桃果实采后病害和冷害调控及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃果实柔软多汁,风味芳香,营养丰富,鲜食易于消化吸收,是深受广大人民喜爱的水果之一。桃果实成熟于盛夏,正值高温多雨季节,采后呼吸旺盛,常温下2-3d即达到后熟软化,容易受到机械伤从而易受病原菌侵染,引起大量腐烂。扩展青霉(Penicillium expansum)、灰霉(Botrytis cinerea)和匍枝根霉(Rhizopus stolonifer)是导致桃果实采后青霉病、灰霉病和软腐病发生的主要病原菌。化学防腐剂可有效控制桃果实采后腐烂病害的发生,但随着人们对食品安全和环保的重视,化学杀菌剂的使用日益受到限制。低温冷藏可有效抑制桃果实采后腐烂,并且可以延缓果实后熟,在一定程度上抑制桃果实品质下降。然而桃果实属于冷敏性果实,对低温环境较敏感,在低温下贮藏较长时间易引起冷害,出现果心褐变和果肉粉质化等冷害症状。果心褐变表现为果心周围以及果肉组织出现棕褐色或黑褐色,粉质化表现为果肉发绵,呈沙粒状,果汁减少,丧失原有风味。因此,桃果实不耐贮藏与运输,采后损失十分严重。目前虽已有研究气调、热处理、低温预贮和紫外线照射等处理减轻桃果实采后病害或冷害的报道,但由于各种处理方法的效果受到果实品种、成熟度、处理时间等因素的影响,其结果不尽一致,另外对桃果实采后病害和冷害调控的机理也不十分清楚,在生产实际中仍缺乏有效的保鲜方法。因此,研究桃果实采后病害和冷害调控技术及其机理,已成为解决桃果实贮运保鲜问题的关键。
     本论文以“白凤”桃(Prunus persica Batsch cv Baifeng)果实为试材,研究茉莉酸甲酯(methyl jasmonate, MeJA)和1-甲基环丙烯(1-methylcyclopropene,1-MCP)单独处理对桃果实采后主要病害和冷害的影响及其机理,研究MeJA复合低温预贮(low temperature conditioning, LTC)或复合热空气(hot air, HA)处理对减轻桃果实冷害的作用及其机理,以期为桃果实保鲜新技术的开发提供依据。研究结果分述如下:
     1. MeJA处理对桃果实采后病害的影响及其机理
     采用果实接种试验,研究了不同浓度(1,10和100μmol/L) MeJA处理对桃果实采后青霉病、灰霉病和软腐病的影响。发现1、10μmol/L MeJA可以显著抑制桃果实采后病害的发生,其中以1μmol/L MeJA处理效果较好,而100μmol/L MeJA处理没有明显效果。此外,研究了不同浓度(1、10和100μmol/L)MeJA对P. expansum, B. cinerea和R. stolonifer离体生长的影响。发现MeJA能显著抑制P. expansum, B. cinerea和R.stolonifer的孢子萌发、芽管生长和菌丝扩展,且MeJA浓度越高,抑制效果越显著。在此基础上研究了1μmol/L MeJA对桃果实抗病相关酶活性和活性氧代谢的影响,以揭示MeJA控制桃腐烂病害的机理。结果显示,MeJA处理可诱导提高桃果实中几丁质酶、β-1,3葡聚糖酶、苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)和多酚氧化酶(PPO)等抗病相关酶类活性,提高总酚含量,说明MeJA减少桃腐烂病害发生与提高抗病相关酶活性和总酚含量有关。此外,MeJA处理提高桃果实中超氧化物歧化酶(SOD)活性,抑制了过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性,并且促进了H2O2的积累,说明MeJA通过调节桃果实中活性氧代谢,提高对病原菌的抵抗能力。这些结果表明,MeJA处理抑制桃果实采后病害的发生可能与其直接抑制病原菌的生长和间接诱导提高果实的抗病性有关。
     2. MeJA复合LTC处理减轻桃果实冷害的作用及其机理
     首先研究了不同浓度(1,10、100和500μmol/L) MeJA处理对桃果实冷害和品质的影响,发现1和10μmol/L MeJA可以显著抑制桃果肉褐变和粉质化的发生,保持较高的TSS、TA含量和出汁率,其中以1μmol/LMeJA处理效果较好,而100和500μmol/L MeJA处理对桃果实品质没有明显影响,甚至促进了果肉褐变和粉质化的发生。因此,在此基础上选用1μmol/LMeJA与LTC复合,探索复合处理对减轻桃果实冷害的作用,通过研究复合处理对桃果实活性氧代谢和果胶代谢的影响,以揭示MeJA复合LTC处理减轻桃果实冷害的机理。结果显示MeJA复合LTC处理显著抑制了桃果肉褐变和粉质化的冷害症状,其中以10℃下预贮2d的复合处理(LTC2+MJ)效果最好。MeJA复合LTC处理抑制了桃果实中PPO和POD活性,保持果实中较高的PAL、SOD、CAT和APX活性,使得O2ˉ和H2O2得以及时清除,减轻膜脂过氧化程度,从而降低了果心褐变的发生。MeJA复合LTC处理能维持冷藏桃果实中果胶甲酯酶(PME)和多聚半乳糖醛酸酶(PG)活性变化的平衡,保持较高的PG/PME比率,使果胶代谢趋于正常,维持果肉较高的出汁率,减少粉质化症状的发生。这些结果说明,MeJA复合LTC处理可维持桃果实活性氧和果胶物质代谢的平衡,从而减轻桃果实冷害的发生。
     3. MeJA复合HA处理减轻桃果实冷害的作用及其机理
     选用1μmol/L MeJA与38℃热空气(HA)复合,探索两者复合处理对减轻桃果实冷害的作用,并通过研究复合处理对桃果实活性氧代谢和果胶代谢的影响,揭示MeJA复合HA处理减轻桃果实冷害的机理。结果显示HA单独处理可显著抑制桃果肉褐变,却表现出较为严重的果肉粉质化症状。MeJA复合HA处理可减轻HA处理的不良效果,MeJA复合HA处理抑制了桃果实中PPO和POD活性,保持果实中较高的PAL、SOD、CAT和APX活性,使得O2ˉ和H2O2得以及时清除,减轻膜脂过氧化程度,从而降低了果心褐变的发生。MeJA复合HA处理提高了桃果实冷藏期间PG的活性,保持较高的PG/PME比率,能维持果胶物质代谢平衡,减少粉质化症状的发生。这些结果说明,MeJA复合HA处理减轻桃果实冷害的发生,与其保持桃果实中较高的抗氧化酶活性和较高的PG/PME比率有关。
     4.1-MCP处理对桃果实采后病害的影响及其机理
     采用果实接种试验,研究了不同浓度(0.1、0.5、5μl/L) 1-MCP处理对桃果实采后由扩展青霉(P. expansum)引起的青霉病、由灰霉葡萄孢(B. cinerea)引起的灰霉病和由匍枝根霉(R. stolonifer)引起的软腐病的影响。发现0.5μl/L1-MCP处理显著抑制桃果实青霉病、灰霉病和软腐病的发生,而0.1、5μl/L1-MCP处理没有明显效果。因此,在此基础上研究了0.5μl/L1-MCP对桃果实抗病相关酶活性和活性氧代谢的影响,以揭示1-MCP减少桃果实腐烂病害的机理。结果显示,1-MCP处理提高了桃果实中PAL活性,且诱导总酚含量的积累,说明1-MCP通过增强酚类等植保素的积累,抑制病原菌的侵染和扩展。1-MCP处理提高了桃果实中POD、CAT和APX等抗氧化酶活性,降低了H2O2的含量,说明1-MCP不能够诱导H2O2信号分子的积累。此外,1-MCP处理对桃果实中几丁质酶和β-1,3葡聚糖酶活性没有明显影响,说明1-MCP对桃果实抗病相关酶活性也没有诱导作用。这些结果说明,1-MCP处理并不是通过提高抗病相关酶活性和增强H2O2信号分子积累的途径,提高桃果实对病原菌的抵抗能力,而是通过加强酚类物质等植保素的积累,提高抗氧化酶活性,延缓桃果实衰老,从而增强果实的抗病性。
     5.1-MCP处理对桃果实冷害的影响及其机理
     研究了不同浓度(0.1、0.5、5、10μl/L) 1-MCP处理对桃果实冷害和品质的影响,发现0.5μl/L1-MCP处理可显著抑制桃果肉褐变和粉质化的冷害症状,保持较高的TSS和TA含量,延长了桃果实的贮藏期,而高浓度(5、10μl/L) 1-MCP处理对桃果实冷害的发生没有显著影响。因此,在此基础上研究了作用效果不同的两个1-MCP浓度(0.5和10μl/L)处理对冷藏桃果实活性氧代谢和果胶代谢的的影响,以揭示不同浓度1-MCP处理对桃果实冷害调控的机理。结果显示两个浓度的1-MCP处理都可显著抑制冷藏桃果实的呼吸速率、乙烯释放和果肉软化,保持果实较高的TSS、TA和维生素C含量,说明1-MCP可延缓桃果实的后熟作用,且10μl/L1-MCP处理的效果比0.5μl/L1-MCP显著。0.5μl/L1-MCP处理显著抑制了桃果实中PPO和POD活性,降低了桃果实中相对电导率和MDA含量,延缓果实衰老。此外,0.5μl/L1-MCP处理保持果实中较高的SOD、CAT和APX等抗氧化酶活性,抑制了H2O2的积累,减轻膜脂过氧化程度,从而降低果肉褐变的发生。10μl/L1-MCP处理对PPO、POD以及抗氧化酶活性均无明显影响。0.5μl/L1-MCP处理提高了冷藏桃果实中PG活性,保持较高的PG/PME比率,能维持冷藏桃果实中PME和PG活性变化的平衡,促进了原果胶的降解,保持果实中较高的水溶性果胶含量,减少粉质化症状的发生。而10μl/L1-MCP处理却显著抑制了桃果实中PME和PG活性,使果胶物质不能正常降解,导致果肉粉质化发生。这些结果说明,1-MCP通过抑制桃果实采后呼吸速率和乙烯释放量,来延缓果实后熟进程,保持桃果实贮藏期间较高的品质。低浓度1-MCP处理减轻桃果实冷害发生,与其维持果实活性氧和果胶物质代谢的平衡有关;而高浓度1-MCP处理促进桃果实冷害发生与其抑制果胶物质正常降解的作用有关。
