硅对干旱胁迫下草坪草生长及抗旱性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步深入探究硅肥对干旱条件下草坪草生长、生理特性及抗旱性方面的影响,本研究以狗牙根(Cynodon Dactylon L.)、草地早熟禾(Poa pratensis L.)和高羊茅(Festuca arundinacea Scherb.)各一个品种为试验材料,第一阶段对参试3种草坪草进行3种灌水处理(分别按田间最大持水量的100%,75%,50%进行灌水,分别简称FWC100,FWC75,FWC50)45 d,同时对参试3种草坪草分别施加0,28ppm,56ppm,112ppm的硅酸(分别简称Si0,Si28,Si56,Si112)。期间测定了参试3种草坪草的总蒸散量(Evapotranspiration, ET),叶片相对含水量(Relative Water Content, RWC),叶片相对电导率(Electrolyte Leakage, EL),草坪质量(Turf Quality, TQ),超氧化物歧化酶(Superoxide Dismutase, SOD)活性,过氧化氢酶(Catalase, CAT)活性,丙二醛(malondialdehyde, MDA)含量,根干重(Root Dry Weight, RDW)和根活性(Root Activity,RACT)。第二阶段对所有参试草种进行完全复水处理50 d,同时按第一阶段各自对应处理施加0,28ppm,56ppm,112ppm的硅酸,复水结束之后随即进行第三阶段完全干旱处理,由于参试草种高羊茅恢复情况较好,因此以高羊茅为试验材料进行再干旱胁迫处理,干旱胁迫30 d,期间分别测定了叶片相对含水量(RWC)、叶片萎蔫率(LW)、叶片相对电导率(EL)、草坪质量(TQ)、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、丙二醛(MDA)含量,主要结论如下:
     1.随着灌水量的减少,参试3种草坪草的总蒸散量呈现出下降趋势。施加不同浓度硅肥后,FWC100处理对应参试3种草坪草的总蒸散量并没有发生明显的变化,而FWC75和FWC50处理对应参试3种草坪草的总蒸散量随硅肥浓度的增加呈现出下降趋势,尤其Si56处理对应参试3种草坪草的总蒸散量下降最为明显。
     2.FWC75和FWC50处理对应参试3种草坪草的RWC较FWC100处理对应参试3种草坪草的RWC出现了明显下降,以FWC50处理对应参试3种草坪草的RWC降低最为明显。施加不同浓度硅肥后,FWC100处理对应参试3种草坪草的RWC基本保持在一个水平,而在FWC75和FWC50灌水条件下,随着硅肥浓度的增加参试3种草坪草的RWC都出现了明显的上升,尤其以Si56处理对应3种草坪草的RWC上升最为明显,硅肥增强了参试3种草坪草的抗旱性。
     3.在没有施加硅肥处理中,FWC50和FWC75处理对应参试3种草坪草的EL明显高于FWC100处理对应各自草种的EL,尤其FWC50处理对应3种草坪草的EL升高最明显。施加不同浓度硅肥后,FWC100处理对应参试3种草坪草的EL并没有随硅肥浓度的增加而发生明显变化,随着硅肥浓度的增加,FWC75和FWC50处理对应参试3种草坪草的EL出现明显下降,尤其FWC50处理对应参试3种草坪草的EL下降明显,FWC75和FWC50处理对应参试草坪草的EL降幅以Si56处理最为明显。硅肥增强了参试3种草坪草的抗旱性。
     4.在没有施加硅肥处理中,FWC75和FWC50处理对应参试3种草坪草的TQ较FWC100处理对应各自草坪草的TQ出现了明显下降,即灌水量越少,TQ下降越明显。施加硅肥后,FWC100处理对应参试3种草坪草的TQ并没有随硅肥浓度的增加而发生明显变化,硅肥并没有明显提高草坪草的TQ。而FWC75和FWC50处理对应参试3种草坪草的TQ随着硅肥浓度的增加而明显上升,总体来看以Si56处理各参试草种的TQ上升最为明显,硅肥增强了参试3种草坪草的抗旱性。
     5.在没有施加硅肥处理中,FWC75和FWC50处理对应参试3种草坪草的SOD和CAT活性明显低于FWC100处理对应参试3种草坪草的SOD和CAT活性,而且灌水量越少,SOD和CAT活性下降越明显。施加硅肥后,FWC100处理对应参试3种草坪草的SOD和CAT活性并没有随硅肥浓度的增加而显著升高,而FWC75和FWC50处理对应参试3种草坪草的SOD和CAT活性随硅肥浓度的增加而明显升高,而且呈现出灌水量越少硅肥提高参试3种草坪草的SOD和CAT活性的效果越明显,尤其Si56处理参试3种草坪草的SOD和CAT活性上升最为明显,硅肥增强了参试3种草坪草的抗旱性。
     6.在没有施加硅肥处理中,FWC75和FWC50处理对应参试3种草坪草的MDA含量明显高于FWC100处理对应参试3种草坪草的MDA含量,尤其FWC50处理参试3种草坪草的MDA含量上升最明显。施加硅肥后,FWC100处理对应参试3种草坪草的MDA含量并没有随硅肥浓度的增加而发生明显变化,而FWC75和FWC50处理对应参试3种草坪草的MDA含量随硅肥浓度的增加而出现明显下降,尤其以Si56处理对应参试3种草坪草的MDA含量下降最为明显,硅肥增强了参试3种草坪草的抗旱性。
     7.在没有施加硅肥处理中,FWC75和FWC50处理对应参试3种草坪草的RDW,RACT明显低于FWC100处理对应各自草种的RDW,RACT,而且灌水量越少,参试3种草坪草的RDW,RACT下降越明显。施加硅肥后,FWC100处理对应参试3种草坪草的RDW,RACT并没有随硅肥浓度的增加而明显变化,基本保持在同一水平,而FWC75和FWC50处理对应参试3种草坪草的RDW,RACT随硅肥浓度的增加而明显上升,尤其Si56处理对应参试3种草坪草的RDW,RACT上升最为明显,硅肥增强了参试草坪草的抗旱性。
     8.复水后再次干旱胁迫下,参试高羊茅的RWC,TQ出现了明显下降,没施加硅肥处理对应高羊茅的RWC,TQ要明显低于施加硅肥处理的。在干旱胁迫下,随着硅肥浓度的增加,参试高羊茅的RWC,TQ逐渐降低,而且施加硅肥处理对应高羊茅的RWC,TQ要高于没施加硅肥处理对应高羊茅的RWC,TQ,相同浓度硅肥FWC100处理对应高羊茅的RWC,TQ低于FWC75和FWC50处理对应高羊茅的RWC,TQ。适当干旱锻炼及硅肥增强了参试高羊茅的抗旱性。
     9.复水后再次干旱胁迫下,参试高羊茅的EL和LW出现了明显的升高。干旱胁迫结束时(30 d),没施加硅肥处理对应高羊茅的EL和LW较施加硅肥处理的EL和LW高;而且相同浓度硅肥下,FWC50处理对应高羊茅的EL和LW较FWC100和FWC75处理对应高羊茅的EL和LW低,适当干旱锻炼及硅肥增强了参试高羊茅的抗旱性。
     10.复水后再次干旱胁迫下,参试高羊茅的SOD活性出现了短暂升高,随后出现了明显下降,而CAT活性则持续下降。干旱胁迫结束时(30 d),没施加硅肥对应高羊茅的SOD和CAT活性明显低于施加硅肥高羊茅的SOD和CAT活性;在干旱胁迫下,随着硅肥浓度的增加,参试高羊茅的SOD和CAT活性相对较高,而且相同浓度硅肥处理下,FWC50处理对应高羊茅的SOD和CAT活性较FWC100和FWC75处理对应的SOD和CAT活性高,适当干旱锻炼及硅肥增强了参试高羊茅的抗旱性。
     11.复水后再次干旱胁迫下,参试高羊茅的MDA含量出现了明显的上升。干旱胁迫结束时(30 d),没施加硅肥对应高羊茅的MDA含量明显高于施加硅肥高羊茅的MDA含量;随着硅肥浓度的增加,参试高羊茅的MDA含量不同程度地下降,而且相同浓度硅肥处理下以FWC50处理对应参试高羊茅的MDA含量较低,干旱胁迫结束时(30 d),Si56处理对应高羊茅的MDA含量相对较低,适当干旱锻炼及硅肥增强了参试高羊茅的抗旱性。
In order to study the effects of silicon on growth and physiological characteristic of turfgrass under drought stress, Bermurd, Kentucky bluegrass, and Tall fescue were used as experimental material,and irrigated by three irrigation treatments (irrigating according to 100%, 75%, and 50% of maximum field capacity ) 45 d at the first stage, and at the same time 0, 28ppm, 56ppm, 112ppm silicon acid were applied. Evapotranspiration (ET), leave relative water content (RWC), leave relative electrothye leakage (EL), turf quality (TQ), superoxidation (SOD) activity, catalase (CAT) activity, malondialdehyde (MDA) content, root dry weight (RDW), and root activity (RACT) were determined during the experiment. At the second stage, all tested cultivars were rewatered fully 50 d, and meanwhile 0, 28ppm, 56ppm, 112ppm silicon acid were applied, following rewatering, the third stage drought stress treatment began, Tall fescue could recover best, and then was made as trial material to expose drought stress 30 d, during drought stress RWC, EL, LW, TQ, SOD, CAT, and MDA were determined. Main conclusions as following:
