锂离子电池与超级电容器电极材料的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
便携式电子产品和全球范围电动汽车的普及刺激了能源存储设备(如电池和超级电容器)向更高功率密度和能量密度的发展。电极是锂离子电池和超级电容器的核心部件,而电极材料是决定电池和电容器综合性能优劣的关键因素。因此,开发新一代高性能电极材料对锂离子电池和超级电容器的研究和应用具有重大意义。
     首先,对于锂离子电池正极材料,表征离子输运性质的重要参数是化学扩散系数,而锂在正极材料中嵌入或脱出时,通常伴随着晶相变化。正极材料的嵌锂化合物是锂离子电池中锂离子的临时储存容器,为获得较高的单体电池电压,倾向于选择高电势的嵌锂化合物。因此,本论文基于随机固溶体模型,采用第一性原理方法研究锂离子电池正极材料层状过渡金属氧化物LiMnxCoyNi1-x-yO2,并讨论了Mn、Co和Ni组分在晶格结构、电极电势和Li扩散行为等方面的协同效应。通过分析Li在不同局域环境下的扩散活化能预言随机固溶体LiMnxCoyNi1-x-yO2的真实环境对离子导电能力的影响,有助于挑选LiCo02为基础的多组分锂过渡金属氧化物的最佳组合,为今后的理论和实验研究提供有意义的参考数据。
     锂离子硫电池因其能量密度高和原材料丰富等优点而备受关注。尽管实验上Li2S基正极材料已经被广泛研究,但理论上关于Li2S基材料的Li存储行为的研究几乎是空白的。特别是,过渡金属掺杂影响Li2S材料性能的微观机制还需探讨。我们将借助第一性原理方法系统地探索过渡金属(TM=Fe, Co, Ni, Cu)掺杂对Li2S的锂嵌入/脱出行为和电极电位的影响。
     其次,寻找合适的负极材料,使得锂离子电池具有足够高的储锂量和很好的锂嵌入/脱出可逆性,以保证电池的高电压、大容量和长循环寿命的要求。目前商业化的锂离子负极材料主要为石墨材料,研究碳负极材料石墨的性质具有重要的实际意义。为此,我们采用密度泛函理论模拟研究在原子尺度下不同石墨层间距中的Li与Li,Li与C之间的相互作用,以及其对储锂量和嵌入能影响的微观机制;在石墨层中掺杂不同浓度的B元素,及其与Li的相互作用,并探讨对储锂量变化的影响。
     最后,与传统的锂离子电池相比,超级电容器具有长寿命、高功率密度的特点,但能量密度较低。为改善超级电容器体系的能量密度,我们通过第一性原理计算结合非平衡格林函数方法,从原子尺度上研究了不同尺寸孔洞缺陷和N掺杂石墨基超级电容器电极材料,计算了其热力学稳定性、力学性能、扩散行为和输运性质,重点考察了孔洞缺陷的存在是否会降低石墨电极的热力学稳定性和电导率?嵌入孔洞的石墨层片是否仍能保持完美的力学性能?最佳有利于离子扩散的孔洞尺寸和形状如何?N掺杂石墨体系中,哪种C-N键合类型能增强电催化活性?依据对上述关键问题的系统研究,旨在通过引入适当的孔洞提高超级电容器的综合性能。
The popularity of portable energy storage devices and electric vehicle stimulates the development of higher power and energy density for energy storage devices such as lithium ion batteries and supercapacitors. The electrode is the core component of lithium battery and supercapacitor. Thus, the electrode material is the key factor of overall performance quality. Therefore, exploitation of high performance electrode material has great significance for the research and application for lithium battery and supercapacitor.
     First, the chemical diffusion coefficient is an important parameter of ion transport properties for the cathode material of Li ion battery. Li insertion/extraction in cathode material usually accompany with phase transformation of host crystal. Cathode intercalation compound is a temporary storage of lithium in battery. It is desirable to select the intercalation compound with higher potential in order to obtain higher voltage. Hence, the crystal structures, reversible potentials and activation energies of LiMnxCoyNi1-x-yO2solid solutions are studied by means of density functional theory (DFT) calculations within generalized gradient approximation (GGA) and projector-augmented-wave (PAW) method. The general trends for the synergistic effects of TM ions are discussed. By analyzing Li diffusion energy barrier in various local circumstances of the multi-component solid solutions of lithium TM oxides, we predict that the real environment of LiMnxCoyNi1-x-yO2solid solutions affect the ability of ion conduction. These may help optimize compositions in future experiments.
     Lithium sulfur batteries have attracted much attention due to the high theoretical specific capacity as well as abundance of raw materials. However, to the best of our knowledge, there was no theoretical study on the Li storage behavior of Li2S materials, though Li2S-based materials have been intensively investigated in experiments. In particular, the microscopic mechanism for the effect of transition metal doping on the performance of Li2S remains puzzling. These facts motivate us to perform DFT calculations on the effects of transition metal (TM=Fe, Co, Ni, Cu) doping on lithium extraction/insertion behavior and the electrode potential of Li2S.
     Next, seeking appropriate anode materials is crucial for lithium ion batteries with sufficient lithium storage and excellent lithium reversibility to meet the demand of high voltage, large capacity and long cycle life. Nowadays, graphite is a commercially used anode material for lithium batteries. Therefore, the study of anode graphite materials has very practical significance. Using DFT calculation we have systematically investigated the atomic structures, electronic properties and saturation Li capacity in graphite materials with different interlayer spacing and different contents of substitutional boron dopants. Oue results not only provide valuable insights into the microscopic mechanism of lithium-ion batteries but also help design new anode materials with improved performance.
     Finally, compared to the traditional lithium ion battery, supercapacitor has high power density and long cycle life, but lower energy density. In order to improve the energy density of supercapacitor, we investigate the graphene sheets as supercapacitor electrode material with different geometries of hole defects and/or nitrogen doping at the atomistic scale by first-principles methods and non-equilibrium Green's function technique. We mainly examine the following critical issues:(1) Will these holes as structural defects reduce the thermodynamic stability and electrical conductivity of the graphene electrode?(2) Will the graphene sheets incorporated with holes still retain their excellent mechanical properties?(3) What is the optimal shape and size of these holes for ion diffusion?(4) Which kind of C-N bonding configurations is responsible for the enhanced electrocatalytic activity of the N-doped graphene material? For revealing these issues, we calculate the formation energies, mechanical properties, diffusion behaviors and electrical conductance, aiming to enhance the overall performance of the supercapacitors by appropriate incorporation of holes.
引文
[1]Simon P., Gogotsi Y. Materials for electrochemical capacitors [J]. Nature Materials, 2008; 7:845-854.
