生物多孔材料非稳态收缩及其对传热传质影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热风对流干燥生物多孔材料,伴随着水分的扩散蒸发,常常会出现体积减小,组织收缩现象。生物多孔材料体积减小、组织收缩致使材料表面与热空气之间的对流传质系数和物料内部的水分有效扩散系数减小,影响了生物多孔材料干燥水分进一步扩散和蒸发。本文针对生物多孔材料热风干燥非稳态收缩及其对传热传质的影响进行了系统研究,主要研究内容如下:
     首先,基于连续介质理论,建立了生物多孔材料干燥组织非稳态收缩递推模型,将物料干燥过程中整体体积收缩随其平均干基含水率变化的一维线性关系应用于物料各离散单元,研究了生物多孔材料干燥过程中的组织非稳态收缩问题。结果表明,物料颗粒在干燥过程中随着水分的对外扩散、介质干基含水率降低,物料组织收缩并不是由外到内同步收缩,而是先失去水分的外部先收缩,失水多的外部收缩幅度大于失水少的内部,没有失水的部位不收缩。并从数学证明和数值计算两方面验证了生物多孔材料干燥组织非稳态收缩递推模型的正确性。
     然后,基于生物多孔材料干燥过程中组织非稳态收缩,提出了生物多孔材料局部水分有效扩散系数与局部水分扩散面收缩变化的组织收缩-水分有效扩散系数模型,对生物多孔材料干燥过程中局部水分有效扩散系数的变化规律进行了研究。结果表明,干燥过程中,生物多孔材料内部局部水分扩散面收缩,局部水分有效扩散系数减小;局部水分扩散面不变,局部水分有效扩散系数不变;组织孔隙分布均匀的材料,各部分水分有效扩散系数相等。
     最后,基于生物多孔材料干燥过程中体积收缩和对流传质面减小现象,研究了物料特征尺寸、形状以及热空气温度、相对湿度、风速等对干燥特性的影响。结果表明,整个物料干燥过程应划分为外部干燥条件控制的第一干燥阶段和物料内部水分扩散控制的第二干燥阶段。而经典干燥理论干燥过程恒速干燥阶段和降速干燥阶段的划分只是特定形状和材质的物料在一定干燥条件下才出现的干燥现象。物料外层单元水分活度能够判别物料干燥过程是处于第一干燥阶段还是第二干燥阶段,是表征物料干燥特性的唯一特征参数。而物料临界平均干基含水率不能作为物料干燥过程是处于第一干燥阶段还是第二干燥阶段的判据,不是表征物料干燥特性的特征参数。
Volume decreasing and tissue shrinking of bio-porous materials often occur accompanied with the water removal during the convective drying under the hot air. The convective mass transfer coefficient between the surface of the material and the hot air and the water diffusion coefficient will decrease with the decrease of the volume and tissue shrinkage. And these will affect water further diffusing from the internal to the external and evaporating from the surface of the material to the hot air. The transient tissue shrinkage of bio-porous material under convective drying and its effect on the heat and mass transfer were explored in this dissertation.
     Firstly, a transient shrinkage recursion model was proposed for bio-porous material on the base of the continuous media theory and the relationship between the shrinking volume and average moisture content of the particles. The validity of the proposed model was also tested by mathematical reasoning and numerical calculation. The problem of the transient tissue shrinkage was studied based on this model. As suggested in the result, the external of the bio-porous material firstly appeared contraction due to the water loss, rather than synchronous contraction from the outside to the inside with the wet sub-external migration and the humidity's decrease during the drying process. There was no shrinkage of the parts without loss water. Furthermore, the external shrinked more greatly than the internal due to more water loss in the external.
     Secondly, a model of tissue shrinkage-water effective diffusion coefficient was also proposed for the relation between the local water effective diffusion coefficient and the change of the local diffusion area based on the transient tissue shrinkage of the bio-porous material. The changing mechanism of the local water effective diffusion coefficient of the bio-porous material was investigated based on the model proposed. The results showed that the local water effective diffusion coefficient decreased with the shrinkage of the area of the water diffusion. And the local water effective diffusion coefficient didn't change if the area of the local water diffusion remained constant. Furthermore, the local water effective diffusion coefficients were equal due to the uniform of the porosity in the bio-porous media.
     Finally, the effects of the characteristic dimension and the shape of the bio-porous material, and the effects of the temperature, the relative humidity and the velocity of the hot air on the characteristics of the drying were explored based on the shrinkage of the volume and the decrease of the convective mass transfer area between the material and the hot air. The results showed that the whole drying process should be divided into the first drying process controlled by the external drying condition and the second drying process controlled by the internal water diffusion of the material, rather than the constant drying rate process and the falling drying rate process described in the classical drying theory. Furthermore, the characteristic parameter judging whether the drying process is in the first drying phase or in the second drying phase was the external element's water activity rather than the critical average moisture content.