Peach fruit is an important fruit in China, and is very popular for its juiceful texture, delicious flavor and rich in nutrient. Peaches are matured in mid-summer, and are highly susceptible to pathogenic infection and physiological deterioration during ambient temperature storage and ripening. Low temperature storage is effectively used to control postharvest disease and inhibited ripening of peach fruit. However, chilling injury, such as internal browning and flesh mealiness, is usually found in peach fruit stored at low temperature for long time. Thus, it is crucial to study the regulation and mechanism of disease resistant and chilling injury of peach fruit after harvest for transportation and storage.In this paper, the effect of MeJA and 1-MCP on the major fungal disease, such as blue mold, gray mold and soft rot caused by Penicillium expansum, Botrytis cinerea and Rhizopus stolonifer respectively, and chilling injury in peach fruit and the possible mechanisms involved were investigated. In addition, the effects of MeJA combined with low temperature conditioning (LTC) or with hot air (HA) treatment on alleviating chilling injury in peach fruit and the possible mechanisms involved were investigated. The results were as follows:
     1 Effects of MeJA treatment on postharvest disease in peach fruit and possible mechanisms involved
     Peaches were treated with different concentrations of MeJA (1,10 or 100μmol/L) to investigate the effect of MeJA treatment on blue mold, gray mold and soft rot. We found that treatment with 1μmol/L MeJA was most effective in reducing fruit decay caused by P. expansum, B. cinerea and R. stolonifer infection, however,100μmol/L MeJA treatment had little effect. In addition, the in vitro experiment showed that MeJA inhibited mycelial growth, spore germination and germ tube length of P. expansum, B. cinerea and R. stolonifer. Thus,1μmol/L MeJA was chosen to investigate the effects of MeJA on reducing blue mold and the possible mechanisms involved in postharvest peach fruit. The MeJA-treatment enhanced the activities of chitinase,β-1,3-glucanase, phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO), and maintained the higher level of total phenolic content in peach fruit, which is considered to play important roles in disease resistance. Moreover, MeJA-treatment induced accumulation of H2O2 content due to increased superoxide dismutase (SOD) activity, decreased catalase (CAT) and ascorbate peroxidase (APX) activities in peach fruit. The level of H2O2 induced by the treatment might also be related to the higher resistance of the MeJA-treated fruit to infection by the pathogen. These results indicated that MeJA inhibited postharvest disease probably due to suppressed pathogen growth directly and enhanced the disease resistance of fruit tissues by increasing anti-pathogenic proteins and antimicrobial phenolic compounds.
     2 MeJA combined with LTC treatment alleviates chilling injury in peach fruit and possible mechanisms involved
     Peach fruits were treated with different concentrations of MeJA (1,10 or 100μmol/L) to investigate the effect of MeJA treatment on chilling injury and fruit quality. We found that treatment with 1μmol/L MeJA was most effective in reducing internal browning (IB) and flesh mealiness (FM) while maintaining higher level of TSS, TA and extractable juice in peach fruit, however,100 and 500μmol/L MeJA treatments had little effect. Thus,1μmol/L MeJA was chosen to combine with LTC treatment to investigate the effects of combination treatment on chilling tolerance and the influence on H2O2 and pectin metabolism. MeJA combined with LTC treatment alleviated chilling injury, maintained higher fruit quality in peach fruit during cold storage. The activities of PPO and POD were significantly inhibited, while the activities of antioxidant enzymes such as SOD, CAT, and APX were induced by MeJA combined with LTC treatment. In addition, the activities of PAL, polygalacturonase (PG) and the level of total phenolic content were enhanced by MeJA combined with LTC treatment. These results suggested that the effect of MeJA combined with LTC treatment on alleviating chilling injury of peaches during cold storage may be attributed to it ability to enhance defense system against cold stress, induce antioxidant system and affect the activities of pectin metabolism enzymes.
