沿海炼厂16MnR钢大气环境中的氢渗透及脆性行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢脆现象是困扰着石油化工生产的一个重要问题,氢向钢材内部的渗入易使钢材变脆乃至失效,最终酿成重大的事故与灾难。近年来,围绕设备内部溶液介质对于材料氢脆敏感性的影响问题已有大量研究工作的开展,对大气环境下的氢脆现象却未引起足够的重视。而根据国家炼厂的布局,越来越多的沿海炼厂诞生,考虑到海洋大气本身属于材料发生氢致开裂的敏感环境,结合炼厂工业大气中的SO2等污染物,高温高湿、高盐分、干湿交替的大气环境都可能促进氢向钢材基体的渗透,为生产的稳定运行埋下安全隐患,因此有必要围绕炼厂设备用钢在海洋大气中的氢渗透及脆性行为展开研究。
     本文以炼厂常用的Q345R(16MnR)钢为研究对象,利用双面电解池技术和慢应变速率拉伸法,结合扫描电镜对断口形貌观察和腐蚀产物分析,研究模拟海洋大气下各环境因素对此类钢材氢渗透行为的规律,并考察进入钢材内部的氢对其力学性能的影响,实验结果表明:
     ⑴在模拟海洋大气环境下,16MnR钢存在氢渗透现象,随着温度、湿度的升高,试样的氢渗透行为加剧,且温度和湿度之间对促进此类钢材的氢渗透行为存在协同效应;亚硫酸盐在试样表面的沉积进一步加速材料的氢渗透现象;干湿交替环境对试样的氢渗透行为也存在明显的加速作用;氢渗透量与腐蚀失重存在线性关系。
     ⑵氢的进入提高了16MnR钢的应力腐蚀敏感性,使其断后延伸率明显降低,扫描电镜分析结果显示,在断口边缘处能够看到脆性断裂的迹象,断口形貌随暴露时间的延长由韧性向脆性断裂转变;高温、高湿、含硫或干湿循环交替的大气环境都会使材料的力学参数降低,其中干湿循环交替的大气环境对16MnR钢的力学性能影响最大。
Hydrogen embrittlement is a major problem puzzling the petrochemical production. Hydrogen permeations to steel inside make steel embrittle and even lose effectiveness easily, finally leading to immense accidents or disasters. In the pastfew years, there have been many researches about the solution medium’s effect in apparatus to the material’s hydrogen embrittlement sensitivity, yet that in atmosphere does not cause enough attention. According to refineries layout, more and more coastal factories appear. The marine atmospheric conditions are the sensitive environment for hydrogen induced cracking, and there are a lot of pollutants in the refining industry air, for example SO2 gas. If the atmospheric environment is high temperature and humidity, or high salinity,or depositing of pollutants, it is more likely that the environment will enhance the hydrogen’s permeating into steels. Permeating of hydrogen will bring about security hidden trouble,so the researches of hydrogen permeation and embrittlement of fining equipment steels in marine atmospheric conditions are very necessary.
     Q345R(16MnR) steel which is used widely in refineries is studied in this article. Devanathan-Stachurski technology,the slow strain rate methods as well as the fracture morphology analysis by Scanning Electron Microscope(SEM) were used to study the laws of this steel in simulated marine atmosphere with various environmental factors,and explore the influence of mechanical performance caused by hydrogen permeation. The results obtained showed that:
     (1) In simulated marine atmosphere, 16MnR steel had hydrogen permeation phenomenon. As the temperature and humidity increased,the hydrogen permeation phenomenon of sample became to exacerbated. There were synergistic effects between temperature and humidity. The deposition of sulphite could accelerate the hydrogen permeation process. Wet-dry cycle was also showed to accelerate the hydrogen permeation phenomenon significantly. The corrosion weight loss experiment showed that there was clearly linear relationship between corrosion weight loss and the amount of hydrogen permeation.
     (2) Permeating of hydrogen enhaceds the stress corrosion cracking sensitivity of 16MnR steel,and reduces the percentage elongation after fracture.The analysis results from SEM showed that there were signs of brittle fracture at fracture side-intry cutting. The fracture morphology changed from ductile fracture to brittle fracture as the exposure time increased.The atmospheric environment with high temperature ,high humidity or sulfur or Wet-dry cycle could reduce the mechanical parameters of materials. The Wet-dry cycle of atmospheric environment showed major influence on 16MnR steel.
引文
[1]刘秀晨,安成强.金属腐蚀学[M],北京:国防工业出版社,2002.
    [2]肖纪美,褚武扬.环境断裂机理及控制措施[J].腐蚀与防护,1999,12(01):13-16.
    [3]卢志明,朱建新,高增梁.16MnR钢在湿硫化氢环境中的应力腐蚀开裂敏感性研究[J].腐蚀科学与防护技术,2007,19(6):410-413.
    [4]刘奎.炼油厂排放控制[J].炼油技术与工程,2007,37(9):54.
    [5]Woodtli J. Engineering Damage due to hydrogen embrittlement and stress corrosion cracking [J]. Failure Analysis, 2000,7(9):427.
    [6]Biezma M.V. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J]. International Journal of Hydrogen Energy, 2001, 26(3): 515 .
    [7]Oriani R.A., Josephic P.H. Equilibrium aspects of Hydrogen-induced cracking of steels [J].Acta Metallurgical, 1974, 22: 1065.
    [8]Huang Y.L., Zhu Y.Y. Hydrogen ion reduction in the process of iron rusting[J].Corrosion Science.2005,47(6):1545-1554.
