用户名: 密码: 验证码:
RNA干扰抗矮花叶病转基因玉米培育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米矮花叶病是由玉米矮花叶病毒感染引起的病害,在全国及世界各玉米产区均有流行,对玉米生产危害严重。目前,玉米矮花叶病的防治主要有调整播期、清除杂草和拔除病株等农艺措施和传播媒介昆虫的化学药剂控制。但是,由于玉米矮花叶病毒主要靠蚜虫以非持续性的方式传播,这些防治措施不仅增加生产成本,而且防治效果欠佳,往往不能有效解除矮花叶病对玉米生产的危害。选育推广抗病品种是防治玉米矮花叶病最为经济的途径。但是,由于抗病种质资源有限,抗病性的遗传性质复杂,在常规抗病育种中很难将抗病性与产量、品质等优良的农艺性状有机结合,培育出满足农业生产需要的抗病品种。
     由双链RNA介导的RNA干扰,可特异性地降解细胞内与双链RNA同源的mRNA,限制同源基因的表达。本研究根据RNA干扰的原理,克隆玉米矮花叶病毒外壳蛋白(CP)基因和P1蛋白基因不同长度的片段,构建CP和P1基因反向重复序列植物表达载体,通过农杆菌介导法转化玉米自交系“18-599”的胚性愈伤组织,筛选分化再生植株,经特异PCR扩增和Southern杂交鉴定后,对T2代转基因株系进行田间接种抗病性鉴定,并用荧光定量PCR和双抗体夹心酶联免疫吸附分析检测转基因株系与对照玉米矮花叶病基因表达量和病毒蛋白积累量,以期创造高抗矮花叶病的转基因种质材料,并为转基因抗病品种培育提供参考。
     1.玉米矮花叶病毒基因RNA干扰表达载体构建
     在GenBank数据库中,对玉米矮花叶病毒的CP基因和P1基因进行序列同源性分析,分别选取CP基因长度为100和404 bp,P1基因长度为150和451 bp的保守序列,体外化学合成,通过PCR扩增引入限制性酶切位点,限制性酶切后定向克隆至中间载体pSK-int,构建反向重复序列结构。再经限制性酶切后,分别插入植物表达载体pCUbi1390和pCUbi1300,构建玉米矮花叶病毒基因RNA干扰表达载体pASC100、pASC404、pASP150和pASP451。
     2.玉米胚性愈伤组织的转化与再生植株的分子检测
     以玉米自交系“18-599”的未成熟胚为外植体,诱导培养胚性愈伤组织,建立转基因受体系统,用农杆菌介导法转化,潮霉素抗性培养基梯度筛选后分化再生植株。从pASC100、pASC404、pASP150和pASP451四个表达载体的抗性愈伤,分别分化出68、91、46和153个再生植株,特异PCR检测有28、33、18和20个T0代植株表现阳性,Southern杂交检测有21、20、9和17个T1代株系表现阳性,大多数为单拷贝插入。
     在实验过程中,对基于N6培养基的玉米愈伤组织分化再生技术作了改进。在再生培养基中添加低浓度(0.25 mg/L)烯效唑(S3307)和适量(0.5 mg/L) ABT生根粉,对再生植株生根壮苗有促进作用,再生成活率显著提高。
     3.转基因株系抗病性鉴定
     将pASC100、pASC404、pASP150和pASP451四个表达载体转化获得的4、15、9和15个T2代株系按随机区组种植,以非转基因“18-599”、抗病自交系“H9-21”和感病自交系“Mo17”为对照,人工摩擦接种玉米矮花叶病毒,调查发病株率和发病程度,计算病情指数,鉴定各转基因株系的抗病等级。由pASC100转化的4个T2代株系有3个株系表现中度抗性,病情指数显著低于非转基因对照“18-599”,但显著高于抗病对照“H9-21”;在pASC404转化的15个T2代株系中,有6个株系的抗病等级达到抗性水平,其中4个株系的抗性高于抗病对照“H9-21”,但在抗病等级鉴定为感病的4个株系中有2个株系Southern杂交证明外源基因为双拷贝插入;在pASP150转化的9个T2代株系中,有3个株系表现中抗,病情指数显著低于非转基因对照“18-599”,但与抗病对照“H9-21”差异不显著,其余6个株系表现为感病,其中2个株系外源基因为双拷贝插入;由pASP451转化的15个T2代株系抗病性均较“18-599”提高,其中6个株系达到抗性水平,4个株系的抗病等级高于抗病对照“H9-21”,在表现中抗的8个株系中有2个为双拷贝插入,表现感病的1个株系为三拷贝插入。转基因株系的抗病性与插入外源反向重复序列的长度和拷贝数有关。
     4.矮花叶病毒基因在转基因株系中的表达量和蛋白积累量
     田间接种鉴定后,取pASC100、pASC404和pASP451转化的T2代株系及对照顶部第三片叶,提取总RNA,反转录cDNA,实时荧光定量PCR检测矮花叶病毒基因的表达量。矮花叶病毒CP和P1基因在抗病转基因株系及抗病对照“H9-21”中的表达量,明显低于在感病对照“Mo17”和非转基因对照“18-599”中的表达量,病毒基因表达量检测结果与田间抗病性鉴定基本一致。
     田间接种鉴定后,取pASP150转化的T2代株系及对照顶部第三片叶,用双抗体夹心酶联免疫吸附法检测矮花叶病毒蛋白的积累量。矮花叶病毒蛋白在抗病转基因株系及抗病对照“H9-21”中的积累量,明显低于在感病对照“Mo17”和非转基因对照“18-599”中的积累量,病毒蛋白积累量检测结果与田间抗病性鉴定基本一致。
     上述结果表明,用转基因方法导入编码双链干扰RNA的反向重复序列,可提高玉米对矮花叶病的抗性,创造抗病转基因种质材料。
Maize dwarf mosaic virus (MDMV) is a worldwide pathogenic virus causing serious yield loss in maize. Strategies for the management of the virus diseases normally include control of vector population using insecticides, adjusting seedtime, appropriate cultural practices. However, these methods have their own defects and ineffective because of the non-persistent model of virus transmission by aphids. The deployment of resistant germplasm is an environmentally-sustainable and effective way for controlling virus diseases of maize, but a few germplasms could be used. Furthermore, it is time consuming for the reason that identification and development of resistant inbred lines or hybrids need year-to-year inconsistencies in viral disease pressure.