     3 MeJA combined with HA treatment alleviate chilling injury in peach fruit and possible mechanisms involved
     Peach fruits were treated with 1μmol/L MeJA combined with 38℃hot air treatment to investigate the effects of combination treatment on chilling tolerance and the influence on H2O2 and pectin metabolism. The results showed that the fruit treated with combined treatment showed the high quality and low percent of chilling injury symptom. HA treatment alone significantly inhibited IB, however, it showed more severe FM than other treatments, this side effect was counteracted by MeJA. In addition, MeJA combined with HA treatments exhibited the higher activities in PAL, SOD, CAT and PG, and showed the lower activities in PPO and POD. These results suggested that effect of MeJA combined with HA treatment on alleviating chilling injury of peaches during cold storage may be attributed to it ability to induce antioxidant system and affect the activities of pectin metabolism enzymes. The combination of MeJA and HA treatment could be a useful technique to alleviate the chilling injury and maintain fruit quality during cold storage.
     4 Effects of 1-MCP treatment on postharvest disease in peach fruit and possible mechanisms involved
     Peaches were treated with different concentrations of 1-MCP (0.1,0.5 or 5μl/L) to investigate the effect of 1-MCP treatment on blue mold, gray mold and soft rot. We found that treatment with 0.5μl/L 1-MCP was most effective in reducing fruit decay caused by P. expansum, B. cinerea and R. stolonifer infection, however,0.1 or 5μl/L 1-MCP treatments had little effect. Thus,0.5μl/L 1-MCP was chosen to investigate the effects of 1-MCP on reducing blue mold and the possible mechanisms involved in postharvest peach fruit. The results shown that 1-MCP enhanced the activities of PAL and maintained the higher level of total phenolic content, which indicated that 1-MCP reduced postharvest disease probably due to increase antimicrobial phenolic compounds. In addition,1-MCP decreased accumulation of H2O2 content due to increased CAT and APX activities in peach fruit. However, little effect was found on chitinase andβ-1,3-glucanase activities in 1-MCP treated fruits. These results indicated that 1-MCP was not enhanced disease resistance of fruit tissues by increasing anti-pathogenic proteins or regulating H2O2 signal pathway. The effect of inhibiting fruit decay was probably due to maintaining higher level of antimicrobial phenolic compounds and delaying fruit ripening and senescence.
     5 Effects of 1-MCP treatment on chilling injury in peach fruit and possible mechanisms involved
     Peaches were treated with different concentrations of 1-MCP (0.1,0.5,5 or 10μl/L) to investigate the effect of 1-MCP treatment on chilling injury and fruit quality. We found that 0.5μl L-l 1-MCP was the optimal concentration to alleviate chilling injury and maintain higher quality of peach. However, higher concentration of 1-MCP treatment had little effect. The activities of PPO and POD were significantly inhibited, while the activities of antioxidant enzymes such as SOD, CAT, and APX were induced by 0.5μl L-1 1-MCP treatment.0.5μl L-1 1-MCP enhanced the activity of PG, which made the higher ratio of PG/PME and kept the balance of pectin metabolism. These results suggested that 0.5μl L-1 1-MCP treatment had considerable effect to alleviate the chilling injury rather than high concentration of 1-MCP applied in peach fruit during cold storage. The effect of low concentration of 1-MCP treatment on alleviating chilling injury of peaches during cold storage may be attributed to it ability to induce antioxidant system and affect the activities of pectin metabolism enzymes.
引文
[1]常军,张平,王莉等.1-MCP对青州蜜桃冷藏期间某些生理指标的影响[J].植物生理学通讯,2003,39:613-615.
    [2]丁建国,陈昆松,许文平等.1-甲基环丙烯处理对美味猕猴桃果实后熟软化的影响[J].园艺学报,2003,30:277-280.
    [3]范青,田世平,徐勇等.季也蒙假丝酵母对采后桃果实软腐病的抑制效果[J].植物学报,2000a,42:1033-1038.
    [4]范青,田世平,李永兴等.枯草芽孢杆菌(B-912)对桃和油桃褐腐病的抑制效果[J].植物学报,2000b,42:1137-1143.
    [5]关军锋,彭永宏.热水处理对草莓果实贮藏品质与生理变化的影响[J].应用基础与工程科学学报,2000,814:3-147.
    [6]韩晋,田世平.外源茉莉酸甲酯对黄瓜采后冷害及生理生化的影响[J].园艺学报,2006,33:289-293.
    [7]胡美姣,高兆银,李敏等.热水和1-MCP处理对芒果贮藏效果的影响[J].果树学报,2005,22:243-246.
    [8]胡小松,丁双阳.桃采后呼吸和乙烯释放规律及多效唑的影响[J].北京农业大学学报,1993,19:53-60.
    [9]黄雪梅,张昭其,季作梁.果蔬采后诱导抗病性[J].植物学通报,2002,19:412-418.
    [10]韩涛,李丽萍,葛兴.外源水杨酸对桃果实采后生理的影响[J].园艺学报,2000,27:367-368.
    [11]蒋选利,李振岐,康振生.过氧化物酶与植物抗病性研究进展[J].西北农林科技大学学报,2001,26:124-129.
    [12]蒋选利,李振岐,康振生等.几丁质酶与植物的抗病性[J].西北农业学报,2002,11: 71-75.
    [13]蒋跃明.香蕉采后炭疽病发生与几丁酶,β-1,3-葡聚糖酶和多巴胺的关系[J].植物生理学报,1997,23:158-162.
    [14]金昌海,阚娟,王红梅.1-甲基环丙烯对桃果实成熟软化调控的影响[J].食品研究与开发,2006,27: 153-156.
    [15]李明亮,韩一凡.乙烯在植物生长发育和抗病反应中的作用及其生物合成的反义抑制[J].林业科学,2000,36:77-84.
    [16]林丽,田世平,秦国政等.两种拮抗酵母菌对桃果实贮藏期间主要病害的防治效果[J].中国农业科学,2003,36:1535-1539.
    [17]罗云波,蔡同一,生吉萍等,园艺产品贮藏加工学(贮藏篇)[M].中国农业出版社.2001
    [18]罗自生,席玛芳,楼健.热处理减轻柿果冷害与内源多胺的关系[J].中国农业科学,2003,36:
    429-432.
    [19]吕昌文,修德仁,齐灵.桃的采后生理研究及其探讨[J].天津农业科学,1993,2:14-16.
    [20]陆旺金,季作梁.热处理减轻果实贮藏冷害的分子基础[J].生命科学,1998,10:249-251.