     1. Under three irrigation conditions, ET of three tested turfgrasses showed decreasing trend with decreasing irrigation content. Following different concentration silicon fertilizer were applied, ET of three tested turfgrasses for FWC100 treatment did not change markedly, while ET of three tested turfgrasses for FWC75 and FWC50 declined with increasing silicon fertilizer concentration, especially, ET of three tested turfgrasses for FWC50 declined markedly.
     2. RWC of three tested turfgrasses for FWC75 and FWC50 decreased more markedly than that of three tested turfgrasses for FWC100, RWC of three tested turfgrasses for FWC50 declined most markedly. Following different concentration silicon fertilizer were applied, RWC of three tested turfgrasses for FWC100 hardly kept the same level, RWC of three tested turfgrasses for FWC75 and FWC50 increased markedly with increasing silicon fertilizer concentration, especially RWC of three tested turfgrasses for FWC50 increased most markedly. Silicon fertilizer can enhance drought resistance of tested turfgrasses.
     3. At un-silicon fertilizer treatment, EL of three tested turfgrasses for FWC75 and FWC50 was higher than that of three tested turfgrasses for FWC100, especially EL of three tested turfgrasses for FWC50 increased most markedly. Following different concentration silicon fertilizer were applied, EL of three tested turfgrasses for FWC100 treatment did not change markedly with increasing silicon fertilizer concentration, while EL of three tested turfgrasses for FWC75 and FWC50 decreased markedly, especically EL of three tested turfgrasses for FWC50 declined most markedly, and EL of three tested turfgrasses for FWC50 and FWC75 decreased obviously under Si56 treatment. Silicon fertilizer can enhance drought resistance of tested turfgrasses.
     4. At un-silicon fertilizer treatment, TQ of three tested turfgrasses for FWC75 and FWC50 decreased more markedly than that of three tested turfgrasses for FWC100, less irrigation water, lower TQ. Following different concentration silicon fertilizer were applied, TQ of three tested turfgrasses for FWC100 treatment did not change markedly with increasing silicon fertilizer concentration, silicon could not improve TQ. While TQ of three tested turfgrasses for FWC75 and FWC50 increased markedly with increasing silicon fertilizer concentration, TQ of three tested turfgrasses increased most markedly under Si56 treatment. Silicon fertilizer can enhance drought resistance of tested turfgrasses.
     5. At un-silicon fertilizer treatment, SOD and CAT activity of three tested turfgrasses for FWC75 and FWC50 were much lower than that of three tested turfgrasses for FWC100, less irrigation water, lower SOD and CAT activity. Following different concentration silicon fertilizer were applied, SOD and CAT activity of three tested turfgrasses for FWC100 did not increase markedly with increasing silicon fertilizer concentration, while SOD and CAT activity of three tested turfgrasses for FWC75 and FWC50 increased obviously with increasing silicon fertilizer concentration, whatever, silicon fertilizer could improve SOD and CAT activity of three tested turfgrasses under less irrigation water condition, especially, SOD and CAT activity of three tested turfgrasses increased markedly under Si56 treatment. Silicon fertilizer can enhance drought resistance of tested turfgrasses.