    [2]Tarascon J. M. Key challenges in future Li-battery research [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2010; 368:3227-3241.
    [3]Abraham K., Pasquariello D.,Schwartz D. Practical rechargeable lithium batteries [J]. Journal of Power Sources,1989; 26:247-255.
    [4]Brandt K., Laman F. Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries [J]. Journal of Power Sources,1989; 25:265-276.
    [5]Dan P.,Mengeritski E.,Geronov Y., et al. Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell [J]. Journal of Power Sources,1995; 54:143-145.
    [6]Mengeritsky E., Dan P.,Weissman I., et al. Safety and Performance of Tadiran TLR-7103 Rechargeable Batteries [J]. Journal of the Electrochemical Society,1996; 143: 2110-2116.
    [7]Salitra G., Soffer A.,Eliad L., et al. Carbon Electrodes for Double-Layer Capacitors I. Relations Between Ion and Pore Dimensions [J]. Journal of the Electrochemical Society,2000; 147:2486-2493.
    [8]Trasatti S., Lipkowski J., Ross P. Electrochemistry of novel materials [J]. VCH, New York,1994:207.
    [9]Whittingham M.S. Lithium batteries and cathode materials [J]. Chemical Reviews-Columbus,2004; 104:4271-4302.
    [10]Kamali A. R., Fray D. J. Review on carbon and silicon based materials as anode materials for lithium ion batteries [J]. Journal of New Materials for Electrochemical Systems,2010; 13:147.
    [11]Verma P.,Maire P., Novak P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries [J]. Electrochimica acta,2010; 55:6332-6341.
    [12]Ji L., Lin Z., Alcoutlabi M., et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J]. Energy & Environmental Science,2011; 4:2682-2699.
    [13]Etacheri V.,Marom R..Elazari R., et al. Challenges in the development of advanced Li-ion batteries:a review [J]. Energy & Environmental Science,2011; 4:3243-3262.
    [14]Marom R.,Amalraj S. F.,Leifer N., et al. A review of advanced and practical lithium battery materials [J]. J. Mater. Chem.,2011; 21:9938-9954.
    [15]Yang Z., Zhang J., Kintner-Meyer M. C., et al. Electrochemical energy storage for green grid [J]. Chemical Reviews Columbus,2011; 111:3577.
    [16]Meng Y. S., Arroyo de Dompablo M. E. First principles computational materials design for energy storage materials in lithium ion batteries [J]. Energy & Environmental Science,2009; 2:589-609.
    [17]Antolini E. LiCoO2:formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties [J]. Solid State Ionics,2004; 170: 159-171.
    [18]Belov D., Yang M. H. Investigation of the kinetic mechanism in overcharge process for Li-ion battery [J]. Solid State Ionics,2008; 179:1816-1821.
    [19]Belov D., Yang M. H. Failure mechanism of Li-ion battery at overcharge conditions [J]. Journal of Solid State Electrochemistry,2008; 12:885-894.
    [20]Doh C. H.,Kim D. H., Kim H. S., et al. Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test [J]. Journal of Power Sources,2008; 175:881-885.
    [21]Takahashi Y., Tode S., Kinoshita A., et al. Development of lithium-ion batteries with a LiCo02 cathode toward high capacity by elevating charging potential [J]. Journal of the Electrochemical Society,2008; 155:A537-A541.
    [22]Amatucci G.,Tarascon J., Klein L. CoO2, The End Member of the LixCoO2 Solid Solution [J]. Journal of the Electrochemical Society,1996; 143:1114-1123.
    [23]Ohzuku T.,Ueda A. Solid-State Redox Reactions of LiCo02 (R3m) for 4 Volt Secondary Lithium Cells [J]. Journal of the Electrochemical Society,1994; 141:2972-2977.
    [24]Zhou J., Notten P. Studies on the degradation of Li-ion batteries by the use of microreference electrodes [J]. Journal of Power Sources,2008; 177:553-560.
    [25]Menetrier M., Carlier D.,Blangero M., et al. On "Really" Stoichiometric LiCo02 [J]. Electrochemical and solid-state letters,2008; 11:A179-A182.
    [26]Pereira N.,Al Sharab J. F., Cosandey F., et al. Thermodynamically induced surface modification for the stabilization of high-capacity LiCo02 [J]. Journal of the Electrochemical Society,2008; 155:A831-A838.
    [27]Yamada A., Chung S. C., Hinokuma K. Optimized LiFePO4 for lithium battery cathodes [J]. Journal of the Electrochemical Society,2001; 148:A224-A229.
    [28]Amriou T.,Khelifa B., Aourag H., et al. Ab initio investigation of the Jahn-Teller distortion effect on the stabilizing lithium intercalated compounds [J]. Materials Chemistry and Physics,2005; 92:499-504.
    [29]Liu H., Yang Y., Zhang J. Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2 [J]. Journal of Power Sources,2007; 173:556-561.
    [30]Rougier A., Gravereau P.,Delmas C. Optimization of the Composition of the Li1-zNi1-zO2 Electrode Materials:Structural, Magnetic, and Electrochemical Studies [J]. Journal of the Electrochemical Society,1996; 143:1168-1175.
    [31]Shi X.,Wang C., Ma X., et al. Synthesis and electrochemical properties of LiNi0.9Co0.1O2 cathode material for lithium secondary battery [J]. Materials Chemistry and Physics,2009; 113:780-783.
    [32]Baskaran R.,Kuwata N.,Kamishima 0., et al. Structural and electrochemical studies on thin film LiNi0.8Co0.2O2 by PLD for micro battery [J]. Solid State Ionics,2009; 180:636-643.
    [33]Sakamoto K., Hirayama M., Sonoyama N., et al. Surface structure of LiNi0.8Co0.2O2: A new experimental technique using in situ x-ray diffraction and two-dimensional epitaxial film electrodes [J]. Chemistry of materials,2009; 21:2632-2640.
    [34]Ammundsen B., Desilvestro J., Groutso T., et al. Formation and structural properties of layered LiMnO2 cathode materials [J]. Journal of the Electrochemical Society, 2000; 147:4078-4082.
    [35]Jiang M., Key B., Meng Y. S., et al. Electrochemical and Structural Study of the Layered, "Li-Excess" Lithium-Ion Battery Electrode Material Li [Li1/9Ni1/3Mn5/9]O2 [J]. Chemistry of materials,2009; 21:2733-2745.
    [36]Martha S.,Markevich E.,Burgel V., et al. A short review on surface chemical aspects of Li batteries:A key for a good performance [J]. Journal of Power Sources,2009; 189:288-296.