    [21]李丽萍,黄万荣,韩涛等.间歇升温对冷藏桃果实品质的影响[J].食品科学,1999,16:55-59.
    [22]麻宝成,朱世江.苯并噻重氮和茉莉酸甲酯对采后香蕉果实抗病性及相关酶活性的影响[J].中国农业科学,2006,39:1220-1227.
    [23]马书尚,唐燕,武春林等.1-甲基环丙烯和温度对桃和油桃贮藏品质的影响[J].园艺学报,2003,30:525-529.
    [24]欧阳光察.苯丙氨酸解氨酶PAL活性的测定[M].见:薛应龙主编.植物生理学实验手册.上海:上海科技出版社,1985.191-192.
    [25]乔进勇,冯双庆,赵玉梅.热处理对黄瓜冷害及生理变化的影响[J].食品科学,2003,24:131-135.
    [26]荣瑞芬,冯双庆.短波紫外线照射采后果蔬诱导抗病性[J].中国果菜,2000,3:25-26.
    [27]苏新国,郑永华,冯磊,等.外源MeJA对菜用大豆豆荚采后衰老和腐烂的影响[J].植物生理与分子生物学学报,2003,29:52-58.
    [28]田世平,徐勇,姜爱丽.冬雪蜜桃在气调冷藏期间品质及相关酶活性的变化[J].中国农业科学,2001,34:656-661.
    [29]汪祖华,庄恩.中国果树志.桃卷.[M].中国林业出版社.2001.2
    [30]王贵禧,王友升,粱丽松.不同贮藏温度模式下大久保桃果实冷害机其品质裂变研究[J].林业科学研究,2005,18:114-119.
    [31]汪沂,田世平,徐勇等.硅窗袋处理对肥城桃果实的呼吸速率和乙烯释放速率的影响.[J].园艺学报,2000,27:331-334.
    [32]王妮妍,蒋德安.茉莉酸及其甲酯与植物诱导抗病性[J].植物生理学通讯,2002,38:279-284
    [33]王阳光,茅林春,陆胜明.热处理对桃果实的酶活性变化及膜脂肪酸的影响[J].食品科学,2001,22:72-74.
    [34]吴光斌,陈发河,张其标等.热激处理对冷藏枇杷果实冷害的生理作用[J].植物资源与环境学报,2004,13:1-5.
    [35]肖红梅,王薛修.钙处理对桃采后生理和贮藏品质的影响[J].南京农业大学学报,1996,19:122-129.
    [36]颜志梅,蔺经,盛宝龙等.1-MCP处理对梨常温贮藏效果的影响[J].江苏农业学报,2004,20:189-193.
    [37]杨虎清,王允祥,庞林江等,1-MCP对不同成熟度白凤桃冷害发生的影响[J].果树学报,2008,25:111-114.
    [38]于建娜,任小林,张少颖.1-MCP处理对桃冷藏期品质和生理特性的影响[J].西北农林科技大学学报2003,31:101-104.
    [39]杨剑平,郝玉兰,韩涛.钙和热加钙处理对桃冷藏期间过氧化氢清除系统的作用[J].北京农学院学报,1996,11:34-39.
    [40]颜志梅,蔺经,盛宝龙等.1-MCP处理对梨常温贮藏效果的影响[J].江苏农业学报,2004,20: 189-193.
    [41]张俊环,黄卫东.热预处理诱导京秀葡萄果实低温耐性与小分子热激蛋白sHSP17.6合成的关系[J].华北农学报,2006,21:1-5.
    [42]张维一,毕阳.果蔬采后病害与控制[M].中国农业出版社.1996
    [43]周涛,许时婴,王璋等.热激处理及贮藏温度对水蜜桃果实生理生化变化的影响[J].中国南方果树,2003,32:39-44.
    [44]郑永华,李三玉,席玛芳,等.多胺与枇杷果实冷害的关系[J].植物学报,2000a,42:824-827.
    [45]郑永华,苏新国,易云波.SO2对枇杷冷藏效果的影响[J].南京农业大学学报,2000b,23:89-92.
    [46]赵晓芳,粱丽松,王贵禧.不同采收成熟度对‘八月脆’桃果实低温贮运及货架期品质的影响[J].中国农学通报,2008,24:167-171.
    [47]Abdi N, McGlasson WB, Holford P, et al. Response of climacteric and suppressed-climacteric plums to treatment with propylene and 1-mythylcycliopropene [J]. Postharvest Biol. Techol.,1998, 14:29-39.
    [48]Abeles FB, Bosshart RP, Forrence LE et al. Preparation and purification of glucanase and chitinase from bean leaves [J]. Plant Physiol.1971,47:129-134.
    [49]Arakawa N, Tsutsumi K, Sanceda NG, et al. A rapid and sensitive method for the determination of ascorbic acid using 4,7-Diphenyl-1,10-phenanthroline [J]. Agric. Biol. Chem.1981,45:1289-1290.
    [50]Arras G, Cicco VD, Arru S, et al. Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of Pichia guilliermondii [J]. J Hort. Sci. Biotechnol.,1998,73:413-418.
    [51]Artes F, Cano A, Fernandaez-Trujillo JP. Pecolytic enzyme activity during intermittent warming storage of peaches [J]. J. Food Sci.,1996,61:311-313.
    [52]Barmore CR, Brown GE. Influence of ethylene on increased suspectibility of oranges to Diplodia natalensis [J]. Plant Dis.,1985,47:2847-2853.
    [53]Ben-Yehoshua S, Rodov V, Peretz J. Constitutive and induced resistance of citrus fruit against pathogens [J]. ACIAR Proc.,1998,80:78-92.
    [54]Bi Y, Tian SP, Zhao J, et al. Harpin induces local and systemic resistance against Trichothecium roseum in harvested Hami melons [J]. Postharvest Biol. Technol.,2005,38:183-187.
    [55]Blankenship SM, Dole JM.1-Methylcyclopropene:a review [J]. Postharvest Biol. Technol.,2003,
    28:1-25.
    [56]Bower JH, Biasi WV, Mitcham EJ. Effects of ethylene and 1-MCP on the quality and storage life of strawberries [J]. Postharvest Biol. Technol.,2003,28:417-423.
    [57]Bregoli AM, Ziosi V, Biondi S, et al. Postharvest 1-methylcyclopropene app-lication in ripening control of'Stark Red Gold'nectarines:temperature-dependent effects on ethylene production and biosynthetic gene expression, fruit quality, and polyamine levels [J]. Postharvest Biol. Technol., 2005,37:111-121.
    [58]Brummell DA, Dal Cin V, Crisoto CH., et al. Cell wall metabolism during the development of chilling injury in cold-stored peach fruit:association of mealiness with arrested disassembly of cell wall pectin [J]. J. Exp. Bot.2004,55:2041-2052.
    [59]Budde CO, Polenta G, Lucangeli CD, et al. Air and immersion heat treatments affect ethylene production and organoleptic quality of'Dixiland'peach [J]. Postharvest Biol. Technol.2006,41: 32-37.
