低表面处理带锈富锌涂料及其中涂漆的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带锈涂料可直接涂刷于存在一定残余锈蚀的钢铁表面,简化了传统涂料涂装前的表面处理程序,大大降低了涂装成本和对环境及施工人员的危害,其防锈性能也优于常规的防腐蚀涂料,目前低表面处理带锈涂料及其配套中涂漆已成为重防腐涂料研究的热点和重点。本文在综述了热镀锌碳钢材料大气腐蚀现状和低表面处理带锈涂料研究进展的基础上,制备了热镀锌钢构用有机转锈剂,并使用上述有机转锈剂制备了集稳定,转化、渗透为一体的多功能低表面处理带锈富锌涂料。针对现有的传统中涂漆不能和带锈涂料形成优异的配套性能的现状,制备了带锈富锌涂料专用的铝锆偶联剂改性环氧铝粉中涂漆。本论文的主要研究工作如下:
     1、热镀锌钢构用有机转锈液的制备与性能研究。利用扫描电镜(SEM)和能量散射谱(EDS)研究了热镀锌碳钢材料的镀层组织形貌和物象组成成分。采用湿热交替加速腐蚀试验模拟了热镀锌钢材在含有氯化物的大气环境中的腐蚀,采用X射线衍射谱(XRD)分析了腐蚀产物的主要有构成。依据上述研究结果采用正交实验法制备了具有一定磷化、钝化和除油功能的有机转锈剂。采用相关国家标准和方法研究了转锈液的基本物理性能、转锈液处理后金属的防锈性能以及锈转化效率。结果表明有机转锈剂在锈蚀热镀锌表面形成防锈膜层,膜层附着力≦2级,耐CuSO_4点滴162 S,3%NaCl溶液浸渍17 h,防锈期50 d,转锈剂的转化效率为0.124 Kg·m~(-2)。
     2、低表面处理带锈富锌涂料的制备及性能研究。采用环氧树脂E-44作为主要的成膜物质,并掺杂聚乙烯醇缩丁醛树脂、氨基树脂、环氧改性有机硅树脂作为辅助成膜物质;采用锌粉和多种化学防锈颜料组合应用以增强涂料的电化学和化学防锈性能;以第2章制备的有机转锈剂作为转锈组分来制备低表面处理带锈富锌涂料。采用正交实验法考察了成膜物质、电化学防锈颜料锌粉、主化学防锈颜料、有机转锈剂对对涂层的物理机械性能、化学防锈性能、带锈涂装性能以及施涂性能等的影响。制备的低表面处理带锈富锌涂料具有优良的物理机械性能和防锈性能,其硬度达到4 H,耐盐水浸泡60 d不返锈,耐盐雾﹥800 h,施涂性能良好。同时采用盐雾试验考察了转锈剂对带锈涂料在无锈基体上耐蚀性能的影响,当其用量的质量份为6时涂层具有最好的耐腐蚀性能。
     3、铝锆有机金属偶联剂改性环氧铝粉涂料的制备及性能研究。采用铝锆偶联剂对鳞片状铝粉进行表面改性,将改性后的铝粉用作防锈颜料制备了一种环氧铝粉涂料。EDS和SEM照片显示改性后的铝粉分散性能得到改善,表面斑点状缺陷得到修复,涂层更加平整、致密,物理屏蔽性能提高。研究同时表明经2.5%偶联剂改性的环氧铝粉涂料具有良好的物理机械性能,硬度达到4 H,耐3%盐水浸泡65 d无锈蚀,不起泡。涂层体系在3.5%NaCl溶液中的的电化学阻抗谱(EIS)测试表明,浸泡52 d后未改性的涂层基本上失去了对基体的保护作用,改性涂层的阻抗值仍可达到10~6Ω·cm~2,涂层对基体仍具有一定的保护作用,且当偶联剂的用量为2.5%时环氧铝粉涂层具有最好的防护性能。Tafel曲线测试表明铝锆偶联剂改性后涂层的自腐蚀电流减小,腐蚀速率下降。涂层体系的配套性能测试表明底漆和中涂漆具有良好的相容性,防腐性能,底漆和中涂漆在冷热收缩性、伸张强度等力学变化方面具有较强的适应性。
The surface tolerant residual rust coatings can be painted onto the surface rusted directly,which can avoid the treatment before painting, save large amounts of expenditure and reduce the harm for the environment, constructers and have better properties than traditional coatings. In recent years the residual rust coatings have became hotspots and focuses in the studies of heavy-duty coatings. The atmospheric corrosion of hot-dip galvanized steel and development of residual rust coatings are reviewed in details. In this thesis, an organic rust conversion solution was prepared, and with the rust converter we have got the surface tolerant residual rust zinc-rich coating incorporating stabilization, transform, permeate into an organic whole. On the basis of conventional intermediate coating can't cooperate well with residual rust primer, the Al-rich epoxy coatings modified with aluminium zirconium coupling agent was prepared. The main points of this dissertation are summarized as follows:
     1、Preparation and investigation of organic rust converter for hot-dip galvanized steel. Morphology and composition of the hot-dip galvanized steel was studied using the scanning electron microscopy (SEM) and energy dispersive x-ray (EDS) . To investigate zinc atmospheric corrosion in the presence of chloride alternate wet and heat test has been employed, the texture of the corrosion products were evaluated employing X-ray diffraction. According to the experimental results, an organic rust conversion solution which had several functions such as phosphorization, passivation, oil removal was prepared. The physical properties, and corrosion protection of hot-dip galvanized steel were studied. The results exhibited the organic rust converter could formed a compact and uniform film, the film adhesive force did not exceed 2 grade, the film could resist cupric sulfate spot test for 162 S and dipping test in the 3%NaCl solution for 17 h. Besides, the antirust time could be up to 50 days,conversion efficiency reached 0.124 Kg·m~(-2).