    [37]Dahbi M.,Wikberg J. M., Saadoune I., et al. A delithiated LiNi0.65Co0.25Mn0.10O2 electrode material:A structural, magnetic and electrochemical study [J]. Electrochimica acta,2009; 54:3211-3217.
    [38]Wu Y.,Manthiram A. Effect of surface modifications on the layered solid solution cathodes (1-z) Li [Li1/3 Mn2/3] O2-(z) Li [Mn0.5-y Ni0.5-yCo2y] O2 [J]. Solid State Ionics, 2009; 180:50-56.
    [39]Xiao J.,Chernova N.A., Whittingham M.S. Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries [J]. Chemistry of materials, 2008; 20:7454-7464.
    [40]Wu H., Tu J., Yuan Y., et al. Effects of abundant Co doping on the structure and electrochemical characteristics of LiMn1.5Ni0.5-xCoxO4 [J]. Journal of Electroanalytical Chemistry,2007; 608:8-14.
    [41]Rosciano F., Col in J. F., La Mantia F., et al. Electrochemical Stress at High Potential to Investigate Phase Transitions in Li1.4 (Ni1/3Mn1/3Co13)0.9O2 [J]. Electrochemical and solid-state letters,2009; 12:A140-A144.
    [42]Kim J. M., Kumagai N., Cho T. H. Synthesis, Structure, and Electrochemical Characteristics of Overlithiated Li1+x(Ni2Co1-2zMn2)1-xO2 (z= 0.1-0.4 and x= 0.0-0.1) Positive Electrodes Prepared by Spray-Drying Method [J]. Journal of the Electrochemical Society,2008; 155:A82-A89.
    [43]Takami N., Inagaki H.,Kishi T., et al. Electrochemical kinetics and safety of 2-volt class Li-ion battery system using lithium titanium oxide anode [J]. Journal of the Electrochemical Society,2009; 156:A128-A132.
    [44]Shigemura H., Sakaebe H.,Kageyama H., et al. Structure and Electrochemical Properties of LiFexMn2-xO4(0    [45]Wang C., Lu S.,Kan S., et al. Enhanced capacity retention of Co and Li doubly doped LiMn2O4 [J]. Journal of Power Sources,2009; 189:607-610.
    [46]Patoux S., Daniel L.,Bourbon C., et al. High voltage spinel oxides for Li-ion batteries:From the material research to the application [J]. Journal of Power Sources, 2009; 189:344-352.
    [47]Liu J., Manthiram A. Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells [J]. Chemistry of materials,2009; 21:1695-1707.
    [48]Yuan Y.,Wu H.,Guo S., et al. Preparation, characteristics and electrochemical properties of surface-modified LiMn204 by doped LiNi0.05Mn1.95O4 [J]. Applied surface science, 2008; 255:2225-2229.
    [49]Whittingham M. S. Lithium batteries and cathode materials [J]. Chemical Reviews Columbus,2004; 104:4271-4302.
    [50]Murugan A. V.,Muraliganth T.,Manthiram A. One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMP04 (M= Mn, Fe, and Co) cathodes [J]. Journal of the Electrochemical Society,2009; 156:A79-A83.
    [51]Hong J.,Wang C., Chen X., et al. Vanadium modified LiFePO4 cathode for Li-ion batteries [J]. Electrochemical and solid-state letters,2009; 12:A33-A38.
    [52]Sahana M., Sudakar C.,Thapa C., et al. The effect of titanium on the lithium intercalation capacity of V2O5 thin films [J]. Thin Solid Films,2009; 517:6642-6651.
    [53]Benedek R., Thackeray M.,Yang L. Lithium site preference and electronic structure of Li4V3O8 [J]. Physical Review B,1997; 56:10707.
    [54]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991; 354: 56-58.
    [55]Dillon A. Carbon nanotubes for photoconversion and electrical energy storage [J]. Chemical reviews,2010; 110:6856.
    [56]Gao B., Bower C., Lorentzen J., et al. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes [J]. Chemical Physics Letters,2000; 327: 69-75.
    [57]Eom J., Kwon H., Liu J., et al. Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD [J]. Carbon, 2004; 42:2589-2596.
    [58]Wang X. X., Wang J. N., Chang H., et al. Preparation of Short Carbon Nanotubes and Application as an Electrode Material in Li-Ion Batteries [J]. Advanced Functional Materials,2007; 17:3613-3618.
    [59]Mi C. H., Cao G. S., Zhao X. B. A non-GIC mechanism of lithium storage in chemical etched MWNTs [J]. Journal of Electroanalytical Chemistry,2004; 562:217-221.
    [60]Eom J.,Kim D., Kwon H. Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition [J]. Journal of Power Sources,2006; 157:507-514.
    [61]Subramanian V., Zhu H., Wei B. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanof ibers [J]. The Journal of Physical Chemistry B,2006; 110:7178-7183.
    [62]Ji L., Lin Z..Medford A. J., et al. In-Situ Encapsulation of Nickel Particles in Electrospun Carbon Nanofibers and the Resultant Electrochemical Performance [J]. Chemistry-A European Journal,2009; 15:10718-10722.
    [63]Zhang H. L.,Zhang Y., Zhang X.G., et al. Urchin-like nano/micro hybrid anode materials for lithium ion battery [J]. Carbon,2006; 44:2778-2784.
    [64]de las Casas C.,Li W. A review of application of carbon nanotubes for lithium ion battery anode material [J]. Journal of Power Sources,2012; 208:74-85.
    [65]Deng D., Lee J. Y. One-step synthesis of polycrystalline carbon nanofibers with periodic dome-shaped interiors and their reversible lithium-ion storage properties [J]. Chemistry of Materials,2007; 19:4198-4204.
    [66]Ji L.,Lin Z.,Zhou R., et al. Formation and electrochemical performance of copper/carbon composite nanofibers [J]. Electrochimica acta,2010; 55:1605-1611.
    [67]Kim C., Yang K.S.,Kojima M., et al. Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of Lithium-Ion Secondary Batteries [J]. Advanced Functional Materials,2006; 16:2393-2397.
    [68]Ji L., Zhang X. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries [J]. Nanotechnology,2009; 20: 155705.
    [69]Ji L., Lin Z.,Medford A. J., et al. Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material [J]. Carbon,2009; 47: 3346-3354.
    [70]Murugan A. V.,Muraliganth T.,Manthiram A. Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries [J]. Journal of Physical Chemistry C,2008; 112:14665-14671.
    [71]Yoo E. J., Kim J., Hosono E., et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Letters,2008; 8:2277-2282.