    [60]Buescher RW, Furmansk RJ. Role of pectinesterase and polygalacuronase in the formation of woolliness in peaches [J]. J. Food Sci.,1978,43:264-266.
    [61]Buta JG, Moline HE. Methyl jasmonate extends shelf life and reduces microbial contamination of fresh-cut celery and peppers [J]. J. Agric. Food Chem.,1998,46:1253-1256.
    [62]Cadeville G, Beer SV, Christopher D, et al. Pre-and Post-harvest harpin treatments of apples induce resistance to blue mold [J]. Plant Dis.,2003,1:39-44.
    [63]Cai C, Chen KS, Xu WP, et al. Effect of 1-MCP on postharvest quality of loquat fruit [J]. Postharvest Biol.Technol.,2006,40:155-162.
    [64]Cao SF, Zheng YH, Yang ZF, et al. Effect of methyl jasmonate on inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms [J]. Postharv Biol. Technol.,2008, 49:301-307.
    [65]Cao SF, Zheng YH, Wang KT, et al. Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit [J]. Food Chem.,2009,15,1458-1463. Chan HT. Alleviation of chilling injury in papaya. Hort. Sci.1998,23:868-870.
    [66]Chan ZL, Tian SP. Induction of H2O2-metabolizing enzymes and total protein synthesis by antagonistic yeast and salicylic acid in harvested sweet cherry fruit [J]. Postharvest Biol. Technol., 2006,39:314-320.
    [67]Change B, Maehly AC. Assay of catalases and peroxidase [J]. Meth Enzymol.,1955,2:764-775.
    [68]Chanjirakul K, Wang SY, Wang CY, et al. Effects of natural volatile compounds on antioxidant capacity and antioxidant enzymes in raspberries [J]. Postharvest Biol. Technol.,2006,40:106-115.
    [69]Conways WS, Leverentz B, Janisiewiczw WJ, et al. Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit [J]. Postharvest Biol. Technol.2005,36:235-244.
    [70]Dawson DM, Melton LD, Watkins CB. Cell wall changes in nectarines (Prunus persica): solubilization and depolymerization of pectin and neutral polymers during ripening and in mealy fruit [J]. Plant Physiol.,1992,100:1203-1210.
    [71]De-Capdeville G, Beer, SB, Wilson CL, et al. Alternative disease control agents induce resistance to blue mold in harvested Red Delicious apple fruit [J]. Phytopathol.2002,92:900-908.
    [72]Ding CK, Wang CY, Gross KC, et al. Reduction of chilling injury and transcript accumulation of heat shock protein genes in tomatoes by MeJA and MeSA [J]. Plant Sci.,2001,161:1153-1159.
    [73]Ding CK, Wang CY, Gross KC, et al. Jasmonate and Salicylate induce the expression of pathogenesis-related-proteins genes and increase resistance to chilling injury in tomato fruits [J]. Planta,2002,214:895-901.
    [74]Dixon RA, Harrison MJ. Activation and organization of genes involved in microbial defence in plants [J]. Adv. Genet.,1990,28:165-234.
    [75]Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism [J]. Plant Cell,1995, 7:1085-1097.
    [76]Dong L, Zhou HW, Sonego L, et al. Ethylene involvement in the cold storage disorder of'Flavorop' nectarine [J]. Postharvest Biol Technol.,2001,23:105-115.
    [77]Dong L, Lurie S, Zhou HW. Effect of 1-methylcyclopropene on ripening of'Canino'apricots and 'Royal Zee'plums [J]. Postharvest Biol. Technol.,2002,24:35-45.
    [78]Dou H, Jones S, Ritenour M. Influence of 1-MCP application and concentration on postharvest peel disorders and incidence of decay in citrus fruit [J]. J. Hortic. Sci. Biotechnol.,2005,80:786-792.
    [79]Droby S, Porat R, Cohen L, et al. Suppressinig green mold decay in grapefruit with postharvest jasmonate application [J]. J. Amer. Soc. Hort. Sci,1999,124:184-188.
    [80]EI-Kazzaz MK, Sommer NF, Fortlage RJ. Effect of different atmospheres on postharvest decay and quality of fresh strawberries [J]. Phytopathol.,1983,73:282-285.
    [81]Ella L, Zion A, Nehemia A, et al. Effect of the ethylene action inhibitor 1-methylcyclopropene on parsley leaf senescence and ethylene biosynthesis [J]. Postharvest Biol. Technol.,2003,30:67-74.
    [82]Fallik E, Gaffney JJ, Sharp JL. Heat treatment temporarily inhibits aroma volatile compound emission from'Golden Delicious'apple [J]. J. Agric. Food Chem.,1997,45:4038-4041.
    [83]Fallik E, Prestorage hot water treatment (immersion rising and brushing) [J]. Posthavest Biol. Technol.2004,32:125-134.
    [84]Fan X, Mettheis JP, Fellman JK, et al. Effect of methyl jasmonate on ethylene and volatile production by summerred apples depends on fruit developmental stage [J]. J. Agric. Food Chem., 1997,45:208-211.
    [85]Fan X.T, et al.1-Methycyclopropene inhibits apple ripening [J]. J.Am.Soc.Hort.Sci.,1999,124: 690-695.
    [86]Feng L, Zheng YH, Zhang YF, et al. Methyl jasmonate reduces chilling injury and maintains postharvest quality in peaches [J]. Agr. Sci. China,2000,11:1246-1252.
    [87]Fernandez-Trujillo JP, Martinez JA, Artes F. Modified atmosphere pack affect the incidence of cold storage disorder and keep'flat'peach quality [J]. Food Res. Intl.1998,31,571-579.
    [88]Fung RWM, Wang CY, Smith DL, et al. MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers(Capsicum annuum L.) [J]. Plant Sci.,2004,166:711-719.
    [89]Ghasemnezhad M, Marsh K, Shilton R, et al. Effect of hot water treatments on chilling injury and heat damage in'satsuma'mandarins:Antioxidant enzymes and vacuolar ATPase, and pyrophosphatase. [J]. Posthavest Biol. Technol.2008,48:364-371.
    [90]Golding JB, Shearer D, Wyllie SG, et al. Application of 1-MCP and propylene to identify-ethylene dependent ripening process in mature banana fruit [J]. Postharvest Biol. Technol.,1998,14:87-98.
    [91]Gonzalez-Aguilar GA, Fortiz J, Wang CY. Methyl jasmonate reduces chilling injury and maintains postharvest quality of mango fruit [J]. J. Agric. Food Chem.,2000,48:515-519.
    [92]Gonzalez-Aguilar GA, Buta GJ, Wang CY. Methyl jasmonate and modified atmosphere packaging (MAP) reduce decay and maintain postharvest quality of papaya'Sunrise'[J]. Postharvest Biol. Technol.,2003,28:361-370.
    [93]Gonzalez-Aguilar GA, Wang CY, Buta GJ. UV-C irradiation reduces breakdown and chilling injury of peaches during cold storage [J]. J. Sci. Food Agric.,2004,84:415-422.