     2、Preparation and evaluation of surface tolerant residual rust zinc-rich coating. During the preparation, the epoxy resin E-44 was selected as the main film former and polyvinyl butyral resin, amino resin, epoxy-silicone resin as the auxiliary materials. The flake zinc powder and multiple antirust pigments were used to improve corrosion resistance of the coatings. The organic rust conversion solution prepared in chapter 2 was used as one component of coating. The physical mechanical properties, anticorrosive properties, application over rust and construction performance of the coating were optimized by orthogonal experiments. The coating showed good physical mechanical properties, the pencil hardness reached 4 H. After immersing in 3%NaCl solution for 60 days or salt spray test for 800 h the coating had no blister and rust spot. The effect of rust converter on the corrosion resistance of residual rust coatings application over metal without rust was investigated by salt spray test. The results indicated coatings exhibited the highest protective performance while 6 qualities ratio rust converter was used.
     3、Preparation and performance study of Al-rich epoxy coatings modified with aluminium zirconium organic metal coupling agent. The surface of Al flake powder was modified by aluminium zirconium coupling agent. The resulting flakes were incorporated into epoxy coatings as anticorrosive pigments. The EDS and SEM tests indicated that the coupling agent improved the dispersion of Al flake powder, and the spot-like surface defects were repaired, so the flatness, adherent and shielding effect of coatings was greatly enhanced. Meanwhile, the coatings modified with 2.5wt% aluminium zirconium coupling agent displayed good physical mechanical properties, the pencil hardness reached 4 H. After exposure of simples in 3% NaCl solution for 65 days, no blister and rust spot was found on the surface. The electrochemical impedance spectroscopy (EIS) results of coatings in 3.5% NaCl solution showed that after 52 days immersion the coatings before modification had no corrosion resistance, the coatings after modification still displayed good corrosion protection with impedance value of 10~6Ω·cm~2 and the epoxy coatings exhibited the highest protective performance while 2.5wt% coupling agent was used. Tafel test indicated the coatings displayed smaller corrosion rate after modification. The test of supporting system showed the intermediate coating cooperated well with primer, composite coating system exhibited good corrosion performance, cold and hot fatigue property, retractility.
引文
[1] Veleva L, Acosta M, Meraz E. Atmospheric corrosion of zinc induced by runoff. Corrosion Science. 2009,51(9):2055-2062.
    [2] Asgari H, Toroghinejad M R, Golozar M A. On texture , corrosion resistance and morphology of hot-dip galvanized zinc coatings. Applied Surface Science. 2007,253(9):6769-6777.
    [3]王胜民,何明奕,刘丽,等.机械镀锌层锌粉颗粒间结合机理的探讨.金属热处理. 2006,32(1):71-74.
    [4]王文忠.钢铁件热浸锌.电镀与环保. 2002,22(2):15-16.