    [72]Yoo M., Frank C. W.,Mori S., et al. Interaction of poly (vinylidene fluoride) with graphite particles.2. Effect of solvent evaporation kinetics and chemical properties of PVDF on the surface morphology of a composite film and its relation to electrochemical performance [J]. Chemistry of materials,2004; 16:1945-1953.
    [73]Ji F., Li Y. L., Feng J. M., et al. Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries [J]. Journal of Materials Chemistry,2009; 19:9063-9067.
    [74]Liang M., Zhi L. Graphene-based electrode materials for rechargeable lithium batteries [J]. Journal of Materials Chemistry,2009; 19:5871-5878.
    [75]Bhardwaj T., Antic A., Pavan B., et al. Enhanced electrochemical lithium storage by graphene nanoribbons [J]. Journal of the American Chemical Society,2010; 132: 12556-12558.
    [76]Wang C., Li D., Too C.O., et al. Electrochemical properties of graphene paper electrodes used in lithium batteries [J]. Chemistry of Materials,2009; 21:2604-2606.
    [77]Wang G., Shen X., Yao J., et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries [J]. Carbon,2009; 47:2049-2053.
    [78]Guo P., Song H. H., Chen X. H. [J]. Electrochem. Commun.,2009; 11:1320.
    [79]Wang G., Wang B., Wang X., et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries [J]. Journal of Materials Chemistry,2009; 19:8378-8384.
    [80]Chen S.,Chen P.,Wu M., et al. Graphene supported Sn-Sb@ carbon core-shell particles as a superior anode for lithium ion batteries [J]. Electrochemistry Communications,2010; 12:1302-1306.
    [81]Chou S. L., Wang J. Z., Choucair M., et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite [J]. Electrochemistry Communications,2010; 12: 303-306.
    [82]Yang S., Cui G., Pang S., et al. Fabrication of Cobalt and Cobalt Oxide/Graphene Composites:Towards High-Performance Anode Materials for Lithium Ion Batteries [J]. ChemSusChem,2010; 3:236-239.
    [83]Wu Z. S., Ren W., Wen L., et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS Nano,2010; 4:3187-3194.
    [84]Wang D.,Choi D., Li J., et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion [J]. ACS nano,2009; 3:907-914.
    [85]Zhang M.,Lei D.,Yin X., et al. Magnetite/graphene composites:Microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries [J]. Journal of Materials Chemistry,2010; 20:5538-5543.
    [86]Zhou G.,Wang D. W., Li F., et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries [J]. Chemistry of Materials,2010; 22:5306-5313.
    [87]Wang H., Cui L. F., Yang Y., et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries [J]. Journal of the American Chemical Society,2010; 132:13978-13980.
    [88]Wang B., Wu X. L., Shu C. Y., et al. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries [J]. Journal of Materials Chemistry,2010; 20:10661-10664.
    [89]Yao J.,Shen X., Wang B., et al. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries [J]. Electrochemistry Communications,2009; 11:1849-1852.
    [90]Paek S. M., Yoo E., Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure [J]. Nano letters,2008; 9:72-75.
    [91]Woo S. W., Dokko K., Nakano H., et al. Bimodal Porous Carbon as a Negative Electrode Material for Lithium-Ion Capacitors [J]. Electrochemistry,2007; 75:635-640.
    [92]Hu Y. S., Adelhelm P.,Smarsly B. M., et al. Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High-Rate Capability [J]. Advanced Functional Materials,2007; 17: 1873-1878.
    [93]Cheng F., Tao Z., Liang J., et al. Template-Directed Materials for Rechargeable Lithium-Ion Batteries [J]. Chemistry of materials,2008; 20:667-681.
    [94]Meyers C. J., Shah S. D., Patel S. C., et al. Templated synthesis of carbon materials from zeolites (Y, beta, and ZSM-5) and a montmorillonite clay (K10):Physical and electrochemical characterization [J]. The Journal of Physical Chemistry B,2001; 105: 2143-2152.
    [95]Wang T., Liu X., Zhao D., et al. The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon [J]. Chemical physics letters,2004; 389:327-331.
    [96]Zhou H., Zhu S., Hibino M., et al. Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance [J]. Advanced Materials,2003; 15:2107-2111.
    [97]Su F., Zhao X., Wang Y., et al. Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications [J]. The Journal of Physical Chemistry B,2005; 109:20200-20206.
    [98]Lee K. T.,Lytle J. C.,Ergang N.S., et al. Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries [J]. Advanced Functional Materials,2005; 15:547-556.
    [99]Liu X., Hu Y. S., Muller J.0., et al. Composites of Molecular-Anchored Graphene and Nanotubes with Multitubular Structure:A New Type of Carbon Electrode [J]. ChemSusChem, 2010; 3:261-265.
    [100]Wu Z.-S., Ren W.,Gao L., et al. Synthesis of high-quality graphene with a pre-determined number of layers [J]. Carbon,2009; 47:493-499.
    [101]Zhang J.,Hu Y.S.,Tessonnier J. P., et al. CNFs@ CNTs:superior carbon for electrochemical energy storage [J]. Advanced Materials,2008; 20:1450-1455.
    [102]Girishkumar G., McCloskey B., Luntz A., et al. Lithium- air battery:Promise and challenges [J]. The Journal of Physical Chemistry Letters,2010; 1:2193-2203.
    [103]Yamin H., Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell [J]. Journal of Power Sources,1983; 9:281-287.
    [104]Rauh R., Abraham K., Pearson G., et al. A lithium/dissolved sulfur battery with an organic electrolyte [J]. Journal of the Electrochemical Society,1979; 126:523-527.
    [105]Elazari R., Salitra G., Talyosef Y., et al. Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy [J]. Journal of the Electrochemical Society,2010; 157:A1131-A1138.
    [106]Ji X.,Lee K. T.,Nazar L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries [J]. Nature Materials,2009; 8:500-506.
    [107]Yang Y.,McDowell M. T., Jackson A., et al. New nanostructured Li2S/silicon rechargeable battery with high specific energy [J]. Nano letters,2010; 10:1486-1491.
    [108]Hassoun J., Sun Y. K., Scrosati B. Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery [J]. Journal of Power Sources,2011; 196:343-348.
    [109]Winter M., Brodd R. J. What are batteries, fuel cells, and supercapacitors? [J]. Chemical reviews,2004; 104:4245.
    [110]Burke A. Ultracapacitors:why, how, and where is the technology [J]. Journal of Power Sources,2000; 91:37-50.
    [111]Miller J. R.,Simon P. Electrochemical capacitors for energy management [J]. Science,2008; 321:651-652.