     6. At un-silicon fertilizer treatment, MDA content of three tested turfgrasses for FWC75 and FWC50 were much higher than that of three tested turfgrasses for FWC100, especially MDA content of three tested turfgrasses for FWC50 increased most obviously. Following different concentration silicon fertilizer were applied, MDA content of three tested turfgrasses for FWC100 did not increase obviously with increasing silicon fertilizer concentration, while MDA content of three tested turfgrasses for FWC75 and FWC50 decreased markedly with increasing silicon fertilizer concentration, especically MDA content of three tested turfgrasses declined markedly under Si56 treatment. Silicon fertilizer can enhance drought resistance of tested turfgrasses.
     7. At un-silicon fertilizer treatment, RDW and RACT of three tested turfgrasses for FWC75 and FWC50 were much lower than that of three tested turfgrasses for FWC100, less irrigation water, lower RDW and RACT of three tested turfgrasses. Following different concentration silicon fertilizer were applied, RDW and RACT of three tested turfgrasses for FWC100 did not change obviously with increasing silicon fertilizer concentration, and kept the same level, while RDW and RACT of three tested turfgrasses for FWC75 and FWC50 increased markedly with increasing silicon fertilizer concentration, especically RDW and RACT of three tested turfgrasses increased most markedly under Si56 treatment. Silicon fertilizer can enhance drought resistance of tested turfgrasses.
     8. RWC and TQ of tested Tall fescue declined obviously under drought stress following rewatering treatment, RWC and TQ of tested Tall fescue without application of silicon fertilizer was lower than that of tested Tall fescue with application of silicon fertilizer. Under drought stress, RWC and TQ of tested Tall fescue gradually declined with increasing silicon fertilizer concentration,RWC and TQ of tested Tall fescue with application of silicon fertilizer was higher than that of tested Tall fescue without application of silicon fertilizer,whatever, RWC and TQ of tested Tall fescue for FWC100 was lower than that for FWC75 and FWC50 at the same silicon fertilizer concentration. Drought exercise and silicon fertilizer can enhance drought resistance of tested Tall fescue.
     9. EL and LW of tested Tall fescue increased obviously under drought stress following rewatering treatment. At the end of drought stress (30 d), EL and LW of tested Tall fescue without application silicon fertilizer was much higher than that of tested Tall fescue with application silicon fertilizer; whatever, EL and LW of tested Tall fescue for FWC50 was lower than that of tested Tall fescue for FWC100 and FWC75 at the same silicon fertilizer concentration. Drought exercise and silicon fertilizer can enhance drought resistance of tested Tall fescue.
     10. SOD of tested Tall fescue increased momently and then decreased obviously, while CAT activity declined continuously under drought stress following rewatering treatment. At the end of drought stress (30 d), SOD and CAT activity of tested Tall fescue without application silicon fertilizer was much lower than that of tested Tall fescue with application silicon fertilizer; SOD and CAT activity of tested Tall fescue under drought stress were relative high with increasing silicon fertilizer concentration, whatever, SOD and CAT activity of tested Tall fescue for FWC50 were higher than that of tested Tall fescue for FWC100 and FWC75 at the same silicon fertilizer concentration. Drought exercise and silicon fertilizer can enhance drought resistance of tested Tall fescue.
     11. MDA content of tested Tall fescue increased obviously under drought stress following rewatering treatment. At the end of drought stress (30 d), MDA content of tested Tall fescue without application silicon fertilizer was much higher than that of tested Tall fescue with application silicon fertilizer; MDA content of tested Tall fescue declined differently with increasing silicon fertilizer concentration, whatever, MDA content of tested Tall fescue for FWC50 was lower than that of tested Tall fescue for FWC75 and FWC100, At the end of drought stress (30 d), MDA content of tested Tall fescue for Si56 was relative low. Drought exercise and silicon fertilizer can enhance drought resistance of tested Tall fescue.
引文
[1]白宝璋,张宪政,植物生理学[M].北京:中国科学技术出版社,1994,241.
    [2] Jiang Y, Huang B. Effects of drought or heat stress alone and in combination on Kentucky bluegrass [J]. Crop Science, 2000, 40: 1358-1362.
    [3] Huang B, Fry J D. Root anatomical, physiological, and morphological responses to drought stress for Tall fescue cultivars [J]. Crop Science, 1998, 38:1017-1022.
    [4] Jiang Y, Huang B. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation [J]. Crop Science, 2001, 41: 436-442.
    [5] Huang B, Fry J, Wang B. Water relations and canopy characteristics of Tall fescue cultivars during and after drought stress [J]. HortScience, 1998, 33: 837-840.
    [6] Huang B, Liu X, Fry J D. Shoot physiological responses of two bentgrass cultivars to high temperature and poor soil aeration [J]. Crop Science, 1998, 38: 1219-1224.
    [7] Xu Q, Huang B. Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass [J].Crop Science, 2001, 41: 127-133.
    [8] Xu Q, Huang B. Lowering soil temperatures improves Creeping bentgrass growth under heat stress [J]. Crop Science, 2001, 41: 1878-1883.
    [9]侯桂兰,李云侠,张军辉.干旱胁迫对冷季型草坪草地上部分影响的研究[J].东北农业大学学报,1999, (3): 249-253.
    [10]梁慧敏,夏阳,杜峰等.盐胁迫对两种草坪草抗旱生理生化指标影响的研究[J].中国草地,2001, 23 (5): 27-30.
    [11]马祎,王彩云.几种引进冷季型草坪草的生长及抗旱性生理指标[J].草业科学,2001,18(2): 57-61.
    [12] Nilsen, ET, and D M.Orcutt.Water limitation, 1996, p. 322-361,In E.T.Nilsen and D.M.Orcutt,eds. Physiology of plants under stress:Abiotic factors.John Wiley & Sons, Inc.
    [13]张玉龙,王喜艳,刘鸣达.植物硅素营养与土壤硅素肥力研究现状和展望[J].土壤通报,2004,35:785-788.
    [14]夏石头,萧浪涛,彭克勤.高等植物中硅元素的生理效应及其在农业生产中的应用[J].植物生理学通讯,2001,37:356-360.
    [15] Carrow R N., Drought resistance aspects of turfgrass in the southeast: evapotraspiration and crop coefficients [J].Crop Science, 1995, 35:1685-1690.
    [16]赵艳,孙吉雄,王兆龙.狗牙根和结缕草部分品种的抗旱性能评价[J].上海交通大学学报(农业科学版), 2008, 26(3): 183-187.
    [17]张岩,李会彬,边秀举,等.水分胁迫条件下几种狗牙根草坪草抗旱性比较研究[J].华北农学报, 2008, 23 (增刊): 150-152.
