张英,戴明安.海水中舰船钢低电位差电偶的腐蚀.中国腐蚀与防护学报,1993 13(1):86-90.
    [18]杨世伟.舰船材料的电偶腐蚀研究.哈尔滨工程大学学报, 2001, 21(6):34—38.
    [19]黄桂桥,郁春娟,李兰生.海水中钢的电偶腐蚀研究.中国腐蚀与防护学报,2001,21(1):46.
    [20]曹楚南.中国材料的自然环境腐蚀.北京:化学工业出版社,2004: 216.
    [21] F. E. VARELA, Y. KURATA , N. SANADA The influence of temperature on the galvanic corrosion of a cast iron-stainless steel couple (prediction by boundary element method).Corrosion Seience,1997,39(4):775-788.
    [22]李淑英,陈玮.碳钢/紫铜在NaCl介质中的电偶行为.腐蚀科学与防护技术,2000,12(5): 300-302)
    [23] E. Blasco-Tamarit, A. Igual-Munoz, J. Garc?a Anton.Comparison between open circuit and imposed potential measurements to evaluate the effect of temperature on galvanic corrosion of the pair alloy 31–welded alloy 31 in LiBr solutions.Corros.Sci.,2008,50:3590-3598
    [24] E. Blasco-Tamarit, A. Igual-Munoz, J. Garca Anton. Effect of Temperature on the Galvanic Corrosion of a High Alloyed Austenitic Stainless Steel in its Welded and Non-welded Condition in LiBr Solutions[J].Corrosion Science, 2007, 49:4472—4490.
    [25] L.A. Shalaby. Galvanic coupling of Ti with Cu and Al alloys in chloride media.Corrosion science ,1971,11(10):767-778
    [26]刘冬.舰船材料的电偶腐蚀与防护研究.[博士学位论文].哈尔滨:哈尔滨工程大学.2002.
    [27]孟超,曲政.滨海电厂海水循环水系统中的电偶腐蚀与防护.腐蚀与防护, 2006, 27(4):187—190.
    [28]朱相荣,戴明安,陈振进,等.高流速海水中金属材料的腐蚀行为.中国腐蚀与防护学报,1992,12(2):173—179.
    [29]戴明安,张英,殷正安,等.流动海水中电偶腐蚀动力学规律.腐蚀科学与防腐技术,1992,4(3):209—211.
    [30]张春,许川壁.局部交流阻抗扫描技术对金属电偶腐蚀的研究.中国腐蚀与防护学报, 1989,9(2) :137—143.
    [31]杜敏,郭庆锟,周传静.碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究.中国腐蚀与防护学报,2006,26(5):263—266.
    [32]苏方腾,蔡长寿,张惠平,等. Fe/有机涂层-Cu的电偶腐蚀特性.腐蚀科学与防护技术,1992,4(4):258—263.
    [33]沈文雁,徐福源.Ti-15-3钛合金电偶腐蚀与防护研究.表面技术,1997,26(1):20-22.
    [34] Bellucci F. Galvanic corrosion between nonmetallic composites and metals I: Effects of metal and of temperature. Corrosion,1991,47(10):808
    [35]宋诗哲.腐蚀电化学研究方法.北京:化学工业出版社, 1988.12 :129-130
    [36]陈铠,叶赐麒.海水中921钢及其焊接接头的腐蚀性能.北京工业大学学报,1992, 18(1):11-16
    [37]张士华,李异.微电极扫描测量焊缝电位的分布.化工腐蚀与防护,1991,3:12-15
    [38] R.Akid, D.J.Mills. A comparison between convential macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosio]. Corrosion Science, 2001, 43(7): 1203-1216
    [39]郭海丁,田锡唐,王杰.夹层体的电偶腐蚀.腐蚀科学与防护技术,1996,8(1):72-78
    [40]邹锋,韩薇,龙康,等.线性回归法进行Kelvin电位测试.腐蚀科学与防护技术,1995,7(1):17-22.