     RNA interference (RNAi) triggered by double-stranded RNA (dsRNA) transcribed from transgenic inverted-repeat sequence is a straight forward way for antiviral defense in plants acting as a natural defense mechanism against invasive viruses, and has been proved to be more efficient to defense against viruses than the tranditional breeding for resistant germplasm. In this dissertation, plant expression vectors containing different lengths of inverted-repeat sequences of MDMV CP and P1 genes were constructed and used to transform maize embryonic calli by Agrobacterium-mediated transformation. Regenerated plants were obtained after selection and differentiation. Transgenic plant lines detected by Specific PCR and Southern blotting were conducted by field inoculated evaluation. The maize dwarf mosaic virus gene expression level and the virus protein were indetified by quantitative real-time PCR (qRT-PCR) and double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). The results about RNA interference-based transgenic maize resistant to maize dwarf mosaic virus were described as follows:
     1. Hairpin RNA (hpRNA) expression vector containing inverted-repeat sequence was constructed to target to CP and PI gene of MDMV
     The MDMV CP and PI gene were confirmed by homologous analysis in GenBank. 100,404 bp conserved CP gene and 150,451 bp P1 gene were selected and synthesized in vitro. Restriction sites were added to the fragments by PCR amplification. The four different length fragments were digested by restriction enzyme then sub-cloned into the vector pSK-int to form the inverted-repeat constructs. The four inverted-repeat constructs were link into plant expression vector pCUbi1390 and pCUbi1300 after appropriate restriction enzyme digestion and the new RNAi vectors were named as pASC100, pASC404, pASP150 and pASP451, respectively.
     2. Transformation of maize embryonic calli and detection of transgenic regenerated plants
     The immature embryos of maize inbred line 18-599 were used to induce embryonic calli. The embryonic calli as transgenic acceptor system were used for Agrobacterium-mediated transformation. Selection medium with different concentration of hygromycin B were utilized to select the resistant embryonic calli, which were transferred to differentiation and regeneration medium.68,91,46 and 153 regenerated plants were obtained from the resistant calli transformed with pASC100, pASC404, pASP150 and pASP451, respectively.28,33,18 and 20 To plants were certified to be positive by PCR detection, and 21,20,9 and 17 T1 plant lines were confirmed with transgene by Southern blotting, thereafter. Most transgenic plant lines with single transgene copy.
     Addition of uniconazole S3307 (0.25 mg/L) and ABT root-promoting powder (0.5 mg/L) in regeneration medium showed a significant improvement of hardening in regenerated plantlets, which were stronger and generated a better fibrous root system than the control. Therefore, regenerated and survival plants have been significantly improved.
     3. Evaluation resistance of the transgenic plant lines
     4.15,9 and 15 T2 plant lines transformed with pASC100、pASC404、pASP150 and pASP451 together with non-tansformed control "18-599", resistance control "H9-21" and susceptible control line "Mo 17"were grown in a randomized block design.The disease incidence and symptom scale were investigated. The disase index was calculated to identify the resistant grades of the transgenic plant lines. Three out of four lines transformed with pASC100 were identified as intermediate resistance (I), the disease index was significantly lower than non-transformed control "18-599" but significantly higher than the resistant control "H9-21"; Six out of the 15 T2 plant lines transformed with pASC404 were identified as resistance and the resistance scale of four lines were higher than the resistance control "H9-21". However, two lines were susceptible with two copies of transgene in Southern blotting; Resistance scale of all the 15 T2 plant lines transformed with pASP451 were improved compared with non-transformed control "18-599" and six lines were identified as resistance. The resistance scale in four out of the six lines was higher than the resistant control "H9-21". In the eight lines detected as middle resistance, there were two lines with double-copy of transgene. While the only one susceptible T2 line with three copies. The results showed that the resistance of the transgenic lines linked with the length of inverted-repeat sequence and the transgene copies.