    [18]杜继琼,曹社会.二种冷季型草坪草对土壤干旱胁迫的生理反应[J].西北农业学报,2007,16 (3): 60-63.
    [19] Leafe E L, Jones M B, Stiles W. The physiological effects of water stress on perennial ryegrass in the field [A]. Wojahn E, Thons H. Proceedings of theⅧinternational grassland congress,Leipzig 1977,Vol.1.[C]. Berlin: Akzdemie Verlag.1980, 253-260.
    [20]李艳秋,尹伟伦,夏新莉.干旱胁迫下四种冷季型草坪草的生理反应[J].草地学报,2007,15(2): 164-167.
    [21]卢少云,陈斯平,陈斯曼,等.三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的变化[J].园艺学报, 2003, 30(3): 303-306.
    [22]王钦,金林梅.草坪植物对干旱逆境的效应[J].草业科学, 1993, 10 (5) : 54-59.
    [23]余晓华,张巨明,王明祖,等.四种结缕草属草坪草对土壤干旱胁迫的响应及抗旱性研究[J].北方园艺2008, (5):121-124.
    [24] Huang B,Hongwen G. Root physiological characteristics associated with drought resistance in tall fescue cultivars [J].Crop Science, 2000, 40:196-203.
    [25] Carrow R N. Drought avoidance characteristics of diverse tall fescue cultivars[J].Crop Science, 1996, 36: 371-377.
    [26] Aronson L J, A J Gold,R J Hull.Cool-season turfgrass response to drought stress[J].Crop Science, 1987, 27: 1261-1266.
    [27]刘振虎,李魁英,张爱峰,等.草坪草需水抗旱研究概述[J].中国草地,2001,23(4):66-68.
    [28] Huang B,Duncan R R,Carrow R N. Drought-resistance mechanism s of seven warm-season turfgrasses under surface soil drying: Root aspects[J].Crop Science, 1997,37:1863-1869.
    [29] Huang B,Duncan R R,Carrow R N.Root spatial distribution and activity of four turfgrass species in response to localized drought stress[J].Intern.Turfgrass Soc.Research,1997,8:681-687.
    [30] Keeley S J, Koshi A J. Drought avoidance in the Kentucky bluegrass [A]. Agronomy abstracts[C].WI: Madion,1995,154.
    [31] Huang B.Water relations and root activities of Buchloe dactyloides and Zoysia japonica in response tolocalized soil drying [J].Plant and Soil,1999,208:179-186.
    [32]谭雯,刘卫东,武畅,等.低温胁迫下暖季型草坪草质膜透性比较研究[J].河南林业科技, 2008, 28(1):10-12.
    [33]高宁,高辉远,石定遂,等.16种(品种)寒地型草坪草抗旱性及评定方法初探[J].八一农学院学报, 1995,(1):68-72.
    [34]周兴元,曹福亮.NaCl胁迫对几种暖季型草坪草的影响[J].草原与草坪,2005,14: 25-26.
    [35]孙彦,杨青川,张英华.不同草坪草种及品种苗期抗旱性比较[J].草地学报,2001, 9(1):16-20.
    [36] Asada K.The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiology. Plant Mol.Bio.1999, 50: 601-639.
    [37] Xiaozhong Liu, and Bingru Huang. Heat Stress Injury in Relation to Membrane Lipid Peroxidation in Creeping Bentgrass[J]. Crop Science, 2000, 40: 503-510.
    [38]王爱国.丙二醛作为膜脂过氧化指标的探讨[J].植物生理学通讯,1986(2): 55-18.
    [39] Jiang Y W, and Huang B R. Drought and Heat Stress Injury to Two Cool-Season Turfgrasses in Relation to Antioxidant Metabolism and Lipid Peroxidation [J]. Crop Science, 2001, 41: 436-442.
    [40] Michelle DaCosta and Bingru Huang. Changes in Antioxidant Enzyme Activities and Lipid Peroxidation for Bentgrass Species in Response to Drought Stress [J]. Hort. Science,2007,132: 319-326.
    [41] Fu J,Dan B.Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress[J].Environmenyal and Experimental Botany,2001,45(2):105-114.
    [42] Scandalis J G.Oxygen stress and superoxide dismutases [J].Plant physiology, 1993,101: 7-12.
    [43]周兴元,曹福亮,陈国华.四种暖季型草坪草几种生理指标与抗旱性的关系研究[J].草原与草坪,2003,(4):29-32.
    [44]杨国伟,张秀清,苏东海,等.水分胁迫下几种冷季型草坪草抗旱性研究[J].河南农业科学,2004, (2): 38-42.
    [45]杨特武,鲍健寅.干旱胁迫下白三叶器官生理特征变化及其SOD在抗旱中的作用[J].中国草地, 1997,19(4): 55-61.
    [46]籍越,孔德政,杨芳绒,等.不同品种草坪草抗旱性的初步研究[J].河南科学,2000,18(4):412-414.
    [47]周兴元,曹福亮,陈国华.两种暖季型草坪禾草对土壤持续干旱胁迫的生理反应[J].草业学报, 2004,13(1): 84-88.
    [48]高宁,高辉远,石定燧,等.水分胁迫下两种草坪草的渗透调节与抗旱性的关系[J].中国草地, 1995,17(4): 44-48.
    [49] Yordanov I,Velikova V,Tsonev T. Plant responses to drought, acclimation, and stress tolerance[J].Photosynthetica,2000,38(1):171-186.
    [50] Huang B, and Gao H. Physiological responses of diverse tall fescue cultivars to drought stress [J]. HortScience, 1999, 34(5):897-901.
    [51] Wang Zhaolong, Huang Bingru. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress [J]. Crop Science, 2004,(5):1729-1736.
    [52]高素华,郭建平,周广胜.羊草叶片对高CO2浓度和干旱胁迫的响应[J].草地学报,2001, 9(3):202-206.
    [53]程林梅,李占林,高洪文.水分胁迫对白羊草光合生理特性的影响[J].中国农学通报,2004,20(6): 231-233.
    [54]葛晋纲,蔡庆生,周兴元,等.土壤干旱胁迫对2种不同光合类型草坪草的光合特性和水分利用率的影响[J].草业科学,2005,22(4): 103-107.
    [55]侯桂兰,李云侠,张军辉,等.干旱胁迫对冷季型草坪草地上部分影响的研究[J].东北农业大学学报,1999,30(3):249-253.