    [5]方景,陈刚一,司朝霞.热浸镀锌对铁基粉末冶金零件耐腐蚀性的影响.粉末冶金技术. 2008,26(6):452-454.
    [6] Baugh M L. Corrosion and polarization characteristics of zinc in neutral - acid media - I. Pure zinc in solutions of various sodium salts. Electrochim Acta. 1979,24(6):657-667.
    [7]张承志.金属的腐蚀与防护.北京:冶金工业出版社,1985,40-43.
    [8] Sim?es A M, Torres J, Picciochi R, et al. Corrosion inhibition at galvanized steel cut edges by phosphate pigments. Electrochimica Acta. 2009,54(15):3857-3865.
    [9]孔纲,卢锦堂,车淳山,等.热镀锌钢白锈产生原因分析及预防.腐蚀与防护. 2005,26(10):450-452.
    [10] Sziráki L, Szêcs E, Pilbáth Z, et al. Study of the initial stage of white rust formation on zinc single crystal by EIS , STM/ AFM and SEM/ EDS techniques. Elect rochimica Acta. 2001,46(24-25):3743-3754.
    [11] Chen Y Y, Chung S C, Shih H C. Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride. Corrosion Science. 2006,48(11):3547-3564.
    [12] Odnevall I, Leygraf C. Formation of NaZn4Cl(OH)6SO4·6H2O in a marine atmosphere. Corrosion Science. 1993,34(8):1213-1229.
    [13] Wallinder I O, Leygraf C. Atmospheric Corrosion. Philadelphia: W.W. Kirk,H.H. Lawson (Eds.),1995,226-227.
    [14] Odnevall I, Leygraf C. The formation of Zn4Cl2(OH)4SO4·5H2O in an urban and an industrial atmosphere. Corrosion Science. 1994,36(9):1551-1559.
    [15] Odnevall I, Westdahl M. Zinc chlorohydroxosulfates: Newly-discovered corrosion products on zinc. Structure determination of NaZn4Cl(OH)6SO4·6H2O and x-ray study of Zn4Cl2(OH)4SO4·5H2O. Corrosion Science. 1993,34(8):1231-1242.
    [16]徐玉野,王全凤,罗漪.热镀锌钢在模拟混凝土孔隙液中电化学腐蚀行为.福州大学学报(自然科学版). 2008,36(3):424-429.
    [17] Sistonen E, Cwirzen A, Puttonen J. Corrosion mechanism of hot-dip galvanised reinforcement bar in cracked concrete. Corrosion Science. 2008,50(12):3416-3428.
    [18] Tan Z Q, Hansson C M. Effect of surface condition on the initial corrosion of galvanized reinforcing steel embedded in concrete. Corrosion Science. 2008,50(9):2512-2522.
    [19] Duval R, Arliguie G. Passivation du zinc dans l'hydroxyde de calcium, eu'egard au comportement da l'acier galvanis¨dans le be'ton. Memoires Scienti ques Revue de Metallurgie. 1974,71(11):719-727.
    [20] Ghosh R, Singh D D N. Kinetics , mechanism and characterisation of passive film formed on hot dip galvanized coating exposed in simulated concrete pore solution. Surface & Coatings Technology. 2007,201(16-17):7346-7359.
    [21] Farina S B, Duff G S. Corrosion of zinc in simulated carbonated concrete pore solutions. Electrochimica Acta. 2007,52(16):5131-5139.
    [22]章小鸽.锌和锌合金的腐蚀(一).腐蚀与防护. 2006,27(1):41-49.
    [23] Vagge S T, Raja V S. Influence of strontium on electrochemical corrosion behavior of hot-dip galvanized coating. Surface & Coatings Technology. 2009,203(20-21):3092-3098.
    [24] Bajat J B, Miskovi′c-Stankovic′V B, Bibi′c N, et al. The influence of zinc surface pretreatment on the adhesion of epoxy coating electrodeposited on hot-dip galvanized steel. Progress in Organic Coatings. 2007,58(4):323-330.
    [25]徐斌,满瑞林,倪网东,等.镀锌钢板表面硅烷、铈盐复合膜的制备及耐腐蚀性能研究.涂料工业. 2007,37(12):46-50.
    [26]张大为,李淑英.镀锌钢板磷化液组分对磷化膜性能的影响.电镀与涂饰. 2007,26(9):57-59.