引文
[1]Japan Statistics Bureau. Japan statistical year book. Government of Japan:Management and Coordination Agency,2000.
    [2]Tuley L. Swell time for dehydrated vegetables [J]. International Food Ingredients,1996, (4):23-27.
    [3]Liu L. Entry into supermarket of agricultural products after entering WTO [J]. Agricultural Products Processing,2003,6(5):4-5.
    [4]www.fas.usda.gov/htp2/circular/2000/00-07/raisin.htm. World raisin situation and outlook.
    [5]Datta A.K. Porous media approaches to studying simultaneous heat and mass transfer in food processes. I:Problem formulations [J]. Journal of Food Engineering,2007,80(1): 80-95.
    [6]Yamsaengsung R., Moreira R.G. Modeling the transport phenomena and structural changes during deep fat frying:Part 1:model development [J]. Journal of Food Engineering,2002,53(1):1-10.
    [7]Mihoubi D., Timoumi S., Zagrouba F. Modelling of convective drying of carrot slices with IR heat source [J]. Chemical Engineering and Processing,2009,48(3):808-815.
    [8]Wu L., Orikasa T., Ogawa Y, etal. Vacuum drying characteristics of eggplants [J]. Journal of Food Engineering,2007,83(3):422-429.
    [9]Kilpatrick P.W., Lowe E., Van Arsdel W.B. Tunnel dehydrators for fruit and vegetables [M], Advances in Food Research, vol.6, New York:Academic Press,1955.
    [10]Suzuki K., Kubuta K., Hazegawa T., etal. Shrinkage in dehydration of root vegetables [J]. Journal of Food Science,1976,41(5):1189-1193.
    [11]Hashemi G., Mowla D., Kazemeini M. Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating [J]. Journal of Food Engineering,2009,92(3):331-338.
    [12]Lozano J.E., Rotstein E., Urbicain M.J. Shrinkage, porosity and bulk density of foodstuffs at changing moisture contents [J]. Journal of Food Science,1983,48(6): 1497-1502,1553.
    [13]Lozano J.E., Urbicain M.J., Rotstein E. Total porosity and open-pore porosity in the drying of fruits [J]. Journal of Food Science,1980,45(6):1403-1407.
    [14]McMinn W.A.M., Magee T.R.A. Physical characteristics of dehydrated potatoes——Part Ⅰ [J], Journal of Food Engineering,1997,3(1-2):37-48.
    [15]McMinn W.A.M., Magee T.R.A. Physical characteristics of dehydrated potatoes——Part Ⅱ [J], Journal of Food Engineering,1997,3(1-2):49-55.
    [16]Ratti C. Shrinkage during drying of foodstuffs [J]. Journal of Food Engineering,1994, 23(1):91-105.
    [17]Brennan J.G., Butters J.R., Cowell N.D., etal. Food Engineering Operations, New York, Elaevier Applied Science,1990.
    [18]Madamba P.S., Driscoll R.H., Buckle K.A. Shrinkage, density and porosity of garlic during drying [J]. Journal of Food Engineering,1994,23(3):309-319.
    [19]Zogzas N.P., Maroulis Z.B., Marinos-Kouris D. Densities, shrinkage and porosity of some vegetables during air drying [J]. Drying Technology,1994,12(7):1653-1666.
    [20]Wang N., Brennan J.G. Changes in structure, density and porosity of potato during dehydration [J]. Journal of Food Engineering,1995,24(1):61-76.
    [21]Hatamipour M.S., Mowla D. Drying behaviour of maize and green peas immersed in fluidized bed of inert energy carrier particles [J]. Food and Bio-products Processing, 2006,84(3):220-226.
    [22]Hatamipour M.S., Mowla D. Correlations for shrinkage, density and diffusivity for drying of maize and green peas in a fluidized bed with energy carrier [J]. Journal of Food Engineering,2003,59(2-3):221-227.
    [23]Hatamipour M.S., Mowla D. Shrinkage of carrots during drying in an inert medium fluidized bed [J]. Journal of Food Engineering,2002,55(3):247-252.
    [24]Saravacos G.D., Charm S.E. A study of the mechanism of fruit and vegetable dehydration [J]. Food Technology,1962,16(1):78-81.
    [25]Perez M.G.R., Calvelo A. Modelling the thermal conductivity of cooked meat [J]. Journal of Food Science,1984,49(1):152-156.