    [56] Perdomo P,Murphy J A, Berkowitz G A. Physiological changes associated with performance of Kentucky bluegrass cultivars during summer stress[J].Hort Science,1996,31(7):1182-1186.
    [57]王钦,金岭梅.草坪植物对干旱逆境的效应[J].草业科学,1993,10(5):54-59.
    [58] Abraham, E. M., B. Huang, et al. Evaluation of Drought Resistance for Texas Bluegrass, Kentucky Bluegrass, and Their Hybrids [J]. Crop Science,2004, 44(5): 1746-1753.
    [59]李亚,刘建秀,向其伯.结缕草属种质资源研究进展[J].草业学报,2002,11:7-14.
    [60] Jiang Y, Huang B.Protein alteration s in response to water stress and ABA in Tall fescue [J].Crop Science, 2002, 42(1):202-207.
    [61]卢少云,陈斯曼,陈斯平,等.ABA、多效唑和烯效唑提高狗牙根抗旱性的效应[J].草业学报,2003, 12(3):100-104.
    [62]王艳,刘育俭,周子牛.腐植酸生物有机复合肥在天坛公园冷季型草坪中的应用[J].北京园林,2005, 21(1): 37-40.
    [63]焦晋川,陈琳.钾肥对多年生黑麦草抗旱性的影响[J].草业科学,2008,25(8):139-143.
    [64]谭晓荣,伏毅,戴媛.干旱锻炼提高小麦幼苗抗旱性的抗氧化机理研究[J].作物杂志,2009,5:19-23.
    [65] Iannucci A,Rascio A,Russo M,et al. Physiological responses to water stress following a conditioning period in berseem clover[J].Plant and Soil,2000,223:217-227.
    [66]蔡德龙.硅肥及施用技术[M].北京:台海出版社,2001.
    [67] Matichenkov V V, Calvert D V, Snyder G H. Prospective of silicon fertilizer for citrus in florida Proc.2002,114:56-62.
    [68] Savant N K,Korndorfer G H,Datnoff L E,et al,. Silicon nutrition and sugarcane Production: A review. Plant Nutrition,1999,22:1853-1903.
    [69] Marschner H. Mineral nutrition of higher Plant[M]. San Diego:Academic Press lnc,1995.
    [70] Jones H P, Handreck K A. Studies of silica in the oat Plant.Ⅲ.Uptake of silica from soils by the Plant[J]. Plant and Soil,1965,23(1):79-96.
    [71] Lewin J, Reimann B E F. Silicon and plant growth. Annu[J].Rev. Plant Physiology,1969,20:289-304.
    [72] Fox R L,Silva J A,Younge O R, et al,.Soils and plant silicon and silica response by sugarcane[J]. Soils Science.Soc.Amer. Proc.1967,31:775-779.
    [73]何电源.土壤和植物中的硅[J].土壤学进展,1980,5-6:1-10.
    [74]梁永超,张永春,马同生.植物的硅素营养[J].土壤学进展,1993,21:7-14.
    [75]孙羲.土壤养分、植物营养与合理施肥[M].北京:农业出版社,l983.
    [76]饶立华,覃莲祥,朱玉贤等.硅对杂交水稻形态结构和生理的效应[J].植物生理学通讯,l986,22:20-24.
    [77]蔡德龙.中国硅营养研究与硅肥应用[M].郑州:黄河水利出版社,2000.
    [78]杜彩琼,林克惠.硅素营养研究进展[J].云南农业大学学报,2002,17:192-196.
    [79]毛知耘.肥料学[M].北京:中国农业出版社,l997.
    [80]肖千明,马兴全,娄春荣,等.玉米硅的阶段营养与土壤有效硅关系研究[J].土壤通报, 1999,30:185-188.
    [81] Epstein E.The anomaly of silicon in plant biology[J]. Proc.Natl.Acad.Sci.USA 1994,91:11-17.
    [82]邹邦基.植物的营养[M].北京:农业出版社,1985.
    [83]刘文国,王林权,白延红.植物体有益硅元素的研究进展[J].西北植物学报,2003,23:2248-2253.
    [84]张翠珍,邵长泉,孟凯等.小麦吸硅特点及应用效果的研究[J].山东农业科学,1998,4:29-31.
    [85]贺立源,江世文.小麦施用硅肥效应的研究[J].土壤肥料,l999,3:8-11.
    [86]朱小平,王义炳,李家全.水稻硅素营养特性的研究[J].土壤通报,1995,26:232-233.
    [87]陈兴华,梁永超,马同生.小麦对硅素养分吸收的初探[J].土壤肥料,1991,5:38-40.
    [88]王荔军,李敏,李铁津等.植物体内的纳米结构SiO2[J].科学通报,2001,46:625-632.
    [89]吴英,魏丹,高洪生.硅在水稻营养中的作用及其有效条件的研究[J].土壤肥料,l992,1:41-43.
    [90]罗红艺,景红娟.植物营养中新的必需元素-钠、镍、硅[J].高等函授学报(自然科学版),2002,15(3):42-45.
    [91]潘瑞炽.植物生理学(第四版)[M].北京:高等教育出版社,2004,29.
    [92]马朝红,杨利,胡时友.土壤供硅能力与硅肥应用研究进展[J].湖北农业科学,2009,48(4):987-989.
    [93]刘平,何继英,贺宁等.硅浓度对水稻生长、含水量、根冠比和过氧化物酶活性的影响[J].贵州农业科学,1987,3:69.
    [94]马同生.我国水稻土硅素养分与硅肥施用现状[J].土壤学进展,1990,18:15.
    [95]魏成熙,欧阳昌亭,朱正国.水稻施用硅钙肥的效果研究[J].耕作与栽培,1993,3:49-51.
    [96]高尔明,赵全志.水稻施用硅肥增产的生理效应研究[J].耕作与栽培,1998,5:20-28.
    [97] Deren C W,Datnoff L E, Snyder G H et al., Silicon concentration,disease response, and yield components of rice genotypes grown on flooded organic histosols[J].Crop Sci,1994,34:733-737.
    [98] KomdoerferG, Datnoff L,Correa G. Infiuenee of silicon on grain discoloration and upland rice grown on four Savanna soils of Brazil[J].Plant Nutrion,1999,22:93-102.
    [99]陆景陵.植物营养学(上) [M].北京:中国农业大学出版,1994,79-82.
