化学酶法催化仲醇的动态动力学拆分
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对仲醇的动态动力学拆分(DKR)进行了研究,重点研究了固体酸催化剂的消旋催化性能及其与脂肪酶耦合在1-苯乙醇及其衍生物的DKR反应体系的应用,取得了以下成果:
     通过对树脂的筛选,获得了两种催化消旋性能良好的酸性树脂CD550和CD8604,于40℃下能将(S)-1-苯乙醇完全消旋。进一步研究发现,两种树脂均具有强酸性功能基团和丰富的孔道结构,强酸性功能基团保证了其催化消旋的能力,丰富的孔道结构大大的增加了催化剂比表面积,保证了其高效的催化效率。
     构建了一个高效的1-苯乙醇的DKR反应体系,采用一系列芳香酚(或醇)的乙酸酯取代简单的乙酸乙烯酯和乙酸异丙烯酯作为酰基供体,有效地抑制了树脂催化的转酯化副反应,大大提高了1-苯乙醇DKR反应的结果,获得了高产率和高ee值的产物。在这些酰基供体中,尤以邻苯二酚二乙酸酯、间苯二酚二乙酸酯以及3,5-二甲基苯酚乙酸酯这三种表现最为突出。CD550树脂(底物浓度100mmol/L):以邻苯二酚二乙酸酯为酰基供体时,反应10h,转化率大于99%,eep为90.5%;以间苯二酚二乙酸酯为酰基供体时,反应24h,转化率大于99%,eep为91.9%;以3,5-二甲基苯酚乙酸酯为酰基供体时,反应24h,转化率95.3%,eeP为87.3%。CD8604树脂(底物浓度100mmol/L):以邻苯二酚二乙酸酯为酰基供体时,反应3h,转化率96.2%,ee_P,达93.2%;以间苯二酚二乙酸酯为酰基供体时,反应24h,转化率为>99%,ee_P,为95.8%;以3,5-二甲基苯酚乙酸酯为酰基供体时,反应8h,转化率>99%,ee_P达91.5%。
     进一步对反应底物的范围进行了拓展,均取得不错的结果,发现带有给电子基团的结构优于带有吸电子基团,邻位带有取代基的反应速度稍慢。以3,5-二甲基苯乙醇的DKR为例(底物浓度100mmol/L),该DKR的最适酰基供体为4-氯苯酚乙酸酯,以CD550为消旋催化剂时,反应24h,底物转化完全,产物ee值为97.4%;以CD8604为消旋催化剂时,反应3h,底物转化完全,产物ee值为96.5%。
     鉴于树脂优异的消旋化催化性能,进一步制备了具有类似功能基团的固体超强酸Fe_2O_3/SO_4~(2-)催化剂,该催化剂具备良好的催化消旋能力,同时完全不溶于有机溶剂,可以耦合脂肪酶催化仲醇的DKR反应。
     成功构建了固体超强酸Fe_2O_3/SO_4~(2-)耦合脂肪酶催化1-苯乙醇的DKR反应体系。当采用乙酸4-氯乙酸苯酯为酰基供体参与反应时(底物浓度100mmol/L),反应3h,底物转化率>99%,产物ee值为95.4%;采用乙酸3,5-二甲基苯酯为酰基供体参与反应时,反应12h,转化率达到90.5%,产物ee值为95.1%。
     以固体超强酸Fe_2O_3/SO_4~(2-)作为消旋催化剂的DKR反应体系具有一定的适用范围,应用于多种芳香仲醇均取得不错的结果。以3,5-二甲基苯乙醇的DKR为例(底物浓度100mmol/L),该DKR的最适酰基供体仍为4-氯苯酚乙酸酯,反应3h,底物转化率>99%,产物ee值为93.7%。
     利用酶促选择性醇解反应拆分消旋(RS)-炔丙醇酮乙酸酯制备获得高光学纯度的(R)-炔丙醇酮和(S)-炔丙醇酮乙酸酯,奠定了(RS)-炔丙醇酮的动态动力学拆分的酶学基础,同时对产物(R)-炔丙醇酮的消旋进行了研究。
In this paper, two kinds of acid catalysts were chosen as racemization catalysts and the catalytic performance were investigated. And the two kinds of acid catalysts could be applied to the DKR of several secondary aromatic alcohols successfully. The main conclusions were as follows:
     Two acid resins with highly efficient racemization activity were screened and showed great potential to apply to the DKR of secondary aromatic alcohols. They could racemize (S)-1-phenylethanol almost completely in 6.5h at 40℃.