    [27]宫丽,卢燕平.热镀锌钢板钼酸盐钝化膜的改性及耐蚀性.钢铁研究学报. 2007,19(3):88-92.
    [28] Lin B L, Lu J T, Kong G. Effect of molybdate post-sealing on the corrosion resistance of zinc phosphate coatings on hot-dip galvanized steel. Corrosion Science. 2008,50(4):962-967.
    [29]郝建军,安成强,刘常升.磷钼杂多酸钝化工艺研究.材料保护. 2005,38(7):28-30.
    [30] Lin B L, Lu J T, Kong G, et al. Growth and corrosion resistance of molybdate modified zinc phosphate conversion coatings on hot-dip galvanized steel. Transactions of Nonferrous Metals Society of China. 2007,17(4):755-761.
    [31] Singh D D N, Ghosh R. Molybdenum– phosphorus compounds based passivator to control corrosion of hot dip galvanized coated rebars exposed in simulated concrete pore solution. Surface & Coatings Technology. 2008,202(19): 4687-4701.
    [32] Silva C G, Correia A N, Lima-Neto P, et al. Study of conversion coatings obtained from tungstate-phosphoric acid solutions. Corrosion Science. 2005,47(3):709-722.
    [33]张安富.镀锌系钢板表面处理新工艺.表面技术. 1991,20(5):29-33.
    [34]彭天兰,满瑞林,别子俊,等.镀锌钢板表面耐腐蚀硅烷膜的制备.涂料工业. 2008,38(12):63-65.
    [35] Dalbin S, Maurin G, Nogueira R P, et al. Silica-based coating for corrosion protection of electrogalvanized steel. Surface & Coatings Technology. 2005,194(2-3):363-371.
    [36] Fedel M, Olivier M, Poelman M, et al. Corrosion protection properties of silane pre-treated powder coated galvanized steel. Progress in Organic Coatings. 2009,66(2):118-128.
    [37]刘倞,胡吉明,张鉴清.金属表面硅烷化防护处理及其研究现状.中国腐蚀与防护学报. 2006,26(1):59-64.
    [38] Hosseini M, Ashassi-Sorkhabi H, Ghiasvand H A Y. Corrosion protection of electro-galvanized steel by green conversion coatings. Journal of Rare Earths. 2007,25(5):537-543.
    [39] Jacques S, Rocca E, Stebe M, et al.“Carboxylatation”coating on zinc : A chemical conversion in organized molecular systems containing carboxylic acid. Surface & Coatings Technology. 2008,202(16):3878-3885.
    [40] Peultier J, Rocca E, Steinmetz J. Zinc carboxylating : a new conversion treatment of zinc. Corrosion Science. 2003,45(8):1703-1716.
    [41] Zhu L, Yang F, Ding N. Corrosion resistance of the electro-galvanized steel treated in a titanium conversion solution. Surface & Coatings Technology. 2007,201(18):7829-7834.
    [42] Georges C, Rocca E, Steinmetz P. Synergistic effect of tolutriazol and sodium carboxylates on zinc corrosion in atmospheric conditions. Electrochimica Acta. 2008,53(14):4839-4845.
    [43] Lebrini M, Fontaine G, Gengembre L, et al. Corrosion behaviour of galvanized steel and electroplating steel in aqueous solution : AC impedance study and XPS. Applied Surface Science. 2008,254(21):6943-6947.
    [44]涂料工艺编委会.涂料工艺(下册).北京:化学工业出版社,2004,418-419.
    [45] Yuan M, Brokken-Zijp J, With G D. Permanent antistatic phthalocyanine / epoxy nanocomposites– Influence of crosslinking agent , solvent and processing temperature. European Polymer Journal. 2010,46(5):869-880.
    [46] Kumar S A, Balakrishnan T, Alagar M, et al. Development and characterization of silicone / phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings. Progress in Organic Coatings. 2006,55(3):207-217.
    [47]吴其官.带锈涂料及其应用.涂料涂装与电镀. 2003,(1):34-36.
    [48]陈民桥.带锈涂料与应用.北京:机械工业出版社,1987,13-71..
    [49] Kapsanis K A, Appleman B R. Myths and realities of surfacetolerant coatings for bridges. Journal of Protective Coatings & Linings. 1992,9(1):56-60.