    [26]Talla A., Puiggali J.-R., Jomaa W., Jannot Y. Shrinkage and density evolution during of tropical fruits:application to banana [J]. Journal of Food Engineering,2004,64(1): 103-109.
    [27]Demirel D., Turhan M.. Air-drying behavior of dwarf Cavendish and gros michel banana slices [J]. Journal of Food Engineering,2003,59(1):1-11.
    [28]Bialobrzewski I. Simulation of changes in the density of an apple slab during drying [J]. International Communications in Heat and Mass Transfer,2006,33(7):880-888.
    [29]Bialobrzewski I., Zielinska M., Mujumdar A.S., etal. Heat and mass transfer during drying of a bed of shrinkage particles simulation for carrot cubes dried in a spout-fluidized-bed drier [J]. International Journal of Heat and Mass Transfer,2008, 51(19-20):4704-4716.
    [30]张京平,刘汾阳,彭争.干燥过程中球形果蔬边界的收缩方程[J].农业机械学报,2005,36(9):71-74,78.
    [31]张京平,彭争,邵珍华.果蔬边界收缩方程的探讨[J].农业工程学报,2002,18(6):,141-143.
    [32]Gorling P. Physical phenomena during the drying of foodstuffs [C]. In Proceeding 1958 Conference on Fundamental Aspects of Dehydration in Foodstuffs, Society of Chemistry Industry,1958.
    [33]Keey R.B. Drying-Principles and Practice [M]. New York, Pergamon Press,1972.
    [34]Jason A.C. A study of evaporation and diffusion processes in the drying of fish muscle [C]. In Proceeding 1958 Conference on Fundamental Aspects of Dehydration in Foodstuffs, Society of Chemistry Industry, pp.1958.
    [35]Balaban M., Pigott G.M. Mathematical model of simultaneous heat and mass transfer in food with dimensional changes and variable transport properties [J]. Journal of Food Science,1988,53(3):935-939.
    [36]Rahman M.S., Potluri P.L. Shrinkage and density of squid flesh during air drying [J]. Journal of Food Engineering,1990,(12):133-143.
    [37]徐娓,丁静,赵义等.多孔物料干燥中物料体积的收缩特性[J].华南理工大学学报(自然科学版)2006,34(8):61-65.
    [38]曾绍校,梁静,郑宝东,赵扬帆,林鸳缘.不同干燥工艺对莲子品质的影响[J].农 业工程学报,2007,23(5):227-231.
    [39]Hofsetz K., Lopes C.C., Hubinger M.D., etal. Changes in the physical properties of bananas on applying HTST pulse during air-drying [J]. Journal of Food Engineering, 2007,83(4):531-540.
    [40]Tsuruta T., Hayashi T. Internal resistance to water mobility in seafood during warm air drying and microwave-vacuum drying [J]. Drying Technology,2007,25(7/8): 1393-1399.
    [41]Banu K., Ismail E., Figen K.E.. Modelling bulk density, porosity and shrinkage of quince during drying:the effect of drying method [J]. Journal of Food Engineering, 2008,85(3):340-349.
    [42]宋洪波,毛志怀.干燥方法对植物产品的物理特性影响的研究进展[J].农业机械学报,2005,36(6):117-121.
    [43]www.21cnlab.com/shiji/cidian/2007-11-25/9029.html
    [44]Karathanos V.T., Villalobos G., Saravacos G.D. Comparison of two methods of estimation of effective diffusivity from drying data [J]. Journal of Food Science,1990, 55(1):218-223.
    [45]Hassini L., Azzouz S., Peczalski R., etal. Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage [J]. Journal of Food Engineering,2007,79(1):47-56.
    [46]Ibrahim D. Convective air-drying characteristics of thin layer carrots [J]. Journal of Food Engineering,2004,61(3):359-364.
    [47]Zielinska M., Markowski M. Air drying characteristics and moisture diffusivity of carrots [J]. Chemical Engineering and Processing:Process and Intensification,2010, 49(2):212-218.
    [48]Rajkumar P., Kulanthaisami S., Raghavan G.S.V., etal. Drying kinetics of tomato slices in vacuum assisted solar and open sun drying methods [J]. Drying Technology,2007, 25(7/8):1349-1357.
    [49]Carolina C.G., Maria A.M., Mieko K. Kinetics of osmotic dehydration and air-drying of pumpkins (cucurbita moschata) [J]. Journal of Food Engineering,2007,82(3): 284-291.
    [50]Fish B.P. Diffusion and thermodynamic of water in potato starch gel [C]. Proceeding 1958 Conference on Fundamental Aspects of Dehydration in Foodstuffs, Society of Chemical Industry,1958.