    [41]钟庆东.采用丝束电极研究金属的缝隙腐蚀.中国腐蚀与防护学报, 1999,19(3): 189-192
    [42]王丹,李国希,章红春等.用丝束电极研究SO42-对纯铝缝隙腐蚀的影响.腐蚀与防护,2006,27(1):7-10
    [43] Tan Y J. Monitoring localized corrosion processes and estimating localized corrosion rates using a wirebeam electrode. Corrosion, 1998, 54(5): 403-413
    [44]黄桂芳,吴翠兰,靳九成,等.油膜下局部腐蚀的探讨.腐蚀科学与防护技术, 2000, 12(1):30-31
    [45]董泽华,郭兴蓬,刘宏芳.用丝束电极研究SRB微生物诱导腐蚀的电化学特征.中国腐蚀与防护学报, 2002, 22(1): 48-53
    [46] TAHARA A, KODAMA T. Potential Distribution Measurement in Galvanic Corrosion of Zn/Fe Couple by Means of Kelvin Probe. Corrosion Science, 2000, 42(4):655—673.
    [47] YADAV A P, HKATAYAMA K . Surface Potential Distribution over a Zinc/steel Galvanic Couple Corroding under Thin Layer of Electrolyte. Electrochemical Acta , 2007,52 (9):3121—3129.
    [48]张大磊,王伟,李焰.热镀锌钢材的电偶腐蚀行为研究-划痕型缺陷.材料研究学报,2009,23(4):343—346.
    [49]皇甫淑君,王佳,韩霞,等.黄铜-16Mn钢在氯化钠溶液中腐蚀电化学的分布行为.物理化学学报,2008,24(12):2275—2281.
    [50]曾为民,金石.干涉配合构件表面电位的研究.表面技术,1997, 26(6):26—27.
    [51] FUSHIMI K, NAGANUMA A. Current Distribution during Galvanic Corrosion of Carbon Steel Welded with Type-309 Stainless Steel in NaCl Solution. Corrosion Science, 2008, 50(3):903—911.
    [52]张海丽,李宁,薛建军等。工业纯钛与铜镍合金的电偶腐蚀及电绝缘控制.腐蚀与防护,2010,31(8):615-618
    [53]孙明先.舰船阴极保护技术的现状与发展.舰船科学技术,2001,(2):44~46
    [54]张霞利用阵列电极技术研究微生物模拟膜/金属界面电化学分布特征[硕士学位论文].青岛:中国海洋大学.2009
    [55]赵增元.电化学阻抗谱和扫描Kelvin探针结合研究有机涂层劣化[硕士学位论文].青岛:中国海洋大学.2007
    [56] Zhao X, Wang J, Wang Y H, Kong T, Zhong L, Zhang W. Analysis of deterioration process of organic protective coating using EIS assisted by SOM network. Electrochemistry Communications, 2007, 9: 1394-1399
    [57]张鉴清,曹楚南,应用电化学阻抗谱方法研究评价有机涂层.腐蚀与防护. 1998, 19(3): 99-104
    [58]张伟.干湿交替环境中有机涂层失效过程的研究.[博士学位论文],青岛:中国海洋大学.2010
    [59]张波,韩冰. LF4铝合金在海水中的腐蚀性能研究.海洋科学,2005,29(7):4~7
    [60]朱相荣等.钛合金在海水中电偶腐蚀性能研究.海洋科学,1988,6:29~33
    [61] Zhong C, Tang X, Cheng Y F. Corrosion of steel under the defected coating studied by localized electrochemical impedance spectroscopy. Electrochimica Acta, 2008, 53(14): 4740-4747
    [62] Naderi R, Attar M. M, Moayed M. H. EIS examination of mill scale on mild steel with polyester–epoxy powder coating. Progress in Organic Coatings, 2004, 50: 162–165
    [63]肖葵,董超芳,李晓刚等.采用开尔文扫描探针技术研究镁合金偶接铜合金的电偶腐蚀规律.北京科技大学学报.2010.8(32):1023-1028
    [64] John Wagner. Cathodic Protection Design I,NACE International,Houston,TX,1993
    [65]张伟,王佳,李玉楠等,WBE联合EIS技术研究缺陷涂层下金属腐蚀.物理化学学报.2010,26(11):2941-2950
    [66]张金涛,胡吉明,张鉴清等.金属涂装预处理新技术与涂层性能研究方法进.表面技术, 2005, 34(1): 1–5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700