     4. MDMV gene expression level and its protein in transgenic plant lines
     The third upper leaf of mechanical inoculated transgenic T2 plant lines transformed with pASC100、pASC404、pASP150 and pASP451 together with control maize inbred lines were used to extract total RNA for reverse transcript reaction. The cDNA was used to detect MDMV expression level by real time quantitative PCR (qRT-PCR). The CP and P1 gene expression level in the resistant transgenic lines and resistant control "H9-21" was significantly lower than the susceptible control "Mo 17" and non-transformed control "18-599". The result of detecting the viral gene expression level by qRT-PCR was in accordance with the field inoculated evaluation.
     The virus titer of the third upper leaf of mechanical inoculated T2 plant lines transformed with pASP150 together with the control lines was quantified by DAS-ELISA. The virus titers in the resistant transgenic lines and the resistant control "H9-21" were significantly lower than the susceptible control "Mo 17" and non-transformed control "18-599". The result of detecting the viral titers by DAS-ELISA was in accordance with the field inoculated evaluation.
引文
Abel P, Nelson R, De B, Hoffmann N, Rogers S, Fraley R, Beachy R. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science,1986, 232(4751):738-743
    Abhary MK, Anfoka GH, Nakhla MK, DP M. Post-transcriptional gene silencing in controlling viruses of the tomato yellow leaf curl virus complex. Arch Virol,2006,151:2349-2363
    Aliyari R, Ding SW. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev,2009,227:176-188
    Angaji SA, Hedayati SS, Poor RH, Poor SS, Shiravi S, Madani S. Application of RNA interference in plants. Plant Omics Journal,2010,3(3):77-81
    Armstrong C. The first decade of maize transformation:a review and future perspective. Maydica, 1999,44(1):101-109
    Audy P, Palukaitis P, Slack S, Zaitlin M. Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Molecular Plant Microbe Interactions,1994,7(1):15-22
    Azhakanandam K, McCabe M, Power J, Lowe K, Cocking E, Davey M. T-DNA transfer, integration, expression and inheritance in rice:effects of plant genotype and Agrobacterium super-virulence. Journal of Plant Physiology,2000,157(4):429-439
    Bai Y, Guo Z, Wang X, Bai D, Zhang W. Generation of double-virus-resistant marker-free transgenic potato plants. Progress in Natural Science,2009,19(5):543-548
    Bai Y, Yang H, Qu L, Zheng J, Zhang J, Wang M, Xie W, Zhou X, Wang G. Inverted-repeat transgenic maize plants resistant to sugarcane mosaic virus. Frontiers of Agriculture in China, 2008,2(2):125-130
    Barker H, Reavy B, McGeachy KD, Dawson S. Transformation of Nicotiana benthamiana with the potato mop-top virus coat protein gene produces a novel resistance phenotype mediated by the coat protein. Mol Plant-Microbe Interact,1998,11:626-633
    Baulcombe D. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell, 1996,8(10):1833-1844
    Beachy R. Mechanisms and applications of pathogen-derived resistance in transgenic plants. Current Opinion in Biotechnology,1997,8(2):215-220
    Bendahmane M, Chen I, Asurmendi S, Bazzini A, Szecsi J, Beachy R. Coat protein-mediated resistance to TMV infection of Nicotiana tabacum involves multiple modes of interference by coat protein. Virology,2007,366(1):107-116
    Bonfim K, Faria JC, Nogueira EO, Mendes EA, Aragao FJ. RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant-Microbe Interact,2007,20(6):717-726
    Boogaart V, Wen F, Davies J, Lomonossoff G. Replicase-derived resistance against pea early browning virus in Nicotiana benthamiana is an unstable resistance based upon posttranscriptional gene silencing. Molecular Plant-Microbe Interactions,2001,14(2):196-203
    Bruening G. Plant gene silencing regularized. Proc Natl Acad Sci USA,1998,95(23):13349-13351
    Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L. Sugarcane mosaic virus. In:Viruses of Plants., Ed, Vol CAB International,Wallingford,1996.