    [51]Ketelaars A.A.J., Pel L., Coumans W.J., Kerkhof P.J.A.M. Drying kinetics:a comparison of diffusion coefficients from moisture concentration profiles and drying curves [J]. Chemical Engineering Science,1995,50(7):1187-1191.
    [52]Garau M.C., Simal S., Femenia A., etal. Drying of orange skin:drying kinetics modeling and functional properties [J]. Journal of Food Engineering,2006,75(2): 288-295.
    [53]Ramesh M.N. Moisture transfer properties of cooked rice during drying [J]. Lebensm.-Wiss. U.-Technol.,2003,36(2):245-255.
    [54]杨俊红,焦士龙,郭锦棠等.菜豆种子薄层干燥物料内部水分扩散系数的确定[J].工程热物理学报,2001,22(2):211-214.
    [55]Oon-Doo B., Michele M. Modeling the moisture diffusivity in a baking cake [J]. Journal of Food Engineering,2003,56(1):27-36.
    [56]McMinn W.A.M., Magee T.R.A. Diffusional analysis during air drying of a starch system [J]. Development of Chemical Engineering Mineral Processing,1997, 5(1-2):61-77.
    [57]Medeiros G.L., Sereno A.M. Physical and transport properties of peas during warm air drying [J]. Journal of Food Engineering,1994,21(4):355-363.
    [58]Mohsen E., Rahmat., Mohammad A.E., Ghader R. Influence of dipping on thin-layer drying characteristics of seedless grapes [J]. Biosystems Engineering,2007,98(5): 411-421.
    [59]Agueere R.J., Gabitto J.F., Chirife J. Utilization Fick's second law for the evaluation of diffusion coefficients in food processes controlled by internal diffusion [J]. Journal of Food Science,1985,20(2):623-629.
    [60]Saravacos G.D. Effect of the drying method on the water sorption of dehydrated apple and potato [J]. Journal of Food Science,1967,32(1):81-84.
    [61]Kitic D., Viollaz P.E. Comprison of drying kinetics of soybean in thin layer and fluidized beds [J]. Journal of Food Technology,1984,19(1):399-408.
    [62]Karathanos V.T., Villalobos G., Saravacos G.D. Comparison of two methods of estimation of effective diffusivity from drying data [J]. Journal of Food Science,1990, 55(1):218-223.
    [63]Kiranoudis C.T., Maroulis Z.B., Marinos-Kouris D. Estimtion of the effective moisture diffusivity from drying data [C]. In Proceeding of International Conference on Engineering & Food, ICEF 6, Chiba, Japan,1993.
    [64]Xiong X., Narsimhan G, Okos M.R. Effect of composition and pore structure on binding energy and effective diffusivity of moisure in porous food [J]. Journal of Food Engineering,1991,15(3):187-208.
    [65]Marousis S.N., Karathanos V.T., Saravacos G.D. Effect of physical structure of starch materials on water diffusivity [J]. Journal of Food Process and Preservation,1991,15(): 183-195.
    [66]Andrieu J., Stamatopoulos A. Durum wheat pasta drying kinetics [J]. Lebensm-Wiss-Technology,1986,19(2):448-456.
    [67]Fish B.P. Diffusion and thermodynamics of water in potato starch gel [C]. Proceeding of 1958 Conference on Fundamental Aspects of Dehydration in Foodstuffs, Society of Chemical Engineering,1958, pp.24-36.
    [68]Crank J. The mathematics of Diffusion [M]. Oxford University Press, London,1975.
    [69]Saravacos G.D., Raouzeos G.S. Diffusivity of moisture in air drying of starch gels, in Engineering and Food [M]. New York, Elsevier Applied Science,1984.
    [70]Gekas V., Lamberg I. Determination of diffusion coefficients in volume-changing systems-application in the case of potato drying [J]. Journal of Food Engineering, 1991,14(4):317-326.
    [71]Sjoholm I., Gekas V. Apple shrinkage upon drying [J]. Journal of Food Engineering, 1995,25(1):123-130.
    [72]Saravacos G.D., Charm S.E. A study of the mechanism of fruit and vegetable dehydration [J]. Food Technology,1962,16(1):78-81.
    [73]Carla S., Antonietta B., Teresa D.P., etal. Combined treatment of blanching and dehydration:study on potato cubes [J]. Journal of Food Engineering,2005,68(3): 289-296.
    [74]Prakash S., Jha S.K., Datta N. Performance evaluation of blanched carrots dried by three different drier [J]. Journal of Food Engineering,2004,62(3):305-313.