     A series of phenyl acetate derivatives were synthesized and investigated for increasing the eep. And the selectivity of the DKR of 1-phenylethanol really could be successfully enhanced by using more complex acyl donors to inhibit the acid resin-catalyzed transesterification. When 1,3-Diacetoxybenzene and CD 8604 was used as acyl donor and racemization catalyst respectively, good yield (>99%) and high ee value of product (95.8%) were obtained. Good results were also obtained when 1,2-Diacetoxybenzene and 3,5-dimethyl phenyl acetate as acyl donors.
     To expand the application area of the results, several substrates with different substitution groups on its benzene ring were tested and most DKR of them were performed successfully. For 1-(3,5-dimethylphenyl)ethanol, when 4-chlorophenyl acetate and CD 550 was used as acyl donor and racemization catalyst respectively, the product with 97.4%ee could be obtained in nearly 99% yield. When CD8604was used as racemization catalyst, the ee value of product was 96.5% with nearly the same yield as CD550.
     Solid superacid Fe2O3/SO42- was prepared as racemization catalyst with excellent racemization capacity and also showed great potential to apply to DKR of several secondary aromatic alcohols.
     The DKR of 1-phenylethanol catalyzed by lipase Novozym435-solid superacid Fe2O3/SO42- combo was established successfully, when 4-chlorophenyl acetate as acyl donor, good yield (>99%) and high ee value of product (95.4%) were obtained after 3h's reaction. While 3,5-dimethyl phenyl acetate as acyl donor, the yield and ee value of product was 90.5% and 95.1% respectively after 12h's reaction.
     The Novozym435-solid superacid Fe2OSO42- combo catalyzed DKR system was also suitable for several secondary aromatic alcohols. For different substrates, appropriate acyl donor that gave good result was different. For DKR of 1-(3,5-dimethylphenyl)ethanol, the appropriate acyl donor was still 4-chlorophenyl acetate. After 3h's reaction, the yield and ee value of product was>99% and 93.7% respectively.
     (RS)-4-hydroxy-3-methyl-2-(2'-propynyl)-2-cyclopentenone acetate was successfully resoluted by lipase-catalyzed alcoholysis through adjusting the basicity of organic reaction system, and the product was obtained in both high conversion and ee value. This information made good preparation for the DKR of (RS)-4-hydroxy-3-methyl-2-(2'-propynyl)-2-cyclopentenone.
引文
[1]李玉新.动力学拆分:制备光学活性化合物的重要方法.新农药,2002,21:11-16。
    [2]马红敏,邵瑞链,马治华,成俊然.动力学拆分法的研究进展.有机化学,2000,20:454-463.
    [3]张占金,毛金城,万伯顺,陈惠麟.路易斯酸碱催化的外消旋(动态)动力学拆分.化工进展,2004,16:574-583.
    [4]冯一军,刘均洪.动态动力学拆分方法在不对称催化中的应用与进展.化学工业与工程技术,2004,25:1-4.
    [5]张占辉,刘庆彬.酶-过渡金属配合物催化的动态动力学拆分研究进展.有机化学,2005,7:780-787.
    [6]王雷,薛屏.动态动力学拆分制备手性化合物的研究进展.应用化工,2010,39:258-263.
    [7]张国艳,曹淑桂.酶法手性拆分技术研究和应用的最新进展.吉林大学学报(理学版),2008,46:997-1000.
    [8]杜志强,王安明,王华等.手性化合物的动态动力学拆分研究进展.分子催化,2008,22:473-480.
    [9]Lee JH, Han K, Kim MJ, Park J. Chemoenzymatic dynamic kinetic resolution of alcohols and amines. Eur. J. Org. Chem,2010:999-1015.
    [10]黎水保,薛屏.化学-酶催化动态动力学拆分工艺中多项催化剂的研究进展.化学工业与工程,2008,25:448-454.
    [11]吴小飞,刘海洲,刘均洪.酶催化的动态动力学拆分和去消旋化反应的研究进展.化学工业与工程技术,2006,27,增刊:37-40.
    [12]程瑛琨,刘成柏,于大海,王智.动态动力学拆分在制备单一手性化合物中的应用.药物生物技术,2004,11:135-140.
    [13]刘婷.酶催化外消旋体的动态动力学拆分反应.发酵科技通讯,2010,39:11-13.