    [94]Gonzalez-Aguilar G A, Tizuado-Hernandoz ME, Zavaleta-Gatica R, et al. Methyl jasmonate treatments reduces chilling injury and active the defence response of guava fruits [J]. Biochem. Biophys. Res. Commun.,2004,313:694-701.
    [95]Guinevere IO, Sugaya S, Sekozawa Y, et al. Efficacy of 1-methyl cyc lopropene (1-MCP) in prolonging the shelf-life of'Rendaiji'persimmon fruits previously subjected to astringency removal treatment [J]. J. Japan. Soc. Hort. Sci.,2005,74:248-254.
    [96]Hofman PJ, Jobin-Decor M, Meiburg GF, et al. Ripening and quality responses of avocado, custard apple, mango and papaya fruit to 1-methylcyclopropene [J]. Aust. J. Exp. Agric.2001,41:567-572.
    [97]Inze D, Montagu MV. Oxidative stress in plants [J]. Curr. Opin. Biotechnol.,1995,6:153-158.
    [98]Ippolito A, Nigro F. Impact of preharvest application of biocontrol agents on postharvest diseases of fresh fruits and vegetables [J]. Crop Prot.,2000,19:723-725.
    [99]Janisiewicz WJ, Leverentz B, Conway WS, et al. Control of bitter rot and blue mold of apples by integrating heat and antagonist treatments on 1-MCP treated fruit stored under controlled atmosphere conditions [J]. Postharvest Biol. Technol.,2003,29:129-143.
    [100]Jeong J, Huber DJ, Sargent SA. Influence of 1-methylcyclopropene (1-MCP) on ripening and cell-wall matrix polysaccharides of avocado (Persea americand) fruit [J]. Postharvest Biol.Technol., 2002,25:241-256.
    [101]Jiang W, Sheng Q, Zhou X, et al. Regulation of coriander senescence by 1-methylcyclopropene and ethylene [J]. Postharvest Biol. Technol.,2002,26:339-345.
    [102]Jiang YM, Joyce DC, Terry LA.1-Methylcyclopropene treatment affects strawberry fruit decay [J]. Postharvest Biol. Technol,2001,23:227-232.
    [103]Jiang YM, Joyce DC, Terry LA.1-Methylcyclopropene treatment affects strawberry fruit decay [J]. Postharvest Biol. Technol,2001,23:227-232. Jiang YM, Duan XW, Joyce D, et al. Advances in understanding of enzymatic browning in harvested litchi fruit [J]. Food Chem.2004, 88:443-446.
    [104]Jiwon J, Donald JH, Steven A.1-methylcyclopropene (1-MCP) delays ripening and extends storage life of'simmonds'Avocado fruit [J]. Hortscience,2001,36:468-474.
    [105]Kader AA. Ethylene-induced senescence and physiological disorder in harvested horticultural crops [J]. HortSci.1985,20:54-57.
    [106]Kang HM, Saltveit ME. Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity of high-and low-vigour cucumber seeding radicles [J]. Plant Cell Environ., 2002,25:1233-1238.
    [107]Karabulut OA, Cohen L, Wiess B, et al. Control of brown rot and blue mold of peach and nectarine by short hot water brushing and yeast antagonists [J]. Postharvest Biol. Technol.2002a,24: 103-111.
    [108]Karabulut OA, Baykal N. Evaluation of the use of microwave power for the control of posthavest diseases of peaches [J]. Posthavest Biol. Technol.2002b,26:237-240.
    [109]Kochba J, Lavee S, Spiege RP. Difference in peroxidase activity and isoenzymes in embryogenic and non-embryogenic'Shamouti'orange ovular callus lines [J]. Plant Cell Physiol., 1997,18:463-467.
    [110]Ku VVV, Wills RBH, Ben-Yehoshua S.1-methylcyclopropene can differentially affect the postharvest life of strawberries exposed to ethylene [J]. Hortscience,1999,34:119-120.
    [111]Larrigaudiere C, Vilaplana R, Soria Y, et al. Oxidative behaviour of Blanquilla pears treated with 1-methylcyclopropene during cold storage [J]. J. Sci. Food Chem.,2004,84:1871-1877.
    [112]Leverentz B, Janisiewiczw WJ, Conways WS, et al. Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of Gala apple [J]. Postharvest Biol. Technol. 2000,21:87-94.
    [113]Liu HX, Jiang WB, Bi Y, et al. Postharvest BTH treatment induces resistance of peach(Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms [J]. Postharvest Biol. Technol.,2005a,35:263-269.
    [114]Liu HX, Jiang WB, Zhou LG, et al. The effects of 1-methylcyclopropene on peach fruit (Prunus persica L. cv. Jiubao) ripening and disease resistance [J]. Int. J. Food Sci. Tech.,2005b,40: 1-7.
    [115]Lockhart CL, Forsyth FR, Eaves CA. Effect of ethylene on development of Gloeosporium album in apple and on growth of the fungus in culture [J]. Can. J. Plant Sci.,1968,48:557-559.
    [116]Luo Z. Effect of 1-methylcyclopropene on ripening of postharvest persimmon (Diospyros kaki L.) fruit [J]. LWT-Food Sci. Technol,2007,40:285-291.
    [117]Lurie S, Levin A, Greve C, et al. Pectin polymer changes in nectarines during normal and abnormal ripening [J]. Phytochemistry,1994,36:11-17.
    [118]Lurie S, Fallik E, Handros A, et al. The possible involvement of peroxidase in resisttance to B.cinerea in heat treated tomato fruit [J]. Physiol.Mol.Plant Pathol.,1997,50:141-149.
    [119]Lurie S. Postharvest heat treatments of horticultural crops [J]. Hort.Rev.,1998,22:91-121.
    [120]Lyons JM. Chilling injury in plants [J]. Ann. Rev. Plant Physiol.,1973,20:423-446.
    [121]Lydakis D, Aked J. Vapour heat treatment of Sultanina table grapes I. Control of Botrytis cinerea [J]. Postharvest Biol.Technol.,2003,27:109-116.
    [122]Malakou A, Nanos GD. A combination of hot water treatment and modified atmosphere packaging maintains quality of advanced maturity'Caldesi 2000'nectarines and'Royal Glory' peaches [J]. Posthavest Biol. Technol.2005,38:106-114.
    [123]Marcos JF, Gonzalez-Candelas L, Zacarias L. Involvement of ethylene biosynthesis and perception in the susceptibility of citrus fruits to Penicillium digitatum infection and the accumulation of defence-related mRNAs [J]. J. Exp. Bot.,2005,56:2183-2193.
    [124]Mathooko FM, Tsunashima Y, Owino WZO, et al., Regulation of genes encoding ethylene biosynthetic enzymes in peach fruit by carbon dioxide and 1-methylcyclopropene [J]. Postharvest Biol. Technol.,2001,21:265-281.