    [100]纪秀娥,张美善,于海秋,等.植物的硅素营养[J ] .农业与技术, 1998. 11-13.
    [101]白宝璋,等.植物生理学[M].北京:中国科学技术出版社,1994,43-48.
    [102]张中星,程滨,李荣田.钢渣肥对玉米增产效果研究[J].土壤通报,1997,28 (2):82-84.
    [103]叶春,徐进,李卓士.高效硅肥对草莓的使用效果初报.硅肥应用技术与前景[M].北京:中国农业科技出版社,1994.
    [104]蔡德龙,牛安妮.硅肥对甘蔗的增产效果研究[J ].地域研究与开发,1997,16 (1):94-96.
    [105]夏圣益,王歧山.棉花硅肥效应研究[J].中国棉花,1998,25 (8):6-7.
    [106] Shiue J J.Criteria for predicting silicate slag demand for sugarcane [J].Rep. Taiwan Sug. Res. Inst.1973, 59:15-24.
    [107] Hurney A P. A progress reports on calcium silicate investigation[M].In:Proc. of Conf . of Queensland Soc. of Sugar Cane Tech-nol. Brisbane,Australia,1973, (40):109-113.
    [108]李发林,叶光,张锦元,等.1995年云南省烟草施用硅肥试验研究.硅肥的开发与研究[M].昆明:云南科技出版社,1999.
    [109]蔡德龙,钱发军,邓挺,等.硅肥对苹果生长产量及品质影响的研究[J].地域研究与开发,1995,14 (2):64-66.
    [110]陈常友,蔡德龙,钱发军,等.硅肥在塑料大棚内春黄瓜上的增产效果研究[J].地域研究与开发, 1997,16:73-75.
    [111]邢雪荣,张蕾.植物的硅素营养研究综述[J].植物学通报,1998,2:22-40.
    [112]刘树堂,韩效国,东先旺,等.硅对冬小麦杭逆性影响的研究[J].莱阳农学院学报, 1997,14:21-25.
    [113]崔德杰,王月福,刘彦军,等.冬小麦硅钾肥施用效应的研究[J].土壤通报,1999,30:121-122.
    [114] Yoshida,S.,Kitagishi. Histohemistry of silicon in the rice plant [J].Soil Sic.Plant Nutrition,1962, 8(1):15-21.
    [115] Agarie S.,H.Uchida,W.agata,et al. Effects of silicon on Transpiration and leaf conductance in rice plants[J].Plant Prod. Science, 1998,(1):89-95.
    [116]孙毅,高玉山,任军,等.硅肥的抗旱增产作用[J].国土与自然资源研究,2002,(1):48-49.
    [117]任军.全国玉米高产栽培技术学术研讨会论文集[C].北京:科学出版社,1998.251-255.
    [118]李清芳,马成仓,尚启亮.干旱胁迫下硅对玉米光合作用和保护酶的影响[J].应用生态学报, 2007,18(3):531-536.
    [119]徐景梅,张素萍,魏保权,等.硅肥对高粱耐旱性的影响[J].现代农业科技,2007,19:132-133.
    [120] Luxa,Luxova M,Hatttori T,et al,.Silicification in sorghum(Sorghum bicolor)cultivars with different drought tolerance[J].Physiologia Plantarum,2002,115(1):87-92.
    [121] Samuels A L,Glass A D M,Ehret D L,et a1,.The effect of silicon supplementation on cucumber fruit:Changes in surface characteristics[J].Ann Botany,1993,72:433-440.
    [122]李清芳,马成仓,李韩平,等.土壤有效硅对大豆生长发育和生理功能的影响[J].应用生态学报,2004,15(1):73-76.
    [123] Ma C C,Li Q F,Gao Y B,et al,.Effects of silicon application on drought resistance of cucumber plants[J].Soil Science and Plant Nutrition,2004,50(5):623-632.
    [124] Gong H J,Zhu X Y,Chen K M,et al,.Silicon alleviates oxidative damage of wheat plants in pots under drought[J].Plant Science,2005,169(2):313-321.
    [125]宫海军,陈坤明,王锁民,等.植物硅营养的研究进展[J].西北植物学报,2004,24(12):2385-2392.
    [126] Taiichiro H,Shinobu I,Hideki A,et al.Application of silicon enhanced drought tolerance in Sorghum bicolor[J].Physiologia Plantarum,2005,123(4):459-466.
    [127] Gao X P,Zou C Q,Wang L J,et al,. Silicon emproves water use efficiency in maize plants[J].Plant Nutrition,2004,27(8):1457-1470.
    [128]束良佐,刘英慧.硅对盐胁迫下玉米幼苗叶片膜脂过氧化和保护系统的影响[J].厦门大学学报:自然科学版,2001,40(6):1295-1300.
    [129]徐呈祥,马艳萍,胡恒康,等.硅对盐胁迫下金丝小枣生长与生理的效应[J].西北农林科技大学学报:自然科学版,2005,33(5):142-146.
    [130]陈阳,王贺,张福锁,等.硅盐互作下小獐毛植物体内元素分布及生理特性的研究[J].植物生报, 2003,27(2):189-195.
    [131]房江育,王贺,张福锁.硅对盐胁迫烟草悬浮细胞的影响[J].作物学报,2003,29(4):610-614.
    [132] Winslow MD,Okada K,Correa-Victoria F. Silicon deficieney and the adaptation of tropical rice ecotypes[J].Plant and Soil,1997,188:239-248.
    [133]冯东昕,李宝栋.可溶性硅在植物抵御病害中的作用[J].植物病理学报,1998,28(4):293-297.
    [134] Menzies J,Bowen P,Ehret D.Foliar application of potassium silicate reduces severity of powdery mildew on cucumber,muskmelon,and zucchini squash[J].Am Soc Hortic Science,1992,117:902-905.
    [135]魏国强,朱祝军,李娟,等.硅和白粉菌诱导接种对黄瓜幼苗白粉病抗性影响的研究[J].应用生态学报,2004,15(11):2147-2151.
    [136]冯元琦.硅肥应成为我国农业发展中的新肥料[J].化肥工业,2000,27(4):9-l1.
    [137] Elawad S H, Street J J,Gascho G J,et al,.Response of sugarcane to silicate source and rate:Growth and yield[J].Agronmy,1982,74(3):481-484.
    [138]李忠良.雷山县水稻施硅同田对比试验[J].植物医生,2004,17(3):30-31.