    [14]Helene Pellissier. Dynamic kinetic resolution. Tetrahedron,2003,59:8291-8327.
    [15]Kim MJ, Ahn Y, Park J. Dynamic kinetic resolution and asymmetric transformations by enzymes coupled with metal catalysis. Current Opinion in Biotechnology,2002,13:578-587.
    [16]Pamies O, Backvall JE. Chemoenzymatic dynamic kinetic resolution. TRENDS in Biotechnology,2004,22:130-135.
    [17]Pamies O, Backvall JE. Combined metal catalysis and biocatalysis for an efficient deracemization process. Current Opinion in Biotechnology,2003,14: 407-413.
    [18]Ebbers, E. J., Ariaans, G. J. A., Houbiers, J. P. M., Bruggink, A., Zwanenburg, B. Controlled racemization of optically active organic compounds:prospects for asymmtric transformation. Tetrahedron.1997,53,9417-9476.
    [19]M. A. Wgman, M. A. P. J. Hacking, R. A. Sheldon et al. Dynamic kinetic resolution of phenylglycine esters via lipase-catalysed ammonolysis. Tetrahedron Asymmetry,1999,10:1739-1750.
    [20]Stijn Wuyts, Karolien De Temmerman, Dirk De Vos et al. A zeolite-enzyme combination for biphasic dynamic kinetic resolution of benzylic alcohols. Chem Commun,2003:1928-1929.
    [21]Stijn Wuyts, Karolien De Temmerman, Dirk De Vos et al. Acid zeolites as alcohol racemization catalysts:screening and application in biphasic dynamic kinetic resolution. Chem Eur J,2005,11:386-397.
    [22]Dinh PM, Howarth JA, Hudnott AR, Williams JMJ et al. Catalytic racemisation of alcohols:application to enzymatic resolution reactions. Tetrahedron lett,1996,37: 7623-7626.
    [23]Larsson ALE, Persson BA, Backvall JE. Enzymatic resolution of alcohols coupled with ruthenium-catalyzed racemization of the substrate alcohol. Angew Chem Int Ed Engl,1997,36:1211-1212.
    [24]Persson BA, Larsson ALE, Ray ML, Backvall JE. Ruthenium- and enzyme-catalyzed dynamic kinetic resolution of secondary alcohols. J Am Chem Soc, 1999,121:1645-1650.
    [25]Csjernyik G, Bogar K, Backvall JE. New efficient ruthenium catalysts for racemization of alcohols at room temperature. Tetrahedron Lett,2004,45:6799-6802.
    [26]Martin-Matute B, Eding M, Bogar K, Backvall JE. Highly compatible metal and enzyme catalysts for efficient dynamic kinetic resolution of alcohols at ambient temperature. Angew Chem Int Ed,2004,43:6535-6539.
    [27]Martin-Matute B, Eding M, Bogar K, Backvall JE et al. Combined Ruthenium(II) and lipase catalysis for efficient dynamic kinetic resolution of secondary alcohols. Insight into the racemization mechanism. J Am Chem Soc,2005,127:8817-8825.
    [28]Koh JH, Jeong HM, Par J. Efficient catalytic racemization of secondary Alcohols. Tetrahedron Lett,1998,39:5545-5548.
    [29]Koh JH, Jung HM, Kim MJ, Park J. Enzymatic resolution of secondary alcohols coupled with ruthenium-catalyzed racemization without hydrogen mediator. Tetrahedron Lett,1999,40:6281-6284.
    [30]Lee D, Hub EA, Kim MJ, Jung HM, Koh JH, Park J. Dynamic kinetic resolution of allylic alcohols mediated by ruthenium-and lipase-based catalysis. Organic Lett, 2000,2:2377-2379.
    [31]Choi JH, Hub EA, Kim MJ, Jung HM, Park J. Aminocyclopentadienyl ruthenium chloride:catalytic racemization and dynamic kinetic resolution of alcohols at ambient temperature. Angew Chem Int Ed Engl,2002,41:2373-2376.
    [32]Choi JH, Choi YK, Kim YH, Park ES et al. Aminocyclopentadienyl ruthenium complexes as racemization catalysts for dynamic kinetic resolution of secondary alcohols at ambient temperature. JOrg Chem,2004,69:1972-1977.
    [33]Kim MJ, Chung YI, Choi YK et al. (S)-selective dynamic kinetic resolution of secondary alcohols by the combination of subtilisin and an aminocyclopentadienylruthenium complex as the catalysts. J Am Chem Soc,2003, 125:11494-11495.