    [112]Zhang L. L., Zhao X. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews,2009; 38:2520-2531.
    [113]Obreja V. V. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material-a review [J]. Physica E:Low-dimensional Systems and Nanostructures,2008; 40:2596-2605.
    [114]Arico A. S., Bruce P., Scrosati B., et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials,2005; 4:366-377.
    [115]Zhang L. L., Zhou R.,Zhao X. Graphene-based materials as supercapacitor electrodes [J]. J. Mater. Chem.,2010; 20:5983-5992.
    [116]Frackowiak E. Carbon materials for supercapacitor application [J]. Physical Chemistry Chemical Physics,2007; 9:1774-1785.
    [117]Hu C. C., Chang K. H., Lin M. C., et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapaci tors [J]. Nano letters, 2006; 6:2690-2695.
    [118]Zhang H., Cao G., Wang Z., et al. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage [J]. Nano letters,2008; 8:2664-2668.
    [119]Fan L. Z., Hu Y. S.,Maier J., et al. High electroactivity of polyaniline in supercapaci tors by using a hierarchically porous carbon monolith as a support [J]. Advanced Functional Materials,2007; 17:3083-3087.
    [120]Seredych M., Hulicova-Jurcakova D., Lu G. Q., et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance [J]. Carbon,2008; 46:1475-1488.
    [121]Simon P..Gogotsi Y. Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems [J]. Accounts of Chemical Research,2012.
    [122]Portet C..Yushin G., Gogotsi Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors [J]. Carbon,2007; 45:2511-2518.
    [123]Zhang L. L.,Zhou R.,Zhao X. Graphene-based materials as supercapacitor electrodes [J]. Journal of Materials Chemistry,2010; 20:5983-5992.
    [124]Zhai Y., Dou Y., Zhao D., et al. Carbon materials for chemical capacitive energy storage [J]. Advanced Materials,2011; 23:4828-4850.
    [125]Lota G., Fic K.,Frackowiak E. Carbon nanotubes and their composites in electrochemical applications [J]. Energy & Environmental Science,2011; 4:1592-1605.
    [126]Long J. W., Belanger D., Brousse T., et al. Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes [J]. Mrs Bull,2011; 36:513-522.
    [127]Naoi K., Ishimoto S., Isobe Y., et al. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors [J]. Journal of Power Sources, 2010; 195:6250-6254.
    [128]Geim A. K., Novoselov K. S. The rise of graphene [J]. Nature Materials,2007; 6: 183-191.
    [129]Mishra A. K., Ramaprabhu S. Functionalized graphene-based nanocomposites for supercapacitor application [J]. The Journal of Physical Chemistry C,2011; 115: 14006-14013.
    [130]Miller J.R., Outlaw R.,Holloway B. Graphene double-layer capacitor with ac line-filtering performance [J]. Science,2010; 329:1637-1639.
    [131]Zhu Y.,Murali S.,Stoller M. D., et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science,2011; 332:1537-1541.
    [132]Wei L., Sevilla M., Fuertes A. B., et al. Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes [J]. Advanced Energy Materials,2011; 1:356-361.
    [133]Largeot C., Portet C., Chmiola J., et al. Relation between the ion size and pore size for an electric double-layer capacitor [J]. Journal of the American Chemical Society, 2008; 130:2730-2731.
    [134]Hohenberg P.,Kohn W. Inhomogeneous electron gas [J]. Physical Review,1964; 136:B864-B871.
    [135]Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects [J]. Physical Review,1965; 140:A1133-A1138.
    [136]Martin R.M., Electronic structure:basic theory and practical methods. Cambridge university press:Cambridge,2004.
    [137]Perdew J. P., Chevary J., Vosko S., et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B,1992; 46:6671-6687.
    [138]Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple [J]. Physical review letters,1996; 77:3865-3868.
    [139]Hammer B., Hansen L. B.,N(?)rskov J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Physical Review B,1999; 59:7413-7421.
    [140]Laidler K. J., King M. C. Development of transition-state theory [J]. The Journal of physical chemistry,1983; 87:2657-2664.
    [141]Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of Chemical Physics,1990; 92:508-517.
    [142]Delley B. From molecules to solids with the DMol3 approach [J]. The Journal of Chemical Physics,2000; 113:7756.
    [143]Taylor J., Guo H., Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices [J]. Physical Review B,2001; 63:245407.
    [144]Wang J., Guo H. Relation between nonequilibrium Green's function and Lippmann-Schwinger formalism in the first-principles quantum transport theory [J]. Physical Review B,2009; 79:045119.
    [145]Armand M., Tarascon J. Building better batteries [J]. Nature,2008; 451: 652-657.
    [146]Mizushima K., Jones P. C., Wiseman P.J., et al. LixCoO2 (0    [147]Huang D. Solid solution:new cathodes for next generation lithium-ion batteries [J]. Advanced Battery Technology,1998; 11:23-27.
    [148]Yan H., Huang X.,Zhonghua L., et al. Microwave synthesis of LiCoO2 cathode materials [J]. Journal of Power Sources,1997; 68:530-532.
    [149]Zhou Y., Shen C., Li H. Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template [J]. Solid State Ionics,2002; 146:81-86.
    [150]Zhu X., Guo Z., Du G., et al. LiCoO2 cathode thin film fabricated by RF sputtering for lithium ion microbatteries [J]. Surface and Coatings Technology,2010; 204:1710-1714.
    [151]Zhang H., Baker P. J., Grant P. S. Fabrication and electrical properties of bulk textured LiCo02 [J]. Journal of the American Ceramic Society,2010; 93:1856-1859.
    [152]Kalyani P., Kalaiselvi N. Various aspects of LiNiO2 chemistry:A review [J]. Science and Technology of Advanced Materials,2005; 6:689-703.
    [153]Delmas C., Croguennec L. Layered Li(Ni,M)O2 systems as the cathode material in lithium-ion batteries [J]. MRS Bulletin,2002; 27:608-612.
    [154]Spahr M. E., Novak P., Sehnyder B., et al. Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials [J]. Journal of the Electrochemical Society,1998; 145:1113-1121.
    [155]Hwang B. J., Tsai Y. W., Santhanam R., et al. Evolution of local electronic and atomic structure of Co-doped LiMn204 cathode material for lithium rechargeable batteries [J]. Journal of Power Sources,2003; 123:206-215.
    [156]Shaju K.M., Subba Rao G. V., Chowdari B. V. R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries [J]. Electrochimica Acta,2002; 48: 145-151.
    [157]Armstrong A. R., Dupre N., Paterson A. J., et al. Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2 [J]. Chemistry of Materials,2004; 16:3106-3118.