    Bruun-Rasmussen M, Madsen C, Jessing S, Albrechtsen M. Stability of Barley stripe mosaic virus-induced gene silencing in barley. Molecular Plant-Microbe Interactions,2007,20(11): 1323-1331
    Bucher E, Lohuis D, van Poppel P, Geerts-Dimitriadou C, Goldbach R, Prins M. Multiple virus resistance at a high frequency using a single transgene construct. Journal of General Virology, 2006,87(12):3697-3701
    Bukovinszki A, Diveki Z, Csanyi M, Palkovics L, Balazs E. Engineering resistance to PVY in different potato cultivars in a marker-free transformation system using a'shooter mutant'A. tumefaciens. Plant Cell Reports,2007,26(4):459-465
    Carvalho C, Bohorova N, Bordallo P, Abreu L, Valicente F, Bressan W, Paiva E. Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Reports,1997,17(1): 73-76
    Chen L, Zhang S, Beachy R, Fauquet C. A protocol for consistent, large-scale production of fertile transgenic rice plants. Plant Cell Reports,1998,18(1):25-31
    Chen Y, Lohuis D, Goldbach R, Prins M. High frequency induction of RNA-mediated resistance against cucumber mosaic virus using inverted repeat constructs. Molecular Breeding,2004, 14(3):215-226
    Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA,2000,97:4985-4990
    Clark M, Adams A. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology,1977,34(3):475-483
    Clarke JL, Spetz C, Haugslien S, Xing SC, Dees MW, Moe R, Blystad DR. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to poinsettia mosaic virus. Plant Cell Rep,2008,27: 1027-1038
    Cooper B, Lapidot M, Heick JA, Dodds JA, Beachy RN. Multivirus resistance in transgenic tobacco plants expressing a dysfunctional movement protein of tobacco mosaic virus. Virology,1995, 206:307-313
    Cronin S, Verchot J, Haldemancahill R, Schaad MC, Carrington JC. Long-distance movement factor, a transport function of the potyvirus helper component proteinase. Plant Cell,1995,7:549-559
    Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy R, Fauquet C. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Molecular Breeding,2001,7(1):25-33
    Dasgupta I, Malathi V, Mukherjee S. Genetic engineering for virus resistance. Curr Sci,2003,84(3): 341-354
    Dasgupta R, Garcia BH, Goodman RM. Systemic spread of an RNA insect virus in plants expressing plant viral movement protein genes. Proc Natl Acad Sci USA,2001,98(9):4910-4915
    De Souza I, Schuelter A, Guimara es C, Schuster I, De Oliveira E, Redinbaugh M. Mapping QTL contributing to SCMV resistance in tropical maize. Hereditas,2008,145(4):167-173
    Deroles S, Gardner R. Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Molecular Biology,1988,11(3): 365-377
    Ding SW. RNA-based antiviral immunity. Nature Reviews Immunology,2010,10:632-644
    Ding SW, Voinnet O. Antiviral immunity directed by small RNAs. Cell,2007,130:413-426
    Dominguez A, Fagoaga C, Navarro L, Moreno P, Pena L. Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Molecular Genetics and Genomics,2002,267(4):544-556
    Duan C, Wang C, Fang R, Guo H. Artificial MicroRNAs highly accessible to targets confer efficient virus resistance in plants. Journal of Virology,2008,82(22):11084-11095
    Eamens A, Curtin SJ, Waterhouse PM. RNA silencing in plants. Plant Developmental Biology 2010, 4:277-294
    Fahim M, Ayala-Navarrete L, Millar AA, Larkin PJ. Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnology Journal,2010,8 (7):821-834
    Fire A, Xu S, Montgomery M, Kostas S, Driver S, Mello C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391(6669):806-811
    Frame B, McMurray J, Fonger T, Main M, Taylor K, Torney F, Paz M, Wang K. Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Reports,2006,25(10):1024-1034
    Frame B, Shou H, Chikwamba R, Zhang Z, Xiang C, Fonger T, Pegg S, Li B, Nettleton D, Pei D. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiology,2002,129(1):13-22
    Fusaro A, Matthew L, Smith N, Curtin S, Dedic-Hagan J, Ellacott G, Watson J, Wang M, Brosnan C, Carroll B. RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Reports,2006,7(11):1168-1175
    Goldbach R, Bucher E, Prins M. Resistance mechanisms to plant viruses:an overview. Virus Research,2003,92(2):207-212
    Golemboski D, Lomonossoff G, Zaitlin M. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci USA,1990,87(16): 6311-6315