    [34]Kim MJ, Kim HM, Kim D, Ahn Y, Park J. Dynamic kinetic resolution of secondary alcohols by enzyme-metal combinations in ionic liquid. Green Chem,2004, 6:471-474.
    [35]Dijksman A, Elzinga JM, Li YX et al. Efficient ruthenium-catalyzed racemization of secondary alcohols:application to dynamic kinetic resolution. Tetrahedron Asymmetry,2002,13:879-884.
    [36]Thomas H. Riermeier, Peter Gross, Axel Monsees, Manfred Hoff, Harald Trauthwein. Dynamic kinetic resolution of secondary alcohols with a readily available ruthenium-based racemization catalyst. Tetrahedron Lett,2005,46:3403-3406.
    [37]Persson BA, Laxmi SYR, Backvall JE. Dynamic kinetic resolution of α-hydroxy acid esters. Organic Lett,2000,2:1037-1040.
    [38]Huerta FF, Backvall JE. Enantioselective synthesis of β-hydroxy acid derivatives via a one-pot aldol reaction-dynamic kinetic resolution. Organic Lett,2001,3: 1209-1212.
    [39]Runmo ABL, Pamies O, Faber K, Backvall JE. Dynamic kinetic resolution of y-hydroxy acid derivatives. Tetrahedron Letter,2002,43:2983-2986.
    [40]Pamies O, Backvall JE. [28] Pamies O, Backvall JE. Enzymatic kinetic resolution and chemoenzymatic dynamic kinetic resolution of δ-hydroxy esters. An efficient route to chiral δ-lectones. J Org Chem,2002,67:1261-1265.
    [41]Pamies O, Backvall JE. Dynamic kinetic resolution of β-azido alcohols. An efficient route to chiral aziridines and β-amino alcohols. J Org Chem,2001,66: 4022-4025.
    [42]Pamies O, Backvall JE. Efficient lipase-catalyzed kinetic resolution and dynamic kinetic resolution of β-hydroxy nitriles. A route to useful precursors for γ-amino alcohols. Adv Synth Catal,2001,343:726-731.
    [43]Pamies O, Backvall JE. An efficient route to chiral α-and β-hydroxyalkanephosphonates. J Org Chem,2003,38:4815-4818.
    [44]Fransson ABL, Boren L, Pamies O, Backvall JE. Kinetic resolution and chemoenzymatic dynamic kinetic resolution of functionalized γ-hydroxy amides. J Org Chem,2005,70:2582-2587.
    [45]Kim MJ, Choi YK, Choi MY et al. Lipase/ruthenium catalyzed dynamic kinetic resolution of hydroxyl acids, diols, and hydroxyl aldehydes protected with a bulky group. J Org Chem,2001,66:4736-4738.
    [46]Masato Ito, Akihide Osaku, Sachiko Kitahara et al. Rapid racemization of chiral non-racemic sec-alcohols catalyzed by (η5-C5(CH3)5)Ru complexes bearing tertiary phosphine-primary amine chelate ligands. Tetrahedron Lett,2003,44:7521-7523.
    [47]Kim N, Ko SB, Kwon MS, Kim MJ, Park J. Air-stable racemization catalyst for dynamic kinetic resolution of secondary alcohols at room temperature. Org Lett,2005, 7:4523-4526.
    [48]Ko SB, Baburaj B, Kim MJ, Park J. Air-stable racemization of catalyst for the dynamic kinetic resolution of secondary alcohols. J Org Chem,2007,72:6860-6864.
    [49]Kim MJ, Choi YK, Kim S, Park J. Highly enantioselective dynamic kinetic resolution of 1,2-diarylethanols by a lipase-ruthenium couple. Org Lett,2008,10: 1295-1298.
    [50]Chen Q, Yuan C. An unexpected ruthenium complex and its unique behavior as catalyst in dynamic kinetic resolution of secondary alcohols. Chem Commun,2008: 5333-5335.
    [51]Mavrynsky D, Paivio M, Lundell K, Sillanpaa R, Kanerva LT et al. Dicarbonylchloro(pentabenzylcyclopentadienyl)ruthenium as racemization catalyst in the dynamic kinetic resolution of secondary alcohols. Eur J Org Chem,2009: 1317-1320.
    [52]Reetz MT, Schimossek K. Lipase-catalyzed dynamic kinetic resolution of chiral amines:use of palladium as the racemization catalyst. Chimia,1996,50:668-669.