    [158]Guo Z. P., Konstantinov K., Wang G. X., et al. Preparation of orthorhombic LiMnOz material via the sol-gel process [J]. Journal of Power Sources,2003; 119-121:221-225.
    [159]Tomeno I., Kasuya Y., Tsunoda Y. Charge and spin ordering in LiMn2O4 [J]. Physical Review B,2001; 64:094422.
    [160]Segall M., Shah R., Pickard C., et al. Population analysis of plane-wave electronic structure calculations of bulk materials [J]. Physical Review B,1996; 54: 16317-16320.
    [161]Ohzuku T., Ueda A., Nagayama M., et al. Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells [J]. Electrochimica Acta,1993; 38:1159-1167.
    [162]Vitins G..West K. Lithium intercalation into layered LiMnO2 [J]. Journal of the Electrochemical Society,1997; 144:2587-2592.
    [163]Jang Y. I., Huang B., Chiang Y. M., et al. Stabilization of LiMnO2 in the α-NaFeO2 structure type by LiA102 addition [J]. Electrochemical and Solid-State Letters,1998; 1: 13-16.
    [164]Wolverton C., Zunger A. First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in LixCoO2 [J]. Physical review letters,1998; 81: 606-609.
    [165]Wolverton C., Zunger A. Cation and vacancy ordering in LixCoO2 [J]. Physical Review B,1998; 57:2242-2252.
    [166]Laubach S.,Schmidt P.C.,Ensling D., et al. Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation [J]. Physical Chemistry Chemical Physics,2009; 11:3278-3289.
    [167]Wang L., Li J., He X., et al. Recent advances in layered LiNixCoyMn1-x-yO2 cathode materials for lithium ion batteries [J]. Journal of Solid State Electrochemistry,2009; 13:1157-1164.
    [168]Jeon Y. A.,Kim S. K., Kim Y. S., et al. A first principles investigation of new cathode materials for advanced lithium batteries [J]. Journal of Electroceramics,2006; 17:667-671.
    [169]MacNeil D. D., Hatchard T. D., Dahn J. R. A Comparison between the High Temperature Electrode/Electrolyte Reactions of Li,Co02 and LixMn2O4 [J]. Journal of the Electrochemical Society,2001; 148:A663-A667.
    [170]Jouanneau S., Eberman K. W., Krause L. J., et al. Synthesis, characterization, and electrochemical behavior of improved Li[Ni,Co1-2xMnx]O2 (0.1≤x≤0.5) [J]. Journal of the Electrochemical Society,2003; 150:A1637-A1642.
    [171]Jouanneau S., Bahmet W., Eberman K. W., et al. Effect of the sintering agent, B2O3 on Li[NiCo1-2xMnx]O2 materials density, structure, and electrochemical properties [J]. Journal of the Electrochemical Society,2004; 151:A1789.
    [172]Meunier V.,Kephart J., Roland C., et al. Ab Initio Investigations of Lithium Diffusion in Carbon Nanotube Systems [J]. Physical Review Letters,2002; 88:75506-1/4.
    [173]Koudriachova M. V., Harrison N. M., Leeuw S. W. d. Effect of Diffusion on Lithium Intercalation in Titanium Dioxide [J]. Physical Review Letters,2001; 86:1275-1278.
    [174]Shi S.,Liu L.,Ouyang C., et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations [J]. Physical Review B,2003; 68:195108.
    [175]Reed J., Ceder G. Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O2 [J]. Electrochemical and Solid State Letters,2002; 5:A145-A148.
    [176]Ceder G.,Aydinol M., Kohan A. Application of first-principles calculations to the design of rechargeable Li-batteries [J]. Computational materials science,1997; 8: 161-169.
    [177]Koyama Y., Tanaka I.,Adachi H., et al. First principles calculations of formation energies and electronic structures of defects in oxygen-deficient LiMn2O4 [J]. Journal of the Electrochemical Society,2003; 150:A63-A67
    [178]Koyama Y..Makimura Y., Tanaka I., et al. Systematic research on insertion materials based on superlattice models in a phase triangle of LiCoO2-LiNiO2-LiMnO2 I. First-principles calculation on electronic and crystal structures, phase stability and new LiNi1/2Mn1/2O2 material [J]. Journal of the Electrochemical Society,2004; 151.
    [179]Motohashi T., Ono T., Sugimoto Y., et al. Electronic phase diagram of the layered cobalt oxide system LixCoO2(0.0    [180]Kang K., Ceder G. Factors that affect Li mobility in layered lithium transition metal oxides [J]. Physical Review B,2006; 74:094105.
    [181]Okubo M., Tanaka Y., Zhou H., et al. Determination of activation energy for Li ion diffusion in electrodes [J]. Journal of Physical Chemistry B,2009; 113:2840-2847.
    [182]Van der Ven A.,Ceder G. Lithium diffusion mechanisms in layered intercalation compounds [J]. Journal of Power Sources,2001; 97-98:529-531.
    [183]Okumura T., Fukutsuka T., Uchimoto Y., et al. Cathode having high rate performance for a secondary Li-ion cell surface-modified by aluminum oxide nanoparticles [J]. Journal of Power Sources,2009; 189:471-475.
    [184]Kang K., Meng Y. S., Breger J., et al. Electrodes with high power and high capacity for rechargeable lithium batteries [J]. Science,2006; 311:977-980.
    [185]Van der Ven A., Ceder G. Lithium Diffusion in Layered Li xCo02 [J]. Electrochemical and Solid-State Letters,2000; 3:302-304.
    [186]Koyama Y., Tanaka I.,Adachi H., et al. Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2(0≤x≤1) [J]. Journal of Power Sources,2003; 119-121: 644-648.
    [187]Meng Y.S.,Wu Y.W., Hwang B.J., et al. Combining Ab Initio Computation with Experiments for Designing New Electrode Materials for Advanced Lithium Batteries: LiNiFeCoMnO [J]. Journal of the Electrochemical Society,2004; 151:A1134.
    [188]Hwang B., Tsai Y..Carlier D., et al. A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2 [J]. Chemistry of Materials,2003; 15:3676-3682.
    [189]Madhu C..Garrett J., Manivannan V. Synthesis and characterization of oxide cathode materials of the system (1-x-y)LiNiO2·xLi2MnO3·yLiCoO2 [J]. Ionics,2010; 16: 591-602.
    [190]Armstrong A.R., Bruce P. G. Synthesis of layered LiMn02 as an electrode for rechargeable lithium batteries [J]. Nature,1996; 381:499-500.
    [191]Ohzuku T., Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries [J]. Chemistry Letters,2001; 30:642-643.