    [139] Ma J F.Role of organic acids in detoxification of aluminiumin higher plants[J].Plant Cell Physiology,2000,41:383-390.
    [140]张兴梅,邱忠祥,刘永菁.春小麦硅肥效应的研究[J].土壤肥料,1997(1):39-45.
    [141] Zsoldos F,Vashegyi A,Pecsvaradi A,et al,.Influence of silicon on aluminium toxicity in common and durum wheats[J].Agronomie,2003,23(4):349-354.
    [142] LiangYC,Ma T S,J.LG, FengY J.Silicon availability and response of rice and wheat to silicon in calcareous soils[J].Commun Soil Sci, and Plant Ana 1994,.25:2285-2297.
    [143]刘鸣达,张玉龙,王耀晶,等.施用钢渣对水稻土pH、水溶态硅动态及水稻产量的影响[J].土壤通报,2002,33:47-50.
    [144]刘鸣达,张玉龙.水稻土硅素肥力的研究现状与展望[J].土壤通报,2001,32:187-192.
    [145]张伟,王文党.吉林省东部水稻土有效硅状况及硅肥效应研究[J].土壤通报,l994,25:37-39.
    [146]张效朴,臧惠林.粉煤灰硅钙肥的增产原因及其有效施用条件[J].土壤,1986,18:67-78.
    [147]赵同发.水稻硅肥施用的效果[J].土壤通报,1987,18:44-45.
    [148]秦遂初,李延,徐照本,等.造气煤渣作为硅肥对水稻的效果[J].化肥工业,1994,21:32-34.
    [149]马同生.硅肥的研制与应用[J].化肥工业,l991,18:24-26.
    [150]马宗仁,阳承胜,李存焕.高尔夫球场草坪施肥技术初探[M].北京:中国农业出版社,2002.
    [151]陈雅君,祖元刚,刘慈民,等.草地早熟禾叶表超显微结构与抗旱性的关系[J].草地学报,2005, 13:339-343.
    [152]萧洪东,喻敏,王惠珍,等.硅对草坪草狗牙根抗两种真菌能力的影响[J].江苏农业科学, 2006,1:57-59.
    [153]萧洪东,喻敏,王惠珍.硅对草坪草揭斑病杭性的研究[J].湖北农业科学,2006, 45:73-75.
    [154]王晨,左昆,柴琦,等.干旱条件下硅对草地早熟禾生长初期的影响[J].草业科学, 2008,25(7):114-117.
    [155]王生银,李泽西,白贺兰,等.硅肥提高草地早熟禾抗旱性的效应及机制[J].草业科学, 2008,25(2):116-120.
    [156]王厚鑫,刘鸣达,张惠,等.施硅对草地早熟禾生长特性和抗旱性的影响[J].北方园艺,2007, 9: 135-137.
    [157] Richardson, Michael D. et al,. Drought Tolerance and Rooting Bluegrass Cultivars [J]. Crop Science, 2001, 48: 2429-2436.
    [158]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000,11-12.
    [159]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000,159-160.
    [160]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000,62-63.
    [161] Knievel,D.P. Procedure for estimating ratio of live to dead root dry matter in root core samples [J].Crop Science,1973.13:124-126.
    [162] Joslin J D, and.Henderson G S. The determination of percentages of living tissue in woody fine root samples using triphenyltetrazolium chloride [J]. Forest Science,1984,30:965-970.
    [163] GiannopolitisC N,and Ries S K.Superoxide dismutase. I. Occurrence in higher plants [J].Plant Physiology,1977,59:309-314.
    [164] Chance B, and Maehly AC. Assay of catalase and peroxidase [J].Methods Enzymology,1955,2: 764-775.
    [165] Zhang J X, and Kirkham M B. Drought-Stress-Induced Changes in Activities of Superoxide Dismutase, Catalase, and Peroxidase in Wheat Species [J]. Plant Cell Physiology,1997,35 (2):785-791.
    [166] Huang B, Duncan R R, Carrow R N. Drought-resistance mechanisms of seven warm-season turfgrassunder surface soil drying: I. shoot response[J]. Crop Science, 1997,37:1858-1863.
    [167] Kim K S, Beard J B.Comparative turfgrass evapotranspiration rates and associated plant morphological characteristics [J]. Crop Science,1988,28:328-331.
    [168] Ekern P S. Evapotranspiration by bermudagrass sod in Hawaii[J].Agronmy,1966,58:387-390.
    [169] Biran I B. Bravdo I, Bushkin H,et al,. Water consumption and growth rate of 11 turfgrasses as affected by mowing height, irrigation frequency, and soil moisture [J].Agronmy,1981,73: 85-90.
    [170] William R.Consumption water use by sub-irrigated turfgrass under desert condition [J].Agronmy, 1982,74:419-423.
    [171] AronsonLJ,.Gold A J, and Hull R J.Cool-season turfgrass responses to drought stress [J].Crop Science, 1987,27:1261-1266.
    [172] Feldhake C M. Turfgrass Evapotranspiration.II. Responses to Deficit Irrigation [J]. Agronmy,1984,76: 85-89.
    [173] Carrow RM,.Shearman RC ,and Watson J R.1990.Turfrgass.P.889-919.In Stewatr B A and Nielsen D R. (ed.) Irrigation of agriculture crops.Agron.Monogr.30,ASA, CSSA,andSSSA,Madisin,WI.
    [174] Bowman DC,and Macaulay L.Comparative evapotranspiration rates of tallfescue cultivars[J]. HotrScience,1991,26:122-123.
    [175] Beard J B,Green R K,and Sifers S I.Evaportanspiration and liaf extensionrates of 24 well-watered, turf-type Cynodon genotypes [J]. HotrScience,1992,27:986-988.
    [176] Gong H J, Chen K M, Chen G C, et al,.Effects of silicon on the growth of wheat under drought [J]. Plant Nutrition,2003,26(5):1055-1063.
    [177]蒋明义.水分亏缺下植物细胞延伸生长受抑的原初机制[J].植物生理学通讯,1992,(4):301-304.
    [178]周兴元,曹福亮,陈国华.两种暖季型草坪禾草对土壤持续干旱胁迫的生理反应[J].草业学报, 2004,13(1):84-88.
    [179] Knneth B Marcum.Cell membrane thermostability and whole-plant heat tolerance of Kentucky Bluegrass [J].Crop Science,1998,38(4):1214-1218.