    Goodwin J, Chapman K, Swaney S, Parks T, Wernsman E, Dougherty W. Genetic and biochemical dissection of transgenic RNA-mediated virus resistance. Plant Cell,1996,8(1):95-105
    Hackland A, Rybicki E, Thomson J. Coat protein-mediated resistance in transgenic plants. Archives of Virology,1994,139(1):1-22
    Hannon G. RNA interference. Nature,2002,418(6894):244-251
    Hellwald K, Palukaitis P. Viral RNA as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell,1995,83(6):937-946
    Hemenway C, Fang R, Kaniewski W, Chua N, Turner N. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. The EMBO Journal,1988,7(5):1273-1280
    Huang X, Wei Z. High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Reports,2004,22(11):793-800
    Ingelbrecht I, Irvine J, Mirkov T. Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiology,1999,119(4):1187-1198
    Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nature Protocols, 2007,2(7):1614-1621
    Jiang JX, Zhou XP. Maize dwarf mosaic disease in different regions of China is caused by Sugarcane mosaic virus. Archives of Virology,2002,147(12):2437-2443
    Jiang L, Wang J, Liu Z, Wang L, Zhang F, Liu GC, Zhong Q. Silencing induced by inverted repeat constructs in protoplasts of Nicotiana benthamiana. Plant Cell, Tissue and Organ Culture,2010, 100(2):139-148
    Johnson G. Analysis of genetic resistance to maize dwarf mosaic disease. Crop Science,1971,11: 23-24
    Jones M, Redinbaugh M, Louie R. The Mdml locus and maize resistance to Maize dwarf mosaic virus. Plant Disease,2007,91(2):185-190
    Kang B, Yeam I, Jahn M. Genetics of plant virus resistance. Annu Rev Phytopathol,2005,43: 581-621
    Khetarpal R, Maisonneuve B, Maury Y, Chalhoub B, Dinant S, Lecoq H, Varma A. Breeding for resistance to plant viruses. Plant virus disease control,1998,14-32
    Kubota K, Tsuda S, Tamai A, Meshi T. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. Journal of Virology,2004,77(20): 11016-11026
    Kuntze L, Fuchs E, Gruntzig M, Schulz B, Henning U, Hohmann F, Melchinger A. Evaluation of maize inbred lines for resistance to sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV). Agronomie,1995,15(7-8):463-467
    Kusaba M. RNA interference in crop plants. Curr Opin Biotechnol,2004,15:139-143
    Liibberstedt T, Ingvardsen C, Melchinger A, Xing Y, Salomon R, Redinbaugh M. Two chromosome segments confer multiple potyvirus resistance in maize. Plant Breeding,2006,125(4):352-356
    Lapidot M, Gafny R, Ding B, Wolf S, Lucas W, Beachy R. A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. The Plant Journal,1993,4(6):959-970
    Li L, Wang X, Zhou G. Analyses of maize embryo invasion by Sugarcane mosaic virus. Plant Science, 2007,172(1):131-138
    Lin K. Studies on the resistance of corn inbred lines and hybrids to maize dwarf mosaic virus strain B. Sci Agri Sin,1989,22:57-61
    Lindbo J, Dougherty W. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology,1992,189(2):725-733
    Liu H, Zhu C, Zhu X, Guo X, Song Y, Wen F. A link between PVYN CP gene-mediated virus resistance and transgene arrangement. Journal of Phytopathology,2007,155(11-12):676-682
    Liu X, Tan Z, Li W, Zhang H, He D. Cloning and transformation of SCMV CP gene and regeneration of transgenic maize plants showing resistance to SCMV strain MDB. African Journal of Biotechnology,2009,8(16):3747-3753
    Loesch P, Zuber M. Inheritance of resistance to maize dwarf mosaic virus. Crop Science,1972,12: 350-352
    Louie R. Effects of genotype and inoculation protocols on resistance evaluation of maize to maize dwarf mosaic virus strains. Phytopathology,1986,76(8):769-773
    Louie R, Findley W, Knoke J, McMullen M. Genetics Basis of Resistance in Maize to Five Maize Dwarf Mosaic Virus Strains. Crop Science,1991,31(1):14-18
    Love A, Laird J, Holt J, Hamilton A, Sadanandom A, Milner J. Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. Journal of General Virology,2002,88(12):3439-3444
    Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe D. Virus-induced gene silencing in plants. Methods,2003,30:296-303
    Mallory A, Ely L, Smith T, Marathe R, Anandalakshmi R, Fagard M, Vaucheret H, Pruss G, Bowman L, Vance V. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell,2001,13(3):571-583
    Mansoor S, Amin I, Hussain M, Zafar Y, Briddon R. Engineering novel traits in plants through RNA interference. Trends in Plant Science,2006,11(11):559-565