    [75]Sun S.H., Marrero T.R. Experimental study of simultaneous heat and moisture transfer around single short porous cylinders during convection drying by a psychrometry method [J]. Journal of Heat and Mass Transfer,1996,39(17):3559-3565.
    [76]Piga A., Pinna I., Ozer K.B., Agabbio Mario, etal. Hot air dehydration of figs (ficus carica L.):drying kinetics and quality loss [J]. Journal of Food Science and Technology, 2004,39(7):793-799.
    [77]May B.K., Perre P. The importance of considering exchange surface area reduction to exhibit a constant drying flux period in foodstuffs [J]. Journal of Food Engineering, 2002,54(4):271-282.
    [78]Pabis S. The initial phase of convection drying of vegetables and mushrooms and the effect of shrinkage [J]. Journal of Agricultural Engineering Research,1999,72(2): 187-195.
    [79]Jaros M., Pabis S. Theoretical models for fluid bed drying of cut vegetables [J]. Biosystems Engineering,2006,93(1):45-55.
    [80]Pabis S., Jaros M. The first period of convection drying of vegetables and the effect of shape-dependent shrinkage [J]. Biosystems Engineering,2002,81(2):201-211.
    [81]Mujumdar A.S. (ed). Advances in Drying, vol 2, New York, Hemisphere Applied Science Publish,1983.
    [82]Mazza G., LeMaguer M. Dehydration of onion:some theoretical and practical considerations [J]. Journal of Food Technology,1980,15(1):181-194.
    [83]Litchfield J.B., Okos M.R. Moisture diffusivity in pasta during drying [C]. In Proceeding of Winter Meeting, ASAE Chicago, USA, ASME,1986.
    [84]Islam M.N., Flink J.M. Dehydration of potato, I:air and solar drying at low air velocities [J]. Journal of Food Technology,1982,171(1):373-385.
    [85]Diamante L.M., Munro P.A. Mathematical modeling of hot air drying of sweet potatoes [J]. International Journal of Food Science and Technology,1991,26(1): 99-109.
    [86]Ede A.J. Some physical data concerning the drying of potato strips [C]. In Proceeding 1958 Conference on Fundamental Aspects of Dehydration in Foodstuffs, Society of Chemical Industry,1958.
    [87]Mazza G., LeMaguer M. Dehydration of onion:some theoretical and practical considerations [J]. Journal of Food Technology,1980,15(3):181-194.
    [88]Rossello C., Canellas J., Simel S., etal. Simple mathematical model to predict the drying rates of potatoes [J]. Journal of Agricultural Food and Chemistry,1992, 40():2374-2378.
    [89]Mulet A., Berna A., Borras M., etal. Effect of air flow rate on carrot drying [J]. Drying Technology,1987,5(2):245-258.
    [90]Srinivasakannan C., Balasubramaniam N. An experimental and modeling Investigation on drying of ragi (eleusine corocana) in fluidized bed [J]. Drying Technology,2006, 24(12):1683-1689.
    [91]Stamatios J.s, Vassilios G. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs [J]. Journal of Food Engineering,2004,65(3):449-458.
    [92]Berna A., Rossello C., Canellas J., etal. Drying kinetics of a Majorcan seedless grape variety [C]. In Proceeding of the Seventh International Drying Symposium IDS'91, Versailles, France,1991.
    [93]Magee T.R.A., Wilkinson C.P.D. Air drying of apple slices [J]. Ireland Journal of Science and Technology,1985,9(1):115-122.
    [94]Andrieu J., Stamatopoulos A. Durum wheat pasta drying kinetics [J]. Lebensm-Wiss-Technology,1986,19(2):448-456.
    [95]McMinn W.A.M., Magee T.R.A. Moisture transport in starch gels during convective drying [J]. Trans IChemE, Food Bioprod proc,1996,74(C1):3-12.
    [96]King C.J. Rates of moisture sorption and desorption in porous, dried foodstuffs [J]. Food Technology,1968,22(3):509-515.
    [97]Saravacos G.D., Charm S.E. A study of the mechanism of fruit and vegetable dehydration [J]. Food Technology,1962,16(1):78-81.
    [98]Riva M., Peri C. Kinetics of sun and air drying of different varieties of seedless grapes [J]. Journal of Food Technology,1986,21(1):199-208.
    [99]Jayaraman K.S., Das Gupta D.K. Dehydration of fruits and vegetables-recent developments in principles and techniquew [J]. Drying Technology,1992,10(1):1-50.
    [100]Tsami E., Krokida M.K., Drouzas A.E.Effect of drying method on the sorption characteristics of model fruit powders [J]. Journal of Food Engineering,1998,38(4): 381-392.