    [53]Parvulescu A, De Vos D, Jacobs P. Efficient dynamic kinetic resolution of secondary amines with Pd on alkaline earth salts and a lipase. Chem Commun,2005, 42:5307-5309.
    [54]Parvulescu AN, De Vos DE, Jacobs PA. Palladium catalysts on alkaline-earth supports for racemization and dynamic kinetic resolution of benzylic amines. Chem Eur J,2007,13:2034-2043.
    [55]Kim MJ, Kim WH, Han K, Choi YK, Park J. Dynamic kinetic resolution of primary amines with a recyclable Pd nanocatalyst for racemization. Org Lett,2007,9: 1157-1159.
    [56]Parvulescu AN, De Vos DE, Jacobs PA. Heterogeneous raney nickel and cobalt catalysts for racemization and dynamic kinetic resolution of amines. Adv Synth Catal, 2008,350:113-121.
    [57]Stirling M, Blacker J, Page MI. Chemoenzymatic dynamic kinetic resolution of secondary amines. Tetrahedron Lett,2007,48:1247-1250.
    [58]Blacker AJ, Stirling MJ, Page MI. Catalytic racemisation of chiral amines and application in dynamic kinetic resolution. Org Process Res Dev,2007,11:642-648.
    [59]Pamies O, Ell AH, Backvall JE et al. An efficient and mild ruthenium-catalyzed racimization of amines:application to the synthesis of enantiomerically pure amines. Tetrahedron Lett,2002,43:4699-4702.
    [60]Thalen LK, Zhao D, Sortais JB, Paetzold J, Hoben C, Backvall JE. Chemoenzymatic approach to enantiomerically pure amines using dynamic kinetic resolution:application to the synthesis of norsertraline. Chem Eur J,2009, 15:3403-3410.
    [61]Hoben CE, Kanupp L, Backvall JE. Practical chemoenzymatic dynamic kinetic resolution of primary amines via transfer of a readily removable benzyloxycarbonyl group. Tetrahedron lett,2008,49:977-979.
    [62]Allen JV, Williams JMJ. Dynamic kinetic resolution with enzyme and palladium combinations. Tetrahedron lett,1996,37:1859-1862.
    [63]Choi YK, Suh JH, Lee D, Kim MJ et al. Dynamic kinetic resolution of acyclic allylic acetates using lipase and palladium. J Org Chem,1999,64:8423-8424.
    [64]Barbara S, Kurt F, Wolfgang K. Enzymatic racemisation and its application to synthetic biotransformations. Adv Synth Catal,2003,345:653-666.
    [65]Yasuhisa A, Shigenori Y. Dynamic kinetic resolution of amino acid amide catalyzed by D-aminopeptidase and a-amino-ε-caprolactam racemase. J Am Chem Soc,2005,127:7696-7697.
    [66]May O, Verseck S, Bommarius A, et al. Development of dynamic kinetic resolution processes for biocatalytic production of natural and non-natural L-amino acids. Org Process Res Dev,2002,6:452-457.
    [67]Blum Y, Czarkie D, Rahamim Y, Shvo Y. (Cyclopentadienone)ruthenium carbonyl complexes -a new class of homogeneous hydrogenation catalysts. Organometallics,1985,4:1459-1461.
    [68]Shvo Y, Czarkie D, Rahamim Y, Chodosh DF. A new group of ruthenium complexes:structure and catalysis. J Am Chem Soc.1986,108:7400-7402.
    [69]Samec JSM, Backvall JE, Andersson PG, Brandt P. Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions. Chem Soc Rev,2006,35: 237-248.
    [70]Martin-Matute B, Aberg JB, Edin M, Backvall JE. Racemization of secondary alcohols catalyzed by cyclopentadienylruthenium complexes:evidence for an alkoxide pathway by fast-hydride elimination-readdition. Chem Eur J,2007,13: 6063-6072.
    [71]Nyhlen J, Privalov T, Backvall JE. Racemization of alcohols catalyzed by [RuCl(CO)2(5-pentaphenylcyclopentadienyl)]-mechanistic insights from theoretical modeling. Chem Eur J,2009,15:5220-5229.
    [72]Aberg JB, Nyhlen J, Martin-Matute B, Privalov T, Backvall JE. CO assistance in ligand Exchange of a Ruthenium racemization catalyst:identification of an acyl intermediate. J Am Chem Soc,2009,131:9500-9501.