    Marano M, Baulcombe D. Pathogen-derived resistance targeted against the negative-strand RNA of tobacco mosaic virus:RNA strand-specific gene silencing? Plant Journal,1998,13(4):537-546
    Matzke M, Matzke A, Kooter J. RNA:guiding gene silencing. Science,2001 a,293(5532): 1080-1083
    Matzke M, Matzke A, Pruss G, Vance V. RNA-based silencing strategies in plants. Current Opinion in Genetics & Development,2001 b,11(2):221-227
    Melander M. Potato transformed with a 57-kDa readthrough portion of the Tobacco rattle virus replicase gene displays reduced tuber symptoms when challenged by viruliferous nematodes. Euphytica,2006,150(1):123-130
    Melchinger A, Kuntze L, Gumber R, Lubberstedt T, Fuchs E. Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. Theoretical and Applied Genetics,1998,96(8): 1151-1161
    Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M. Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Molecular Breeding,2004,14(2):185-197
    Mohamed E. Using some growth retardants for Inhibition of Maize Dwarf Mosaic Virus (MDMV) Journal of American Science,2010,6(9):5-13
    Moissiard G, Voinnet O. Viral suppression of RNA silencing in plants. Molecular plant pathology, 2004,5(1):71-82
    Morroni M, Thompson J, Tepfer M. Twenty years of transgenic plants resistant to Cucumber mosaic virus. Molecular Plant-microbe Interactions,2008,21(6):675-684
    Murry L, Elliott L, Capitant S, West J, Hanson K, Scarafia L, Johnston S, DeLuca-Flaherty C, Nichols S, Cunanan D. Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Nature Biotechnology,1993,11(12):1559-1564
    Naegeli M, Schmid J, Stamp P, Buter B. Improved formation of regenerable callus in isolated microspore culture of maize:impact of carbohydrates, plating density and time of transfer. Plant Cell Reports,1999,19(2):177-184
    Naidu B, Josephson L. Genetic analysis of resistance to the corn virus disease complex. Crop Science, 1976,16:167-172
    Negrete EA, Tripp JC, Bustamante RF. RNA silencing against geminivirus:complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol, 2009,83:1332-1340
    Nejidat A, Beachy R. Transgenic tobacco plants expressing a coat protein gene of tobacco mosaic virus are resistant to some other tobamoviruses. Mol Plant-Microbe Interact,1990,3:247-251
    Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V. Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Research,2005,14(6):989-994
    Obbard D, Gordon K, Buck A, Jiggins F. The evolution of RNAi as a defence against viruses and transposable elements. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009,364(1513):99-115
    Powell-Abel P, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science,1986,232:738-743
    Prins M, Goldbach R. RNA-mediated virus resistance in transgenic plants. Archives of Virology, 1996,141(12):2259-2276
    Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M. Strategies for antiviral resistance in transgenic plants. Molecular Plant Pathology,2008,9(1):73-83
    Qu F. Plant viruses versus RNAi:Simple pathogens reveal complex insights on plant antimicrobial defense. Wiley Interdisciplinary Reviews:RNA,2010,1(1):22-33
    Qu J, Ye J, Fang R. Artificial microRNA-mediated virus resistance in plants. Journal of Virology, 2007,81(12):6690-6699
    Rahman M, Ali I, Husnain T, Riazuddin S. RNA interference:The story of gene silencing in plants and humans. Biotechnol Adv,2008,26(3):202-209
    Rai M, Datta K, Parkhi V, Tan J, Oliva N, Chawla H, Datta S. Variable T-DNA linkage configuration affects inheritance of carotenogenic transgenes and carotenoid accumulation in transgenic indica rice. Plant Cell Reports,2007,26(8):1221-1231
    Ramesh S, Mishra A, Praveen S. Hairpin RNA mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides,2007,17: 251-257
    Rashid A. Comparative study of somatic embryogenesis from immature and mature embryos and organogenesis from leaf-base of Triticale. Plant Cell, Tissue and Organ Culture,2001,64(1): 33-38
    Redinbaugh M, Jones M, Gingery R. The genetics of virus resistance in maize(Zea mays L.). Maydica,2004,49(3):183-190
    Redinbaugh M, Pratt R. Virus resistance. Handbook of Maize:Its Biology,2009,251-270