    [101]张慜,王成芝,崔成东等.高含水率刀豆、茄子和青椒的等温吸附规律[J].农业机械学报,1992,23(4):36-41.
    [102]王剑平,盖玲,许春林等.谷物等温解吸和吸湿平衡规律的快速测量[J].浙江农业大学学报,1996,22(3):316-320.
    [103]李彦坡,麻成金,黄群等.鸡蛋粉等温吸附特性研究[J].现代食品科技,2007,23(9):24-28.
    [104]Arslan N., Togrul H. Modeling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach [J]. Journal of Food Engineering,2005,69(2):133-145.
    [105]Ayranci E., Duman O.. Moisture sorption isotherms of cowpeas (vigna unquicalata L.walp) and its protein isolate at 10,20,30℃ [J]. Journal of Food Engineering,2005, 70(1):83-91.
    [106]Moreira R., Chenlo F., Torres M.D. Simplified algorithm for the prediction of water sorption isotherms of fruits, vegetables and legumes based upon chemical composition [J]. Journal of Food Engineering,2009,94(3-4):334-343.
    [107]Vazquez G., Chenlo F., Moreira R. Sorption isotherms of lupine at different temperatures [J]. Journal of Food Engineering,2003,60(4):449-452.
    [108]Moreira R., Chenlo F., Vazquez M.J., etal. Sorption isotherms of turnip top leaves and stems in the temperature range from 298 to 328 K [J]. Journal of Food Engineering, 2005,71(2):193-199.
    [109]Arslan N., Togrul H. The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity [J]. Journal of Stored Products Research,2006,42(2):112-135.
    [110]Moreira R., Chenlo F., Torres M.D., etal. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruit [J]. Journal of Food Engineering,2008, 88(4):514-521.
    [111]Al-Muhtaseb A.H., McMinn W.A.M., Magee T.R.A. Water sorption isotherms of starch powders, part1:mathematical description of experimental data [J]. Journal of Food Engineering,2004,61(3):297-307.
    [112]Al-Muhtaseb A.H., McMinn W.A.M., Magee T.R.A. Water sorption isotherms of starch powders, part2:thermodynamic characteristics [J]. Journal of Food Engineering, 2004,62(2):135-142.
    [113]Ahmet K., Orhan A., Cevdet D. Experimental and theoretical analysis of drying carrots [J]. Desalination,2009,237(1-3):285-295.
    [114]Sablani S.S., Kasapis S., Rahman M.S., etal. Sorption isotherms and the state diagram for evaluating stability criteria of abalone [J]. Food Research International,2004, 37(10):915-924.
    [115]Yan Z., Sousa-Fabra M.J.,Talens P., etal. Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana [J]. Journal of Food Engineering, 2008,86(3):342-348.
    [116]Fabra M.J., Talens P., Moraga G, etal. Sorption isotherm and state diagram of grape fruit as a tool to improve product processing and stability [J]. Journal of Food Engineering,2009,93(1):52-58.
    [117]Chirife J., Iglesias H.A. Equations for fitting water sorption isotherms of foods:Part Ⅰ—A review [J]. Journal of Food Technology,1978,13(1):159-174.
    [118]Henderson S.M. A basic concept of equilibrium moisture [J]. Agricultural Engineering,1952,33():9-32.
    [119]Anyranci Erol, Duman Osman. Moisture sorption isotherms of cowpea (Vigna unguiculata L. Walp) and its protein isolate at 10,20 and 30℃ [J]. Journal of Food Engineering,2005,70(1):83-91.
    [120]Oswin C.R. The kinetics of package life Ⅲ. The isotherm [J]. Journal of Chemical Industry,1946,65():419-421.
    [121]Smith S.E. The sorption of water vapour by proteins and high polymers [J]. Journal of the American Chemical Society,1947,69(3):646-651.
    [122]Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers [J]. Journal of the American Chemical Society,1838,60(2):309-319.
    [123]Rockland L.B., Stewart G.F. (Eds). Water Activity:Influences on Food Quality [M]. New York, Academic Press,1981.
    [124]Aguerre R.J., Suarez C., Viollaz P.E. New BET type multiplayer sorption isotherms, part Ⅱ. Modeling water sorption in foods [J]. Lebensmittel-Wissenchaft und Technology,1989,22(2):192-195.
    [125]Ferro-Fontan C., Chirife J., Sancho E., etal. Analysis of a model for water sorption isotherm of foods [J]. Journal of Food Science,1983,47(12):1590-1594.