    [180]何亚丽,王惠林,沈剑,等.冷地型草坪草耐热机理的研究II.5种冷地型草坪草离体叶片在骤然高温、干旱下细胞膜透性的变化及其抗性鉴定[J].上海农学院学报,1997,15(3):209-214.
    [181] Cengiz K, Levent T, David H. Effect of Silicon on Plant Growth and Mineral Nutrition of Maize Grown Under Water-Stress Conditions [J]. Plant Nutrition,2006,29(8):1469-1480.
    [182] Fedro S Z, Grady L M, Zhang W X.. Reduced Irrigation of St. Augustine grass Turfgrass in the Tampa Bay Area [M]. Gainesville:University of Florida Extension,2000.
    [183]汪昊磊,苏德荣,郑芳芳.水分与草坪质量关系研究进展[J].草业科学,2008,25(7):104-108.
    [184]吴志华,曾富华,马生健,等.水分胁迫下植物活性氧代谢研究进展(综述Ⅰ)[J].亚热带植物科学, 2004,33(2):77-80.
    [185]李广敏,唐连顺,商振清,池书敏.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J].北农业大学学报,1994,17 (2):1-5.
    [186] Zhang J X, and Kirkham M B. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species[J]. Plant Cell Physiology,1997,35(2):785-791.
    [187]金忠民.干旱胁迫对三种冷季型草坪草保护酶的影响[J].北方园艺,2008,(9):120-122.
    [188] Willekens H, et al.Differential expression of catalase genes is Micotiana plumbaginifolia [J].Proc Natl Acad Sic USA,1994,91:10450-10454.
    [189]白宝璋,徐克章,沈军队.植物生理学[M].北京:中国农业科技出版社,2003,244-245.
    [190] Liu X Z, Huang B R. Heat Stress Injury in Relation to Membrane Lipid Peroxidation in Creeping Bentgrass [J].Crop Science,2000,40:503-510.
    [191] Huang B, Liu X, Xu Q. Supraoptimal soil temperature induced oxidative stress in leaves of creeping bentgrass cultivars differing in heat tolerance [J].Corp Science,2001,41:430-435.
    [192] Liang Y C.Effect of silicon on enzyme activity,and sodium,potassium and calcium concentration in barley under salt stress[J].Plant and Soil,1999,209:217-224.
    [193] Schmidt R E, Zhang X, Chalmers D R. Response of photosynthesis and superoxide dismutase to silica applied to creeping bentgrass grown under two fertility levels[J]. Plant Nutrition,1999, 22:1763-1773.
    [194] Sharp R E, Davies W J.Root growth and water uptake maize plants in drying soil[J]. Experimental. Botany,1985,36:1441-1456.
    [195]陈善福,舒庆尧.植物耐干早胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5): 555-560.
    [196]周久亚,刘建秀,陈树元.草坪草抗旱性研究概述[J].草业科学,2002,19(5):61-66.
    [197]马成仓,李清芳,束良佐,等.硅对玉米种子萌发和幼苗生长作用机制初探[J].作物学报, 2002,28(5):665-669.
    [198]崔德杰,高静,宋宏伟.Influence of application silicon potassium on drought resistant of winter wheat[J].土壤肥料,2000,(4):27-29.
    [199] Levitt J. Responses of plant to environmental stresses [M].NewYork: Academic Press,1972.
    [200] Dale J E.The control of leaf expansion [J].Ann Rev Plant Physiology,1988,39:267-295.
    [201] Tyree M T, Jarvis P G. Water in tissues in cells.In encyclopedia of plant physiology [M].Berlin: Springer erlag,1982.36-37.
    [202] Iannucci A,Rascio A,Russo M,et al.Physiological responses to water stress following a conditioning period in berseem clover[J].Plant and Soil,2000,223:217-227.
    [203] Jiang Y, Huang B.Physiological responses to heat stress alone or in combination with drought: a comparison between tall fescue and perennial ryegrass [J].Hortsci, 2000, 36 (40):682- 686.
    [204] Jiang Y,Huang B.Osmotic adjustment and root growth associated drought preconditioning enhanced heat tolerance in Kentucky bluegrass[J].Crop Science,2001,41:1168-1173.
    [205] Abraham E M,Huang B R,Bonos S A,and Meyer W A. Evaluation of Drought Resistance for Texas Bluegrass,Kentucky Bluegrass,and Their Hybrids [J].Crop Science,2004, 44:1746-1753.
    [206]梁国玲,周青平,颜红波,等.羊茅属4种牧草苗期抗旱性鉴定[J].草地学报,2009,17 (2):206-212.
    [207]何亚丽,王惠林,沈剑,等.冷地型草坪草耐热机理的研究II.5种冷地型草坪草离体叶片在骤然高温、干旱下细胞膜透性的变化及其抗性鉴定[J].上海农学院学报,1997,15(3):209-214.
    [208] Sharp R E,W J Davies. Regulation by root sand shoots of water-stressed maize plant [J].Planta, 1989,147:43-49.
    [209] Fedro S Z, Grady L M, Zhang W X.. Reduced Irrigation of St. Augustine grass Turfgrass in the Tampa Bay Area [M].Gainesville:University of Florida Extension,2000.
    [210]陈雅君,吴艳华,夏忠强.水分胁迫下草地早熟禾不同品种保护酶活性变化[J].四川草原, 2005,6:1-2.
    [211] Van Breusegem,F.,M.Van Montagu,and D.Inze. Engineering stress tolerance in maize [J].Outlook on Agriculture,1998,27:115-124.
    [212] Girotti A.W. Photodynamic lipid peroxidation in biological systems [J].Photochemistry and photobiology,1990,51:197-509.
    [213] Huang B, Liu X, Xu Q. Supraoptimal soil temperature induced oxidative stress in leaves of creeping bentgrass cultivars differing in heat tolerance [J].Corp Science,2001, 41:430-435.
    [214]郭玉春,余高镜,曾建敏,等.温度胁迫下外引高羊茅活性氧代谢与细胞膜透性的变化[J].草业科学. 2003,20(2):4-8.
    [215] Knneth B M. Cell memebrane thermostability and whole-plant heat tolerance of Kentucky Bluegrass [J]. Crop Science,1998,38 (4):1214-1218.
    [216] Liang Y C. Effect of silicon on enzyme activity,and sodium,potassium and calcium concentration in barley under salt stress[J].Plant and Soil,1999,209:217-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700