    Reyes F, Sun B, Guo H, Gruis D, Otegui M. Agrobacterium tumefaciens-Mediated Transformation of Maize Endosperm as a Tool to Study Endosperm Cell Biology. Plant Physiology,2010, 153(2):624-631
    Ritzenthaler C. Resistance to plant viruses:old issue, news answers? Current Opinion in Biotechnology,2005,16(2):118-122
    Rodriguez-Negrete E, Carrillo-Tripp J, Rivera-Bustamante R. RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. Journal of Virology,2009,83(3):1332-1340
    Rovere C, Del Vas M, Hopp H. RNA-mediated virus resistance. Current Opinion in Biotechnology, 2002,13(2):167-172
    Savenkov E, Valkonen J. Silencing of a viral RNA silencing suppressor in transgenic plants. Journal of General Virology,2002,83(9):2325-2335
    Scorza R, Georgi L, Callahan A, Petri C, Hily JM, Dardick C, Damsteegt V, Ravelonandro M. Hairpin Plum pox virus coat protein (hpPPV-CP) structure in'HoneySweet'C5 plum provides PPV resistance when genetically engineered into plum (Prunus domestica) seedlings. Julius-Kuhn-Archiv,2010,427:141-146
    Scott G, Nelson L. A new method to determine the number of genes for resistance to maize dwarf mosaic in maize. Crop Science,1982,22:756-761
    Shou H, Frame B, Whitham S, Wang K. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Molecular Breeding,2004,13(2): 201-208
    Sidorov V, Duncan D. Agrobacterium-mediated maize transformation:immature embryos versus callus. Methods in Molecular Biology (Clifton, NJ),2009,526:47-58
    Sidorov V, Gilbertson L, Addae P, Duncan D. Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Reports,2006,25(4):320-328
    Sijen T, Kooter J. Post-transcriptional gene-silencing:RNAs on the attack or on the defense? Bioessays,2000,22(6):520-531
    Sijen T, Wellink J, Hiriart J, Van Kammen A. RNA-mediated virus resistance:role of repeated transgenes and delineation of targeted regions. Plant Cell,1996,8(12):2277-2294
    Smith N, Singh S, Wang MB, Stoutjesdijk P, Green A, Waterhouse PM. Gene expression:Total silencing by intron-spliced hairpin RNAs. Nature,2000,407(6802):319-320
    Songstad D, Petersen W, Armstrong C. Establishment of friable embryogenic (type Ⅱ) callus from immature tassels of Zea mays (Poaceae). American Journal of Botany,1992,79(7):761-764
    Tang FD, Liang YJ, Han SJ, Gong WG, Ding BY. Effect of biological agents on survival rate and root growth of Scots Pine seedlings. J Forest Res,2004,15:124-126
    Tavernarakis N, Wang S, Dorovkov M, Ryazanov A, Driscoll M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genetics,2000,24(2): 180-183
    Tenllado F, Diaz-Ruiz JR. Double-stranded RNA-mediated interference with plant virus infection. J Virol,2001,75(24):12288-12297
    Tenllado F, Llave C, Diaz-Ruiz J. RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research,2004,102(1):85-96
    Thomas C, Jones L, Baulcombe D, Maule A. Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector. The Plant Journal,2001,25(4):417-425
    Tougou M, Yamagishi N, Furutani N, Shizukawa Y, Takahata Y, Hidaka S. Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene. Plant Cell Reports,2007, 26(11):1967-1975
    Tyagi H, Rajasubramaniam S, Rajam MV, Dasgupta I. RNA-interference in rice against rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res, 2008,17:897-904
    Uzarowska A, Dionisio G, Sarholz B, Piepho H, Xu M, Ingvardsen C, Wenzel G, Lubberstedt T. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize(Zea mays L.) by expression profiling. BMC Plant Biology,2009,9(1):1-15
    Vance V, Vaucheret H. RNA silencing in plants-defense and counterdefense. Science,2001, 292(5525):2277-2280
    Vargas M, Martinez-Garcia B, Diaz-Ruiz JR, Tenllado F. Transient expression of homologous hairpin RNA interferes with PVY transmission by aphids. J Virol,2008,5:1-5
    Vega J, Yu W, Kennon A, Chen X, Zhang Z. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Reports, 2008,27(2):297-305
    Wan Y, Petolino J, Widholm J. Efficient production of doubled haploid plants through colchicine treatment of anther-derived maize callus. Theoretical and Applied Genetics,1989,77(6): 889-892
    Wang MB, Abbott DC, Waterhouse PM. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology,2000,1(6): 347-356
    Wang MB, Metzlaff M. RNA silencing and antiviral defense in plants. Curr Opin Plant Biol,2005,8: 216-222