    [125]Menniti AM, Gregori R, Donati I.1-methylcyclopropene retards postharvest softening of plums [J]. Postharvest Biol. Technol.,2004,31:269-275.
    [126]Mercier J, Roussel D, Charles MT, et al. Systemic and local responses associated with UV-induced and pathogen induced resistance to Botrytis cinerea in stored carrot [J]. Phytopathol., 2000,90:981-986.
    [127]Mercier J, Baka M, Reddy B, et al. Shortwave ultraviolet irradiation for control of decay by Botrytis cinerea in bell pepper:induced resistance and germicidal effects [J]. J. Am. Soc. Hort. Sci. 2001,126:128-133.
    [128]Meir S, Philosoph HS, Lurie S, et al. Reduction of chilling injury in stored avocado, grapefruit and bell pepper by methyl jasmonate [J]. Can. J. Bot.1996,74:870-874.
    [129]Milosevic N, Slusarenko AJ. Active oxygen metabolism and lignification in the hypersensitive response in bean [J]. Physiol. Mol. Plant Pathol.,1996,49:143-158.
    [130]Mohammadi M, Kazemi H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance [J]. Plant Sci.,2002,162:491-498.
    [131]Moline HE, Buta JG, Saftner RA, et al. Comparison of three volatile natural products for the reduction of postharvest decay in strawberries [J]. Adv. Strawberries Res.,1997,16:43-48.
    [132]Murr DP, Morris LL. Influence of O2 and CO2 on o-diphenol oxidase activity in mushrooms [J]. J. Amer. Soc. Hort. Sci.,1974,99:155-158.
    [133]Murray R, Lucangeli C, Polenta G., et al. and Budde, C. Combined pre-storage heat treatment and controlled atmosphere storage reduced internal breakdown of'Flavorcrest'peach [J]. Posthavest Biol. Technol.2007,44:116-121.
    [134]Mullins ED, McCollum TG, McDonald RE. Consequences on ethylene metabolism of inactivating the ethylene receptor sites in diseased non-climacteric fruit [J]. Postharvest Biol. Technol.,2000,19:155-164.
    [135]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascrobate specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol.,1989,22:867-880.
    [136]Nakatsuka A, Shiomi S, Kubo Y. Expression and internal feedback regulation of ACC synthase and ACCoxidase genes in ripening tomato fruit [J]. Plant Cell Physiol.,1997,38:1103-1110.
    [137]Nakatsuka A, Murachi S, Okunishi H, et al. Differential expression and internal feedback regulation of 1-aminocyclopropane-l-carboxylate synthase,1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening [J]. Plant Physiol.,1998,118:1295-1305.
    [138]Nigro F, Ippolito A, Lattanzio V, et al. Effects of ultraviolet-C light on postharvest decay of
    strawberry [J]. J. Plant Pathol.2000,82:29-37.
    [139]Padda MS, Picha DH. Effece of low temperature storage on phenolic composition and antioxidant activity of sweetpotatoes [J]. Postharvest Biol. Technol.2007,44:116-121.
    [140]Pan J, Vicente AR, Martinez, et al. Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry [J]. J. Sci. Food Agric.2004,84:1831-1838.
    [141]Patterson BD, Mackae EA, Ferguson IB. Estimation of hydrogen peroxide in plant extracts using titanium [J]. Anal. Biochem.,1984,139:487-/492.
    [142]Perez AG, Sanz LC, Olias R, et al. Effect of Methyl jasmonate on 'in vitro'strawberry ripening [J]. J. Agric. Food Chem.,2000,45:3733-3737.
    [143]Pesis E, Ackerman M, Ben-Aire R, et al. Ethylene involvement in chilling injury symptoms of avocado during cold storage [J]. Postharvest Biol. Technol.,2002,24:171-181.
    [144]Poole PR, McLeod LC, Whitmore KJ, et al. Preharvest control of Botrytis cinerea rots in stored kiwifruit [J].Acta Hort.,1998,464:71-76.
    [145]Porat R, Weiss B, Cohen L, et al. Effects of ethylene and 1-methylcyclopropene on the postharvest qulaties of'Shamouti'oranges [J]. Postharvest Biol. Technol.,1999,15:155-163.
    [146]Pre-Aymard C, Weksler A, Lurie S. Responses of'Anna', a rapidly ripening summer apple, to 1-methylcyclopropene [J]. Postharvest Biol. Technol.,2003,27:163-170.
    [147]Prusky D. Mechanisms of resistance of fruits and vegetables to postharvest diseases [J]. ACIAR Proc.,1998.80:19-33.
    [148]Purvis AC, Shewfelt RL, Gegogeine JW. Superoxide production by mitochondria isolated from green bell pepper fruit [J]. Physiol. Plant.,1995,94:743-749.
    [149]Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana [J]. Plant Physiol.,1996,110:125-136.
    [150]Reuck KD, Dharini Sivakumar D, Korsten L. Integrated application of 1-methylcyclopropene and modified atmosphere packaging to improve quality retention of litchi cultivars during storage [J]. Postharvest Biol. Technol.2009,52:71-77.
    [151]Rodov V, Ben-Yehoshua S, Kim JJ, et al. Ultraviolet illumination induces scoparone production in kumquat and orange fruit and improves decay resistance [J]. J. Am. Soc. Hort. Sci. 1992,117:788-792.
    [152]Sala JM, Lafuente M. Catalase enzymes activity is related to tolerance of mandarin fruits to chilling [J]. Postharvest Biol.Technol.,2000,20:81-89.
    [153]Salveit ME, Morris LL. Overview on chilling injury of horticultural crops [M]. In:Wang CY. Chilling injury of horticultural crops. USA:CRC press.1990:4-13.
    [154]Sanchez-Ballesta MT, Jimenez JB, Romero I, et al. Effect of high CO2 pretreatment on quality, fungal decay and molecular regulation of stilbene phytoalexin biosynthesis in stored table grapes [J]. Postharvest Biol. Technol.,2006,42:209-216.
    [155]Saniewski M, Czapski J, Nowacki J. The effect of methyl jasmonate on the ethylene and 1-aminocyclopropane-l-carboxylate acid production in apple fruits [J]. Biol. Plant,1987,29: 199-203.
    [156]Sarig P, Zutkhi Y, Monjauze A, et al. Phytoalexin elicitation in grape berries and their susceptibility to Rhizopus stolonifer [J]. Physiol. Mol. Plant Pathol.,1997,50:337-347.
    [157]Sbaghi M, Jeandet P, Faivre B, et al. Development of methods using phytoalexin (resveratrol) assessment as a selection criterion to screen grapevine in vitro cultures for resistance to grey mould [J]. Euphytica,1995,86:41-47.
    [158]Schlumbaum A, Mauch F, Vogeli U, et al. Plant chitinases are potent inhibitors of fungal growth [J]. Nature 1986,324:365-367.
    [159]Selvarajah S, Bauchot AD, John P. Internal browning in cold-stored pineapples is suppressed by postharvest application of 1-methylcyclopropene [J]. Postharvest Biol. Technol.2001,23: 167-170.