    [192]Lu Z., MacNeil D. D., Dahn J. R. Layered cathode materials Li [NixLi(1/3-2x/3)Mn(2/3-x/3)]02 for lithium-ion batteries [J]. Electrochemical and Solid-State Letters,2001; 4:A191-A194.
    [193]Kresse G., Furthmtuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996; 6:15-50.
    [194]Kresse G., Hafner J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B,1993; 48:13115.
    [195]Blochl P. E. Projector augmented-wave method [J]. Physical Review B,1994; 50: 17953.
    [196]Henkelman G., Uberuaga B.P.,Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J]. The Journal of Chemical Physics,2000; 113:9901.
    [197]Kim J. H., Park C. W., Sun Y. K. Synthesis and electrochemical behavior of Li [Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials [J]. Solid State Ionics,2003; 164:43-49.
    [198]Dou S., Wang W. Synthesis and electrochemical properties of layered LiNi0.5-xMn0.5-xCo2xO2 for lithium-ion battery from nickel manganese cobalt oxide precursor [J]. Journal of Solid State Electrochemistry,2011; 15:399-404.
    [199]Mulliken R. Electronic Population Analysis on LCAO [Single Bond] MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies [J]. The Journal of Chemical Physics,1955; 23:1841.
    [200]Aydinol M. K., Kohan A. F., Ceder G., et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J]. Physical Review B,1997; 56: 1354.
    [201]Ohzuku T., Ueda A. Phenomenological expression of solid-state redox potentials of LiCo02, LiCo1/2Ni1/2O2, and LiNiO2 insertion electrodes [J]. Journal of the Electrochemical Society,1997; 144:2780-2785.
    [202]Vineyard G.H. Frequency factors and isotope effects in solid state rate processes [J]. Journal of Physics and Chemistry of Solids,1957; 3:121-127.
    [203]Pauling L. The nature of the chemical bond [J]. Cornell University Press, Ithaca, NY,1960.
    [204]Zhou Y.,Wu C., Zhang H., et al. Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries [J]. Electrochimica Acta,2007; 52:3130-3136.
    [205]Marmorstein D.,Yu T.,Striebel K., et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes [J]. Journal of Power Sources,2000; 89:219-226.
    [206]Shim J., Striebel K. A., Cairns E. J. The Lithium/Sulfur rechargeable cell effects of electrode composition and solvent on cell performance [J]. Journal of the Electrochemical Society,2002; 149:A1321-A1325.
    [207]Debart A., Dupont L., Patrice R., et al. Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium:The intriguing case of the copper sulphide [J]. Solid State Sciences,2006; 8:640-651.
    [208]Jeon B. H., Yeon J. H., Kim K. M., et al. Preparation and electrochemical properties of lithium-sulfur polymer batteries [J]. Journal of Power Sources,2002; 109: 89-97.
    [209]Hayashi A., Ohtomo T.,Mizuno F., et al. Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S-P2Ss glass-ceramic electrolytes [J]. Electrochimica acta,2004; 50:893-897.
    [210]Zhao J.,Buldum A.,Han J., et al. First-principles study of Li-intercalated carbon nanotube ropes [J]. Physical Review Letters,2000; 85:1706-1709.
    [211]Song B., Yang J., Zhao J., et al. Intercalation and diffusion of lithium ions in a carbon nanotube bundle by ab initio molecular dynamics simulations [J]. Energy Environ. Sci.,2011:1379-1384.
    [212]Gao B., Kleinhammes A.,Tang X., et al. Electrochemical intercalation of single-walled carbon nanotubes with lithium [J]. Chemical Physics Letters,1999; 307: 153-157.
    [213]Uthaisar C.,Barone V. Edge effects on the characteristics of Li diffusion in graphene [J]. Nano Letters,2010; 10:2838-2842.
    [214]Reddy A. L. M., Srivastava A., Gowda S. R., et al. Synthesis of nitrogen-doped graphene films for lithium battery application [J]. Acs Nano,2010; 4:6337-6342.
    [215]Buehrer W., Altorfer F.,Mesot J., et al. Lattice dynamics and the diffuse phase transition of lithium sulphide investigated by coherent neutron scattering [J]. Journal of Physics:Condensed Matter,1991; 3:1055.
    [216]Eithiraj R., Jaiganesh G..Kalpana G., et al. First-principles study of electronic structure and ground-state properties of alkali-metal sulfides-Li2S, Na2S, K2S and Rb2S [J]. physica status solidi (b),2007; 244:1337-1346.
    [217]Schon J., Cancarevic Z.,Jansen M. Structure prediction of high-pressure phases for alkali metal sulfides [J]. The Journal of Chemical Physics,2004; 121:2289.
    [218]Buehrer W..Bill H. [J]. Helv. Phys. Acta,1977; 50:431.
    [219]Shannon R. t..Prewitt C. T. Effective ionic radii in oxides and fluorides [J]. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry,1969; 25:925-946.
    [220]Shannon R. t..Prewitt C. Revised values of effective ionic radii [J]. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry,1970; 26: 1046-1048.
    [221]Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A:Crystal Physics, Diffraction, Theoretical and General Crystallography,1976; 32:751-767.
    [222]Allred A., Rochow E. A scale of electronegativity based on electrostatic force [J]. Journal of Inorganic and Nuclear Chemistry,1958; 5:264-268.
    [223]Peled E.,Menachem C., Bar-Tow D., et al. Improved Graphite Anode for Lithium(?)\Ion Batteries Chemically [J]. Journal of the Electrochemical Society,1996; 143: L4-L7.
    [224]Wu Y., Jiang C., Wan C., et al. Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries [J]. Electrochemistry Communications,2000; 2:272-275.
    [225]Fu L. J., Liu H., Li C., et al. Surface modifications of electrode materials for lithium ion batteries [J]. Solid State Sciences,2006; 8:113-128.
    [226]Zhou Z., Zhao J.,Gao X., et al. Do composite single-walled nanotubes have enhanced capability for lithium storage? [J]. Chemistry of materials,2005; 17:992-1000.
    [227]Way B., Dahn J. The Effect of Boron Substitution in Carbon on the Intercalation of Lithium in Li (BC) [J]. Journal of the Electrochemical Society,1994; 141:907-912.
    [228]Weydanz W., Way B., Van Buuren T., et al. Behavior of nitrogen-substituted carbon (NzC1-z) in Li/Li(NxC1-x) 6 cells [J]. Journal of the Electrochemical Society,1994; 141: 900-907.
    [229]Morita M.,Hanada T.,Tsutsumi H., et al. Layered-Structure BCN as a Negative Electrode Matrix for Rechargeable Lithium Batteries [J]. Journal of the Electrochemical Society,1992; 139:1227.