    Wang Y, Fu SH, Wen Y, Zhang ZM, Xia YL, Liu YZ, Rong TZ, Pan GT. Selection of maize inbred lines with high regeneration and susceptibility to Agrobacterium tumifacien. Journal of Genetics and Genomics,2007,34(8):749-755
    Waterhouse PM, Graham M, Wang MB. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA,1998, 95(23):13959-13964
    Waterhouse PM, Wang MB, Lough T. Gene silencing as an adaptive defence against viruses. Nature, 2001,411:834-842
    Watson J, Fusaro A, Wang MB, Waterhouse PM. RNA silencing platforms in plants. FEBS Letters, 2005,579(26):5982-5987
    Wesley SV, Helliwell C, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM. Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal,2001,27(6): 581-590
    Wu J, Ding J, Du Y, Xu Y, Zhang X. Genetic analysis and molecular mapping of two dominant complementary genes determining resistance to sugarcane mosaic virus in maize. Euphytica, 2007,156(3):355-364
    Xi ZY, Zhang SH, Li XH, Xie CX, Li MS, Hao CF, Zhang DG, Liang YH, Bai L, Zhang SH. Identification and mapping of a novel sugarcane mosaic virus resistance gene in maize. Acta Agron Sin,2008,34:1494-1499
    Xu L, Song Y, Zhu J, Guo X, Zhu C, Wen F. Conserved Sequences of Replicase Gene-Mediated Resistance to Potyvirus through RNA Silencing. Journal of Plant Biology,2009,52(6):550-559
    Xu ML, Melchinger AE, Xia XC, Lubberstedt T. High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol Gen Genet,1999,261(3):574-581
    Yin Z, Wang G. Evidence of multiple complex patterns of T-DNA integration into the rice genome. TAG Theoretical and Applied Genetics,2000,100(3):461-470
    Yuan L, Du le C, Melchinger A, Utz H, Lubberstedt T. Clustering of QTL conferring SCMV resistance in maize. Maydica,2003,48(1):55-62
    Zhang M, Duan L, Tian X, He Z, Li J, Wang B, Li Z. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. Journal of Plant Physiology,2007,164(6):709-717
    Zhang Y, Wang J, Sui H, Gao B, Lu W, Zhang Y. Effects of ABT root-promoting powder on the drought-resistance mechanism of maize under water stress. Acta Agri Boreali Sin,1994,9: 20-24
    Zhang ZY, Fu FL, Gou L, Wang HG, Li WC. RNA Interference-Based Transgenic Maize Resistant to Maize Dwarf Mosaic Virus. J Plant Biol,2010,53(4):297-305
    Zhao C, Zhang L, Ge C, Hu K. Establishment and Optimization of the Regeneration System of Mature Embryos of Maize (Zea mays L.). Agricultural Sciences in China,2008,7(9): 1046-1051
    Zhu J, Zhu X, Wen F, Bai Q, Zhu C, Song Y. Effect of cDNA fragments in different length derived from potato virus Y coat protein gene on the induction of RNA-mediated virus resistance. Science in China Series C:Life Sciences,2004,47(4):382-388
    白云凤,杨红春,曲琳,郑军,张锦鹏,王茅雁,谢婉,周小梅,王国英.抗甘蔗花叶病毒的无标记反向重复转基因玉米.作物学报,2007,33(6):973-978
    白云凤,赵晋锋,郑军,张锦鹏,王茅雁,苟明月,董志刚,杨红春,王国英.反义外壳蛋白基因介导的抗SCMV转基因玉米研究.作物学报,2006,32(5):661-665
    陈婉芬,周燮.GA3及 S3307对石刁柏生根的影响(简报).植物生理学通讯,1994,30(1):26-28
    付凤玲,李晓忱,刘玉珍.玉米幼穗培养及植株再生.四川农业大学学报,1999,17(3):278-281
    付凤玲,张丽萍,朱祯.玉米优良自交系转基因受体系统建立及转化后的筛选与再生.四川农业大学学报,2000,18(2):97-99
    付凤玲,冯质雷,渠柏艳,李晚忱.玉米未成熟胚胚性愈伤组织诱导率与内源激素含量的关系.核农学报,2006,20(1):10-14
    付凤玲,李晚忱,荣廷昭.N6培养基添加钙和烯效唑对玉米幼胚培养的作用.作物学报,2005,31(5):634-639
    郭兴启,温孚江.翻译和非翻译马铃薯Y病毒外壳蛋白基因介导的抗病性比较.病毒学报,2001,17(4):360-367
    郭兴启,李菡,张杰道,竺晓平,王洪刚.表达马铃薯Y病毒外壳蛋白基因的转基因烟草抗病机制.应用与环境生物学报,2003,9(4):372-376
    郝建军,王受祜.BR与S3307复合剂对黄瓜植株形态指标影响.沈阳农业大学学报,2002,33(3):174-177
    黄莺,韦宏恩.S3307培育烤烟壮苗的生理基础.山地农业生物学报,2000,19(1):1-5
    李新海,韩晓清,王振华,张世煌.玉米矮花叶病研究进展玉米科学,2000,8(3):67-72
    李玥莹,陈贵,陈凤玉.S_(3307)调节剂对冬小麦幼苗某些生理特性的影响.麦类作物学报,1999,19(1):52-54
    宋芸,夏燕莉,魏听,张志明,赵茂俊,荣廷昭,潘光堂.四种玉米幼胚培养性状的基因效应分析.中国农业科学,2006,39(1):18-22
    王关林,方宏筠.植物基因工程(第二版)科学出版社,2002.
    王关林,方宏筠,那杰.外源基因在转基因植物中的遗传特性.遗传,1996,18(6):37-41
    王景雪,孙毅,杜建中.玉米转基因研究进展.生物技术通报,2001,2:13-16
    王仁杯,沈志民.烯效唑(S3307)对大麦产量及延缓衰老的影响.浙江农业大学学报,1998,24(2):189-193
    王玉洁,郁继华,雍山玉,张洁宝.烯效唑(S3307)浸种对盐胁迫下黄瓜幼苗生理的影响.山西农业大学学报:自然科学版,2007,27(2):139-142
    王振华,李新海,李明顺,李文华,张世煌.玉米抗甘蔗花叶病毒的遗传分析.作物学报,2004,30(2):95-99
    席章营,张书红,李新海,谢传晓,李明顺,郝转芳,张德贵,梁业红,白丽,张世煌.一个新的抗玉米矮花叶病基因的发现及初步定位.作物学报,2008,34(9):1494-1499
    燕飞,成卓敏.RNA干扰与植物抗病毒.生物技术通报,2005,4:1-4
    燕飞,张文蔚,肖红,李世访,成卓敏.转病毒来源发夹RNA小麦表现对大麦黄矮病毒的抗性.遗传,2007,29(1):97-102
    张金林,陈托兄,严学兵,陆妮,王锁民.烯效唑(S3307)对湖南稷子整株水平Na+,K+选择性和游离脯氨酸分配的影响.草业学报,2006,15(2):42-47
    朱常香,刘红梅,宋云枝,温孚江.RNA介导的病毒抗性在转基因烟草中的遗传分析.遗传学报,2005,32(1):94-103
    竺小平,朱常香,宋云枝,温孚江,刘红梅,李向东.CP基因3’端短片段介导的对马铃薯Y病毒的抗性.中国农业科学,2006,39(6):1153-1158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700