    [126]Caurie M. A new model equation for predicting safe storage moisture levels for optimum stability of dehydrated foods [J]. Journal of Food Technology,1970,5(3): 301-307.
    [127]Nadia D., Nourhene B., Catherine B., etal. Drying of sardine muscles:experimental and mathematical investigations [J]. Food and Bioproducts Processing,2009,87(2): 115-123.
    [128]Lee J.H., Lee M.J. Effect of drying method on the moisture sorption isotherms for inonotus obliquus mushroom [J]. LWT-Food Science and Technology,2008,41(8): 1478-1484.
    [129]Antonio V.G., Margarita M., Luis P.D., etal. Effective moisturediffusivity determination and mathematical modeling of the drying curves of the olive-waste cake [J]. Bioresource Technology, in press.
    [130]Kar S., Chen X.D., Adhikari B.P., etal. The impact of various drying kinetics models on the prediction of sample temperature time and moisture content time profiles during moisture removal from stratum corneum [J]. Chemical Engineering Research and Design, 2009,87(5):739-755.
    [131]Maria A., Stefano C., Vincenza C., etal. An analysis of the transport phenomena occurring during food drying process [J]. Journal of Food Engineering,2007, 78(3):922-932.
    [132]Witinantakit K., Prachayawarakorn S., Nathakaranakule A., etal. Paddying drying using adsorption technique:experiments and simulation [J]. Drying Technology,2006, 24(5):609-617.
    [133]Hernandez J.A., Pavon G, Garcia M.A. Analytical solution of mass transfer equation considering shrinkage for modeling food-drying kinetics [J]. Journal of Food Engineering,2000,45(1):1-10.
    [134]Hatamipour M.S., Mowla D. Shrinkage of carrots during drying in an inert medium fluidized bed [J]. Journal of Food Engineering,2002,55(3):247-252.
    [135]Jain Dilip. Determination of convective heat and mass transfer coefficients for solar drying of fish [J]. Biosystems Engineering,2006,94(3):429-435.
    [136]Wang Zhaohui, Chen Guohua. Heat and mass transfer in batch fluidized-bed drying of porous particles [J]. Chemical Engineering Science,2000,55(10):1857-1869.
    [137]Markowski M. Air drying of vegetables:evaluation of mass transfer coefficient [J]. Journal of Food Engineering,1997,34(1):55-62.
    [138]Bialobrewski I. Determination of the mass transfer coefficient during hot-air drying of celery root [J]. Journal of Food Engineering,2007,78(4):1388-1396.
    [139]Gornicki K., Kaleta A. Drying curve modeling of blanched carrot cubes under natural convection condition [J]. Journal of Food Engineering,2007,82(2):160-173.
    [140]徐娓,丁静,赵义等.香蕉在低温吸附干燥过程中的收缩特性[J].现代食品科技,2007,23(6):17-20.
    [141]Queiroz M.R., Nebra S.A. Theoretical and experimental analysis of the drying kinetics of bananas [J]. Journal of Food Engineering,2001,47(2):127-132.
    [142]Valle J.M., Cuadros T.T.M., Aguilera J.M. Glass transitions and shrinkage during drying and storage of cosmosed apple pieces [J]. Food Research International, 1998,31(3):191-203.
    [142]Simal S., Mulet A., Tarrozo J., etal. Drying model for green peas [J]. Food Chemistry, 1996,55(2):121-128.
    [143]Bialobrzewski I., Zielinska M., Mujumdar A.S., etal. Heat and mass transfer during drying of a bed of shrinking particles—simulation for carrot cubes dried in spout-fluidized-bed drier [J]. International Journal of Heat and Mass Transfer,2008, 51(19,20):4704-4716.
    [144]陶文铨.数值传热学[M].西安,西安交通大学出版社,1988.
    [145]Baini R., Langrish T.A.G. Choosing an appropriate drying model for intermittent and continuous drying of bananas [J]. Journal of Food Engineering,2007,79(1):330-343.
    [146]Mayor L., Sereno A.M. Modelling shrinkage during convective drying of food materials:a review [J]. Journal of Food Engineering,2004,61(3):373-386.
    [147]Viviana C.M., Antonio G.B., Leandro dos S.C. Apparent thermal diffusivity estimation of the banana during drying using inverse method [J]. Journal of Food Engineering,2008,85(4):569-579.
    [148]Mujumdar A.S. Handbook of Industrial Drying [M].2nd edtion, New York, Taylor & Francis Group,2006.
    [149]Sacilik K., Unal G Dehydration characteristics of kastamonu garlic slices [J]. Biosystems Engineering,2005,92(2):207-215.