    [9]于青.35CrMo高强度钢在海洋大气中的氢渗透行为与环境致脆机理研究[D].中国科学院海洋研究所博士论文.2008.
    [10]郑传波.海洋结构用钢在海洋大气中的氢脆机制研究[D].中国科学院海洋研究所,2008.
    [11]张大磊,李焰.湿度对热镀锌钢材在海洋大气环境中氢脆敏感性的影响[J].中国有色金属学报,2010,20(3):476-482.
    [12]潘应君,张恒,刘静.材料环境学[M].冶金工业出版社,2004.
    [13]杨德钧,沈卓身.金属腐蚀学[M],北京:冶金工业出版社,1999.
    [14]孙跃,胡津.金属腐蚀与控制[M].哈尔滨工业大学出版社,2003.
    [15]化学工业部化工机械研究院主编.腐蚀与防护手册:腐蚀理论·试验及监测[M].化学工业出版社,1989.
    [16]刘猛.热浸镀钢材在海水中的氢渗透行为与脆性研究[D].中国科学院海洋研究所,2008.
    [17]Yoshino K.,McMahon C.J. The looperative relation between temper embrittlement andhydrogen embrittlement in a high strength steel[J],Metal Transform,1974,5:363.
    [18]Devnathan M.A.V., Stachurski Z. A technique for the Evaluation of Hydrogen Embrittlement Characteristics of Electroplating Baths [J]. Journal of the Electrochemical Society, 1963, 110(8): 886.
    [19]曹楚南.腐蚀电化学原理[M],北京:北京工业出版社, 2004.
    [20]余刚,赵亮,张学元,等.16MnR钢硫化氢腐蚀与氢渗透规律的研究[J].湖南大学学报(自然科学版),2004,31(3):5-9.
    [21]钟群鹏,赵子华.断口学[M].高等教育出版社,2005.
    [22]周德惠,潭云.金属的环境氢脆及其实验技术[M],北京:国防工业出版社,2001.
    [23]王一建,黄本元,王余高,等.金属大气腐蚀与暂时性保护[M].化学工业出版社,2006.
    [24]蒋官澄,黄春,张国荣.海上油气设施腐蚀与防护[M].中国石油大学出版社,2006.
    [25]李晓刚,董超芳,肖葵,等.金属大气腐蚀初期行为与机理[M].科学出版社,2009.
    [26]刘刚,张奎志,曲政等.某滨海电厂钢结构腐蚀防护[J].腐蚀与防护,2004, 25(9):400.
    [27]朱惠斌,黄燕萍.海洋大气环境中钢铁表面的防腐蚀[J].全面腐蚀控制,2003,17(4):26.
    [28]夏兰廷,黄桂桥,张三平等.金属材料的海洋腐蚀与防护[M].北京:冶金工业出版社, 2003.
    [29]廖国栋,吴国华,苏少燕.金属材料暴露试验与人工加速试验腐蚀速率的研究[J].环境试验. 2005, 12: 13-15.
    [30]王建军,郭小丹,郑文龙,等.海洋大气暴露3年的碳钢与耐候钢表面锈层分析[J].腐蚀与防护, 2003,23(7):288-292.
    [31]王成章,张伦武,汪学华,等.热带海洋大气环境中钢腐蚀异常原因分析[J].装备环境工程,2005,2(2):68-70.
    [32]卢兴华,万红敬,黄红军,等.盐雾加速腐蚀试验相对于石家庄大气环境试验的加速倍率研究[J].环境装备工程,2003,15(2):86-89.
    [33]林翠,王凤平,李晓刚.大气腐蚀研究方法进展[J].中国腐蚀与防护学报,2004,24(4):249-256.
    [34]徐乃欣,张承典,丁翠红等.加速大气腐蚀试验的一个新方案[J].中国腐蚀与防护学报,1990,10(3):228-23.
    [35]孙志华,李金桂,李牧铮.金属材料大气腐蚀加速试验研究的发展趋势[J].材料工程,1995,(12):41-42.
    [36]中国石油和石化工程研究会.北京:炼油设备工程师手册[M].中国石化出版社,2003.
    [37]谷其发,李文戈.炼油厂设备腐蚀与防护图解[M],中国石油出版社,2000.
    [38]韩顺昌.金属腐蚀显微组织图谱[M],国防工业出版社,2008.
    [39]孙茂才.金属力学性能[M],哈尔滨:哈尔滨工业大学出版社,2003.
    [40]张大磊.热镀锌钢材在海洋大气中的氢渗透行为与脆性研究[D].中国科学院海洋研究所,2010.
    [41]王佳.无机盐微粒沉积和大气腐蚀的发生和发展[J].中国腐蚀与防护学报,2004, 24(3):155.
    [42]赵亮,余刚,张学元,等.氢在钢中低温扩散系数.腐蚀科学与防护技术[J],2005,17(5):349-351.
    [43] Chaudhari B. S., Radhakrishnan T. P. The uptake of cathodic hydrogen by shim steel [J]. Corrosion Science, 1985, 25(11): 1077-1088.
    [44]GB/T 228-2002.金属材料室温拉伸试验方法[S].
    [45]刘白.氢对位错运动的影响[J].材料科学与工程,2001,19(1):63-66.
    [46] Liang Y., Ahn D.C., Sofronis P., et al. Effect of hydrogen trapping on void growth and coalescence in metals and alloys [J]. Mechanics of Materials, 2008, 40(3):115-132.
    [47]郑传波,黄彦良,霍春勇,等.氢渗透电流监测海洋大气中钢材的腐蚀速率[J].材料科学与工艺,2009,17(4):574-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700