    [160]Serrano M, Martinez-Romero D, Castillo S, et al. Role of calcium and heat treatments in alleviating physiological changes induced by mechanical damage in plum [J]. Postharvest Biol. Technol.2004,34:155-167.
    [161]Serek M, Sisler EC, Reid MS.1-Methylcyclopropene, a novel gaseous inhibitor of ethylene action, improves the life of fruits, cut flowers and potted plants [J]. Acta Hort.1995,394:337-345.
    [162]Slinkard K, Singleton VL. Total phenol analysis:Automation and comparison with manual methods [J]. Am. J. Enol. Vitic.,1977,28:49-55.
    [163]Stevens C, Khan VA, Lu JY, et aL. The germicidal and hormetic effects of UV-C light on reducing brown rot disease and yeast microflora of peaches [J].Crop Prot.,1998,17:75-84.
    [164]Thaler JS, Fidantsef AL, Bostock RM. Antagonsim between jasmonate-and salicylate-mediated induced plant resistance:effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato [J]. J. Chem. Ecol.,2002, 28:1131-1159.
    [165]Terry LA, Joyce DC. Suppression of grey mould on strawberry fruit with the chemical plant activator acibenzolar [J]. Pest Manag. Sci.2000,56:989-992.
    [166]Terry LA, Joyce DC. Elicitors of induced disease resistance in postharvest horticultural crops: a brief review [J]. Posthavest Biol.Technol.,2004,32:1-13.
    [167]Tian SP, Fan Q, Xu Y, et al. Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonifer [J]. Plant Pathol.,2002,51:352-358.
    [168]Torres R., Valentines MC, Usall J, et al. Possible involvement of hydrogen peroxide in the development of resistance mechanisms in'Golden Delicious'apple fruit [J]. Postharvest Biol. Technol.,2003,27:235-242.
    [169]Tsao R, Zhou T. Interaction of monoterpenoids, methyl jasmonate and Ca in controlling postharvest brown rot of sweet cherry [J]. Hort.Science.2000,35:1304-1307.
    [170]Turner JG, Ellis C, Devoto A. The jasmonate signal pathway [J]. Plant Cell.2002,14: 153-164.
    [171]Vilaplana R, et al. Antioxidant potential and peroxidative state of'Golden Smoothee'apple treated with 1-methylcyclopropene [J]. J. Amer. Soc. Hort. Sci.,2006,131:104-109.
    [172]Wang CY. Physiological and biochemical response of plant to chilling stress [J]. Hortscience, 1982,17:173-187.
    [173]Wang CY. Chilling injury of horticultural crops [M]. CRC Press, Boca Raton, FL,1990.313.
    [174]Wang CY. Approaches to reduce chilling injury of fruits and vegetables [J]. Hort Rev 1993,15: 63-95.
    [175]Wang CY. The approach of to alleviate chilling injury of furits and vegetables [J]. Hort. Rev., 1994a,16:64-93.
    [176]Wang CY, Buta JG. Methyl jasmonate reduces chilling injury in Cucurbita pepo through its regulation of abscisic acid and polyamine levels [J]. Environ. Exp. Bot.,1994b,34:427-432.
    [177]Wang CY. Effect of temperature preconditioning on catalase, peroxidase, and superoxide dismutase in chilled zucchini squash [J]. Postharvest Biol.Technol.,1995,5:67-76.
    [178]Wang CY. Temperature preconditioning affects ascorbate antioxidant system in chilled zucchini squash [J]. Postharvest Biol.Technol.,1996,8:29-36.
    [179]Wang CY. Methyl jasmonate inhibits postharvest sprouting and improve storage quality of radishes [J]. Postharvest Biol. Technol.,1998,14:179-183.
    [180]Wang CY, Buta JG. Methyl jasmonate improves quality of stored zucchini squash [J]. J. Food Qual.,1999,22:663-670.
    [181]Wang LJ, Chen SJ, Kong WF et al. Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage [J]. Postharvest Biol.Technol.,2006,41:244-251.
    [182]Wang SY, Bowman L, Ding M. Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells [J]. Food Chem.2008,107:1261-1269.
    [183]Watanable K, Kamo T, Hyodo H. Effect of methyl jasmonate on senescence of broccoli florets [J]. J. Jap. Soc. Hort. Sci.2000,69:605-610.
    [184]Wasternack, C. Jasmonates:An update on biosynthesis, signal transduction and action in plant stress responses, growth and development [J]. Ann. Bot.2007,100:681-697.
    [185]Wei ZM, Laby RT, Zumoff CH. et al. Harpin,elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Sci.,1992,257:85-88.
    [186]Wills RBH, Ku VVV. Use of 1-MCP to extend the time to ripen of green tomatoes and postharvest life of ripe tomatoes [J]. Postharvest Biol. Technol.,2002,26:85-90.
    [187]Wisniewski ME, Wilson CL. Biological control of postharvest diseases of fruits and vegetables: recent advances [J]. Hortscience,1992,27,94-98.
    [188]Woolf AB, Cox KA, White A, et al. Low temperature conditioning treatments reduce external chilling injury of'Hass'avocados [J]. Postharvest Biol. Technol.2003,28:85-90.
    [189]Yao HJ, Tian SP. Effects of pre-and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of cherry fruit in storage [J]. Postharvest Biol. Technol. 2005a.35:253-262.
    [190]Yao HJ, Tian SP. Effects of a biocontrol agent and methyl jasmonate on postharvest disease of peach fruit and the possible mechanism involved [J]. J. Appl. Micorbiol.2005b,98:941-950.
    [191]Zainuri D, Joyce DC, Wearing AH, et al. Effects of phosphonate and salicylic acid treatments on anthracnose disease development and ripening of'Kensington Pride'mango fruit [J]. Aust. J. Exp. Agric.2001,41:805-813.
    [192]Zeng KF, Cao JK, Jiang WB. Enhancing disease resistance in harvested mango (Mangifera indica L.cv.'Matisu') fruit by salicylic acid [J]. J. Sci. Food Agric.2006,86:694-698.
    [193]Zhang FS, Wang XQ, Ma SJ, et al. Effects of methyl jasmonate on postharvest decay in strawberry fruit and the possible mechanisms involved [J]. Acta Hort.,2006,712:693-698.
    [194]Zhang HY, Zheng XD, Yu T. Biology control of postharvest diseases of peach with Cryptococcus laurentii [J]. Food Control.2007,18:287-291.
    [195]Zheng XL, Tian SP, Meng XH, et al. Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature [J]. Food Chem.,2007,104:156-162.
    [196]Zhou HW, Ben-Arie R, Lurie S. Pectin esterase, polygalacturonase and gel formation in peach pectin fractions [J]. Phytochemistry.2000a,55,191-195.
    [197]Zoffoli JP, et al. Effectiveness of 1-MCP on postharvest deterioration of nectarines and peaches stored at different temperatures [J]. Acta Hort.,2002,592:567-570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700