    [150]Witinantakit K., Prachayawarakorn S., Nathakaranakule A. Paddy drying using adsorption technique:experiments and simulation [J]. Drying Technology,2006,24(5): 609-617.
    [151]Sanjuan N., Simal S., Bon J., etal. Modelling of broccoli stems rehydration process [J]. Journal of Food Engineering,1999,42(1):27-31.
    [152]Bialobobrzewski I. Determination of the mass transfer coefficient during hot-air-drying of celery root [J]. Journal of Food Engineering,2007,78(4):1388-1396.
    [153]Kaya A., Aydin O., Demirtas C., etal. An experimental study on the drying kinetics of quince [J]. Desalination,2007,212(1-3,25):328-343.
    [154]Souraki B.A., Mowla D. Axial and radial moisture diffusivity in cylindrical fresh green beans in a fluidized bed dryer with energy carrier:modeling with and without shrinkage [J]. Journal of Food Engineering,2008,88(1):9-19.
    [155]Topuz A., Gur M. Gul M.Z. An experimental and numerical study of fluidized bed drying of hazelnut [J]. Applied Thermal Engineering,2004,24(10):1535-1547.
    [156]Thakur A.K., Gupta A.K. Stationary versus fluidized-bed drying of high-moisture paddy with rest period [J]. Drying Technology,2006,24(11)1443-1456.
    [157]Hassini L., Azzouz S., Peczalski R.,etal. Estimatin of potato moisture diffusivity from convective drying kinetics with correction for shrinkage [J]. Journal of Food Engineering,2007,79(1):47-56.
    [158]Simal S., Rossello C., Berna A., Mulet A. Drying of shrinkage cylinder-shaped bodies [J]. Journal of Food Engineering,1998,37(4):423-435.
    [159]Migliori M., Gabriele D., Cindio B., etal. Modelling of high quality pasta drying: mathematical model and validation [J]. Journal of Food Engineering,2005,69(4): 387-397.
    [160]潘永康,王喜中,刘相东.现代干燥技术[M].第2版,北京,化工出版社,2007.
    [161]Johnson P-N.T., Brennan J.G., Addo-Yobo F.Y. Air-drying characteristics of plantain (Musa ABB) [J]. Journal of Food Engineering,1998,37(2):233-242.
    [162]Markowski M. Air drying of vegetables:evaluation of mass transfer coefficient [J]. Journal of Food Engineering,1997,34(1):55-62.
    [163]Debaste F., Halloin V., Bossart L., etal. A new modeling approach for the prediction of yeast drying rates in fluidized beds [J]. Journal of Food Engineering,2008,84(2): 335-347.
    [164]Shi J., Pan Z., McHugh T.H., etal. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating [J]. LWT-Food Science and Technology,2008,41(10):1962-1972.
    [165]Garau M.C., Simal S., Rossello C., etal. Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantim v. Canoneta) by-products [J]. Food Chemistry,2007,104(3):1014-1024.
    [166]Arevalo-Pinedo A., Murr F.E.X. Kinetics of vacuum drying of pumkin (Cucurbita maxima):modeling with shrinkage [J]. Journal of Food Engineering,2006,76(4): 562-567.
    [167]Margaris D.P., Ghiaus A.G. Experimental study of hot air dehydration of Sultana grapes [J]. Journal of Food Engineering,2007,79(4):1115-1121.
    [168]Berruti F.M., Klaas M., Briens C., etal. Model for convective drying of carrots for pyrolysis [J]. Journal of Food Engineering,2009,92(2):196-201.
    [169]Singh B., Gupta A.K. Mass transfer kinetics and determination of effective diffusivity during convective dehydration of pre-osmosed carrot cubes [J]. Journal of Food Engineering,2007,79(2):459-470.
    [170]Kaya A., Aydin O., Demirtas C. Experimental and theoretical analysis of drying carrots [J]. Desalination,2009,237(1-3):285-295.
    [171]Pabis S., Jaros M. PH-Post harvest technology:the first period of convection drying of vegetables and the effect of shape dependent shrinkage [J]. Biosystems Engineering, 2002,81(2):201-21
    [172]Zanoelo E.F. A theoretical and experimental study of simultaneous heat and mass transport resistances in a shallow fluidized bed dryer of mate leaves [J]. Chemical Engineering Processing:Process Intensification,2007,46(12):1365-1375.
    [173]Jain D. Determination of convective heat and mass transfer coefficients for solar drying of fish [J]. Biosystems Engineering,2006,94(3):429-435.
    [174]Aversa M., Curcio S., Calabro V., etal. An analysis of the transport phenomena occurring during food drying process [J]. Journal of Food Engineering,2007,78(3): 922-932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700