    [230]Kurita N. Molecular orbital calculations on lithium absorption in boron-or nitrogen-substituted disordered carbon [J]. Carbon,2000; 38:65-75.
    [231]Endo M.,Hayashi T., Hong S. H., et al. Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite [J]. Journal of Applied Physics,2001; 90: 5670-5674.
    [232]Wang X., Zeng Z., Ahn H., et al. First-principles study on the enhancement of lithium storage capacity in boron doped graphene [J]. Applied Physics Letters,2009; 95: 183103/1-3.
    [233]Wu D., Li Y., Zhou Z. First-principles studies on doped graphene as anode materials in lithium-ion batteries [J]. Theoretical Chemistry Accounts:Theory, Computation, and Modeling (Theoretica Chimica Acta),2011; 130:209-213.
    [234]Zhao J., Wen B., Zhou Z., et al. Reduced Li diffusion barriers in composite BG3 nanotubes [J]. Chemical Physics Letters,2005; 415:323-326.
    [235]Delley B. An all electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of Chemical Physics,1990; 92:508.
    [236]Delley B. From molecules to solids with the DMol approach [J]. The Journal of Chemical Physics,2000; 113:7756.
    [237]Chang Y. C., Jong J. H., Fey G. T.K. Kinetic characterization of the electrochemical intercalation of lithium ions into graphite electrodes [J]. Journal of the Electrochemical Society,2000; 147:2033-2038.
    [238]Kganyago K., Ngoepe P. Structural and electronic properties of lithium intercalated graphite LiC_{6} [J]. Physical Review B,2003; 68:205111.
    [239]Imai Y..Watanabe A. Energetic evaluation of possible stacking structures of Li-intercalation in graphite using a first-principle pseudopotential calculation [J]. Journal of alloys and compounds,2007; 439:258-267.
    [240]Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B,1988; 37:785.
    [241]Qu D. Studies of the activated carbons used in double-layer supercapacitors [J]. Journal of Power Sources,2002; 109:403-411.
    [242]Xing W., Qiao S., Ding R., et al. Superior electric double layer capacitors using ordered mesoporous carbons [J]. Carbon,2006; 44:216-224.
    [243]Beguin F.,Szostak K., Lota G., et al. A Self-Supporting Electrode for Supercapacitors Prepared by One-Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends [J]. Advanced Materials,2005; 17:2380-2384.
    [244]Stankovich S.,Dikin D. A.,Piner R.D., et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007; 45: 1558-1565.
    [245]Stoller M. D.,Park S., Zhu Y., et al. Graphene-based ultracapacitors [J]. Nano letters,2008; 8:3498-3502.
    [246]Wang X.,Li X.,Zhang L., et al. N-doping of graphene through electrothermal reactions with ammonia [J]. Science,2009; 324:768-771.
    [247]Shao Y., Zhang S.,Engelhard M.H., et al. Nitrogen-doped graphene and its electrochemical applications [J]. J. Mater. Chem.,2010; 20:7491-7496.
    [248]Jeong H. M., Lee J. W.,Shin W. H., et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes [J]. Nano letters,2011; 11:2472-2477.
    [249]Qiu Y., Zhang X., Yang S. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets [J]. Phys. Chem. Chem. Phys.,2011; 13: 12554-12558.
    [250]Sun L., Wang L., Tian C., et al. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage [J]. RSC Advances,2012.
    [251]Jin Z., Yao J., Kittrell C., et al. Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets [J]. ACS nano,2011.
    [252]Panchakarla L.,Subrahmanyam K., Saha S., et al. Synthesis, structure, and properties of boron-and nitrogen-doped graphene [J]. Advanced Materials,2009; 21: 4726-4730.
    [253]Li X., Wang H., Robinson J. T., et al. Simultaneous nitrogen doping and reduction of graphene oxide [J]. Journal of the American Chemical Society,2009; 131:15939-15944.
    [254]Wei L., Sevilla M., Fuertes A. B., et al. Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes [J]. Advanced Energy Materials,2011; 1:356-361.
    [255]Henkelman G., Arnaldsson A., Jonsson H. A fast and robust algorithm for Bader decomposition of charge density [J]. Computational Materials Science,2006; 36:354-360.
    [256]Koskinen P..Malola S..Hakkinen H. Self-passivating edge reconstructions of graphene [J]. Physical Review Letters,2008; 101:115502.
    [257]Gao J., Zhao J., Ding F. Transition Metal Surface Passivation Induced Graphene Edge Reconstruction [J]. Journal of the American Chemical Society,2012; 134:6204.
    [258]Wassmann T.,Seitsonen A. P.,Saitta A.M., et al. Structure, stability, edge states, and aromaticity of graphene ribbons [J]. Physical Review Letters,2008; 101:96402.
    [259]Li Y., Zhou Z., Shen P., et al. Spin Gapless Semiconductor-Metal-Half-Metal Properties in Nitrogen-Doped Zigzag Graphene Nanoribbons [J]. ACS nano,2009; 3:1952-1958.
    [260]Guo B.,Liu Q.,Chen E., et al. Controllable N-doping of graphene [J]. Nano letters,2010.
    [261]Bruce P. G.,Hardwick L. J., Abraham K. Lithium-air and lithium-sulfur batteries [J]. MRS bulletin,2011; 36:506-512.
    [262]Raymundo-Pinero E.,Kierzek K., Machnikowski J., et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes [J]. Carbon,2006; 44:2498-2507.
    [263]Chmiola J.,Yushin G.,Gogotsi Y., et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer [J]. Science,2006; 313:1760-1763.
    [264]Alvarez Idaboy J. R.,Mora Diez N.,Vivier Bunge A. A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes [J]. Journal of the American Chemical Society,2000; 122: 3715-3720.
    [265]Xiao J., Staniszewski J.,Gillespie J. Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects [J]. Materials Science and Engineering: A,2010; 527:715-723.
    [266]Nielsen O.,Martin R. M. Quantum-mechanical theory of stress and force [J]. Physical Review B,1985; 32:3780-3791.
    [267]Nielsen O.,Martin R.M. First-principles calculation of stress [J]. Physical review letters,1983; 50:697-700.
    [268]Zhang J., Zhao J., Lu J. Intrinsic strength and failure behaviors of graphene grain boundaries [J]. ACS nano,2012; 6:2704-2711.
    [269]Lee C., Wei X.,Kysar J. W., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008; 321:385-388.
    [270]Scrosati B. Lithium rocking chair batteries:An old concept? [J]. Journal of the Electrochemical Society,1992; 139:2776-2781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700