    [73]Bedell B A, Mozhaev V V, Clark D S, Dordick J S. Biotech Bioeng,1998,58: 654-657.
    [74]Zhu, Y.; Fow, K. L.; Chuah, G. K.; Jaenicke, S. Dynamic kinetic resolution of secondary alcohols combining enzyme-Catalyzed transesterification and zeolite-catalyzed racemization. Chem. Eur. J.2007,13:541-547.
    [75]Arata K. Preparation of superacids by metal oxides for reactions of butanes and pentanes. Appl Catal A Gerneral,1996,146:3-32.
    [76]袁淑军,方海林.固体超强酸Fe2O3-SO4催化合成对叔丁基酚的研究.精细化工,1997,14:37-38.
    [77]李建伟,周长智,弓彦忠.固体超强酸SO42-/Fe2O3的制备及其催化性能的研究.应用化工,2005,34:313-314.
    [78]丁智慧,刘吉开,丁靖垲,古昆.拟除虫菊酯的研究进展.云南化工,2001,28:22-24.
    [79]周景梅.关键中间体与菊酯类农药品种开发.农药,2008,47:398-401.
    [80]赵玉巧,许建和.不动杆菌静息细胞催化拆分外消旋环戊酮醇乙酸酯反应条件的优化.催化学报,2003,24:613-618.
    [81]汤天羽,胡永红,陈光辉,马海军.烯丙醇酮拆分的研究进展.现代农药,2006,5:5-8.
    [82]Yang G, Wu J P, Xu G, Yang L R. Enhancement of the activity and enantioselectivity of lipase in organic systems by immobilization onto low-cost support. J Mol Catal B,2009,57:96-103.
    [83]Satoshi M, Hideo H. WO 8403714.1984.
    [84]Umemura T, Inoue A, Mitsuda S. US 4571436.1986.
    [85]Danda H, Maehara A, Umemura T. Preparation of (4S)-4-hydroxy-3-methyl-2-(2'-propynyl)-2-cyclopentenone by combination of enzymatic hydrolysis and chemical transformation. Tetrahedron Lett,1991,32: 5119-5122.
    [86]Minamii M, Katsura T. JP 06065133,1993.
    [87]Mitsuda S, Umemura T, Hirohara H. Preparation of an optically pure secondary alcohol of synthetic pyrethroids using microbial lipases. Appl Microbiol Biotechnol, 1988,29:310-315.
    [88]Mitsuda S, Nabeshima S, Hirohara H. Studies on enantioselective hydrolysis of the acetic ester of a secondary alcohol with Arthrobacter lipase. Appl Microbiol Biotechnol,1989,31:334-337.
    [89]Zhang J, Wu J P, Yang L R. The kinetic study on lipase-catalyzed asymmetric alcoholysis of a-cyano-benzyl acetate in organic media. J Mol Catal B,2004,31: 67-72.
    [90]Zacharis E, Halling P J, Rees D G. Volatile buffers can override the "pH memory" of subtilisin catalysis in organic media. Appl Biol Sci,1999 96: 1201-1205.
    [91]Halling P J. Biocatalysis in low-water media:understanding effects of reaction conditions. Curr Opin Chem Bio,2000,4:74-80.
    [92]Ducret A, Trani M, Lortie R. Lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity. Enzym Microb Technol, 1998,22:212-216.
    [93]Parker MC, Brown SA, Robertson L, Turner NJ. Enhancement of candida antarctica lipase B enantioselectivity and activity in organic solvents. Chem Commun,1998:2247-2248.
    [94]Campos F, Bosch MP, Guerrero A. An efficient enantioselective synthesis of (R,R)-formoterol, a potent bronchodilator, using lipases. Tetrahedron: Asym,2000, 11:2705-2717.
    [95]Garcia-Urdiales E, Rebolledo F, Gotor V. Kinetic resolution of (±)-1-phenylbutan-l-ol by means of CALB-catalyzed aminolyses:a study on the role of the amine in the alcoholresolution. Adv Synth Catal,2001,343:646-654.
    [96]Quiros M, Parker M C, Turner N J. Tuning lipase enantioselectivity in organic media using solid-state buffers. J Org Chem,2001,66:5074-5079.
    [97]Liljeblad A, Kiviniemi A, Kanerva LT. Aldehyde-based racemization in the dynamic kinetic resolution of N-heterocyclic a-amino esters using Candida antarctica lipase A. Tetrahedron,2004,60:671-677.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700