    [50] Bortnik L. Anti-rust coating. United States Patent.2002/0158230 A1,2002-10-31.
    [51] Naderi R, Attar M M. The role of zinc aluminum phosphate anticorrosive pigment in Protective Performance and cathodic disbondment of epoxy coating. Corrosion Science. 2010,52(4):1291-1296.
    [52] Shao Y, Jia C, Meng G, et al. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel. Corrosion Science. 2009,51(2):371-379.
    [53] Lima-Neto P D, Araujo A P D, Araujo W S, et al. Study of the anticorrosive behaviour of epoxy binders containing non-toxic inorganic corrosion inhibitor pigments. Progress in Organic Coatings. 2008,62(3):344-350.
    [54] Blustein G, Deya M C, Romagnoli R,et al. Three generations of inorganic phosphates in solvent and water-borne paints : A synergism case. Applied Surface Science. 2005,252(5):1386-1397.
    [55]带锈涂料编写组编.带锈涂料.北京:机械工业出版社,1974,31-35..
    [56]朱骥良,吴申年.颜料工艺学.北京:化学工业出版社; 2001,300-303.
    [57] Norizumi M, Toshio I. Rust prevention coating agent and method of rust-proofing. United States Patent.7,029,522 B2,2006-4-18.
    [58] Schlosser M T, Tamaqua P A. Phosphonic acid and polyvinyl alcohol conversion coating. United States Patent.2006/0214137 A1,2006-9-28.
    [59] Arpad M M, James G N, Darrell W P, et al. Rust conversion coatings. UnitedStates Patent.4609406,1986-9-2.
    [60]高景龙,刘艳辉.钢铁带锈带油带水涂料的研制.化学与黏合. 2008,30(5):78-80.
    [61] Paul J D, William J H. Rust conversion composition. United States Patent.4945017,1990-7-31.
    [62] Singh D D N, Bhattacharya D. Performance and mechanism of action of self-priming organic coating on oxide covered steel surface. Progress in Organic Coatings. 2010,67(2):129-136.
    [63]张发余,张以峰,张书第,等.带锈钢铁涂料的制备.电镀与精饰. 2008,30(11):34-36.
    [64]郝建军,安成强,牟世辉.改型环氧带锈涂料的研究.当代化工. 2002,31(4):196-198.
    [65] Clarence E L. Cross blend or solvent type rust converting paint. United States Patent.4147566,1979-4-3.
    [66]薛志纯.带锈涂料.中国专利.89104900.2,1991-1-30.
    [67]魏宽文.水型带锈涂料.中国专利.90108650.9,1991-6-19.
    [68] González S, Cáceres F, Fox V, et al. Resistance of metallic substrates protected by an organic coating containing aluminum powder. Progress in Organic Coatings. 2003,46(4):317-323.
    [69]陈玲,王再德,李潇.铝粉的质量分数对达克罗涂层耐蚀性的影响.电镀与环保. 2007,27(5):25-27.
    [70]王成,江峰,王福会.添加Al粉对有机硅树脂涂层性能的影响.腐独科学与防护杖术. 2004,16(1):21-23.
    [71] Strzelec K, Pospiech P. Improvement of mechanical properties and electrical conductivity of polythiourethane-modified epoxy coatings filled with aluminium powder. Progress in Organic Coatings. 2008,63(1):133-138.
    [72]刘正堂,张新岐,郭家振.含铝高温涂料的研制.化工新型材料. 2001,29(9):57-58.
    [73]王海侨,李营,苟国立.有机硅耐高温涂料的研究.北京化工大学学报. 2006,33(1):59-62.
    [74]潘卓,赵振声,何华辉.低红外发射率材料的研究.华中科技大学学报. 2003,31(7):28-30.
    [75] Hu C, Xu G, Shen X, et al. The epoxy-siloxane / Al composite coatings with low infrared emissivity for high temperature applications. Applied Surface Science. 2010,256,(11):3459-3463.
    [76] Supplit R, Schubert U. Corrosion protection of aluminum pigments by sol– gel coatings. Corrosion Science. 2007,49(8):3325-3332.
    [77] Zhu H, Chen Z, Sheng Y, et al. Flaky polyacrylic acid / aluminium composite particles prepared using in-situ polymerization. Dyes and Pigments. 2010,86(2):155-160.
    [78] Karlsson P M, Esbj?rnsson N B, Holmberg K. Admicellar polymerization of methyl methacrylate on aluminum pigments. Journal of Colloid And Interface Science. 2009,337(2):364-368.
    [79] Li L, Pi P, Wen X, et al. Optimization of sol– gel coatings on the surface of aluminum pigments for corrosion protection. Corrosion Science. 2008,50(3):795-803.
    [80]陈均志,冯练亨,赵艳娜.铝锆偶联剂的发展现状及其应用前景.化工新型材料. 2005,33(12):24-26.
    [81]陈育如.铝锆偶联剂的应用.塑料工业. 2001,29(6):46-48.
    [82] Freischmidt G, Michell A J. Performance of zircoaluminate coupling agents in wood flour/fibre-polyolefin composites. Polymer international. 1991,24(4):241-247.
    [83]时志权,宋洪昌,吴贻珍.铝锆偶联剂AZ-M改性纳米白炭黑在CR/ BR胶料中的应用.橡胶工业. 2006,53(6):348-351.
    [84] Lawrence B C. Multifuncional amino zirconium aluminum metall oaganic complexes useful as adhesion promoter. United States. 4764632,1988-8-16.
    [85]高允彦.正交及回归试验设计方法.北京:冶金工业出版社,1988,5.
    [86]徐宣红,邹智红.钢铁常温中性除锈剂的研究.电镀与环保. 1996,16(4):19-21.
    [87] Yadav A P, Katayama H, Noda K, et al. Effect of Fe–Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments. Corrosion Science. 2007,49(9):3716-3731.
    [88] Asgari H, Toroghinejad M, Golozar M. Effect of coating thickness on modifying the texture and corrosion performance of hot-dip galvanized coatings. Current Applied Physics. 2009,9(1):59-66.
    [89]姚淑霞.带锈涂料的研究.中国环境管理干部学院学报. 2003,13(4):58-60.
    [90]张立新.钛酸酯偶联剂的应用.辽宁化工. 2005,34(6):268-270.
    [91]郭斌,王燕,高勇.硬脂酸基铝-锆偶联剂的合成及对长余辉发光颜料的改性.涂料工业. 2009,39(8):4-7.
    [92] Asbeck W, Loo M V. Critical Pigment Volume Relationships. Industrial &Engineering Chemistry. 1949,41(7):1470-1475.
    [93] Selvaraj M, Gumviah S. Optimisation of metallic pigments in coatings by an electrochemical technique and an investigation of manganese powder as pigment for metal rich primers potential. Progress in Organic Coatings. 1996,28(4):271-277.
    [94]徐宗器.涂料配方原理和实例.上海:上海科学技术文献出版社,1988,49-51.
    [95]李玮,曹京宜,熊金平.环氧富锌/氯化橡胶涂层体系腐蚀过程的电化学阻抗谱.化工学报. 2007,58(10):2543-2547.
    [96]张颖怀,许立宁,路民旭.用电化学阻抗谱(EIS)研究环氧树脂涂层的防腐蚀性能.腐蚀与防护. 2007,28(5):227-231.
    [97]胡吉明,张鉴清,谢德明.环氧树脂涂覆LY12铝合金在NaCl溶液中的阻抗模型.物理化学学报. 2003,19(2):144-149.
    [98]刘斌,李瑛,王福会.添加纳米锌粉环氧涂层腐蚀电化学行为.腐蚀科学与技术. 2004,16(1):9-12.
    [99] Nematollahi M, Heidarian M, Peikari M, et al. Comparison between the effect of nanoglass flake and montmorillonite organoclay on corrosion performance of epoxy coating. Corrosion Science. 2010,52(5):1809-1817.
    [100]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002,168-170.
    [101]薛丽莉,许立坤,李庆芬.水性环氧铝粉涂层/碳钢体系的腐蚀电化学行为.电化学. 2007,13(2):171-176.
    [102] McIntyre J M, Pham H Q. Electrochemical impedance spectroscopy; a tool for organic coatings optimizations. Progress in Organic Coatings. 1996,27(1-4):201-207.
    [103]曹京宜,熊金平,李水冰.利用EIS高频区参数评价两种环氧涂层的性能.化工学报. 2008,59(11):2851-2856.
    [104]彭兆宁.涂料的配套性及其影响因素.腐蚀与防护. 1999,30(9):419-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700