基于SYSWELD的焊接接头温度场和残余应力场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接是一个涉及到电弧物理、传热、冶金和力学的复杂过程。焊接现象包括焊接时的电磁、传热过程、金属的熔化和凝固、冷却时的相变、焊接应力和变形等。随着计算机计算能力的不断提高和数值计算技术的发展,有限元数值模拟成为研究各种焊接现象的重要手段。
     本文系统地论述了焊接过程的有限元分析理论,并以非线性有限元分析为平台,以对接接头为对象,采用SYSWELD软件对TCS345不锈钢对接焊的焊接过程进行了模拟仿真。首先根据不锈钢焊接的试验结果,采用FORTRAN语言,对软件热源进行了二次开发,得到针对本文接头形状热源模型,利用二次开发的热源模型对对焊接过程产生的温度场、残余应力场进行了实时动态模拟仿真。然后进行温度场测试和残余应力场测试,证明得到的热源模型是可行的。
     利用测温系统,采用在焊接工件表面布置热电偶的方式对焊接过程一些点进行了测量。结果表明在所测点位置温度的计算结果和实测结果符合良好,得到焊接接头的温度变化规律,而且验证了模型的实用性。温度场的数值模拟为进一步研究焊接的应力与组织性能等奠定了基础。对6mm不锈钢板焊接后横向、纵向残余应力进行了测量。测量结果表明,测得的横向、纵向残余应力分布规律与数值模拟结果一致,验证了焊接应力的数值模拟结果的正确性。
     本文通过实验研究和模拟计算相结合,建立了可行的三维焊接温度场和应力的动态模拟分析方法,为复杂焊接结构进行三维焊接温度场和应力分析提供了理论依据和指导,促进了有限元分析技术在焊接力学分析以及工程中的应用。
Welding is a complicated physicochemical process which involves in electromagnetism, heat transferring, metal melting and solidifying, Phase-change, Welding stress and deformation and so on. With the Rapid improvement of computer calculating ability and the advances of numerical calculation technique, numerical simulation with finite element analysis has become the most important means for welding distortion predictions.
     This paper systemically discusses the welding process via the finite element analytical system. We use the heat source model in SYSWELD to simulate the process of the laser welding based on stainless steel TCS345. First, based on the stainless steel weld experimental result, take application of FORTRAN to carry out second time tap when applied for different shape of weld seam is the advanced form when people use SYSWELD. By utilizing the results to simulate the welding process of butt welding. Meanwhile, the calculation results have little difference with test result. We can prove the heat source model is correct.
     Via the monitoring temperature system, some points in the test model are measured during welding process by means of thermocouples. As a result, the experimental data is in perfect accordance with calculated data. In conclusion, doing by this way can firmly provide a basis for further research of stress and strain fields in the period of welding process. The welding transversally and longitudinally residual stress and distortion were also measured on 6 mm thick plate. The distributive patterns of residual stresses matched extremely well with the results of numerical simulation as well as testify the results of the numerical simulation.
     As it can been manifested by the research and numerical stimulation, this paper establishes a feasible dynamic simulation method on 3D welding temperature and stress fields, which provides theory evidence and instruction and promotes the application of FEA on welding mechanics analysis and engineering.
引文
[1]自升式平台桩腿裂纹补焊工艺和平台用高强度钢多次补焊的判废标准/科研项目建议[R].机械部郑州机械研究所,中国科学院力学研究所,1995.
    [2]李冬霞,贾宝春,刘跃进.高强钢TIG熔修焊缝裂纹的低温力学性能研究[J].郑州纺织工学院学报,2001.3.
    [3]张文钺,焊接冶金学[M].第一版,北京:机械工业出版社1999:1-15.
    [4]赵熹华,焊接检测[M].第一版,北京:机械工业出版社1993:11~24.
    [5]Eager T.W. and Tsai N.S., Temperature fields produced by traveling distributed heat source, Welding Journal,1983,62(12):346-s to 355-s.
    [6]Jeong S.k. and Cho H.S., An analytical solution to predict the transient temperature distribution in fillet arc welds, Weld Journal,1997,76(6):223-s to 232-s.
    [7]蔡志鹏等.焊接数值模拟中分段移动热源模型的建立及应用[J],中国机械工程,2002,13(3):208-210.
    [8]蔡志鹏等.串热源模型及其在焊接数值模拟中的应用[J].中国机械工程学报,2001.37(4):25-28.
    [9]蔡志鹏.大型结构焊接变形数值模拟的研究与应用[D].清华大学博士学位论文,2001.
    [10]A Goldak, et al. A New Finite Element Model for Welding Heat Sources[J].Metallurgical Transaction B,1984,15B:299-305.
    [11]A Goldak, et al. Computer Modeling of Heat Flow in Welding[J].Metallurgical Transactions B,1986,17B:587-600.
    [12]胡庆贤.穿孔等离子呼喊温度场的有限元分析[D].济南:山东大学博士论文,2007
    [13]D Rosenthal. Mathematical Theory of Distribution during Welding and Cutting [J].The Weld Journal,1941,20(5):220-234.
    [14]E Wilson, R E Nickll. Application of the Finite Element Method to Heat Conduction Analysis [J].Nuclear Engineer and Design,1966,4:276-286.
    [15]Z Paley, H D Hibbert. Computation of Temperatures in Actual Weld Design [J].Welding Journal, 1975,54:385-392.
    [16]N Sonti, M F Amateau. Finite Element Modeling of Heat Flow in Deep-Penetration Laser Welds in Aluminum Alloys [J].Numerical Heat Transfer,1989,16A:351-370.
    [17]P TekriWal, J Mazumder. Finite Element Analysis of Three Dimensional Transient HeatTransfer in GMA Welding [J].Welding Research Supplement,1998,16:150-156.
    [18]K J Bathe, M R Khoshyoftar. Finite Element Formulation and of Nonlinear Heat Transfer[J].Nuclear Engineering and Design,1979,51:389-401.
    [19]Ronda J. Oliver G J. Consistent Thermo-Mechano-Metallurgical Model of Welded steel with Unified Approach to Derivation of Phase Evolution Laws and Transformation— Induced Plasticity [J].Computer Methods in Applied Methods in Applied Mechanics and Engineering,2000,189(2):361-417.
    [20]唐慕尧等.焊接温度场计算(一)[R].西安交通大学科学技术报告,1981.
    [21]陈楚等.非线性焊接热传导的有限元分析和计算[J].焊接学报,1983,4(3):139-147.
    [22]武传松等.熔透情况下三维TIG焊接熔池流场和热场的数值分析[J].金属学报,1992,28(10):B427-B432.
    [23]武传松等.TIG焊接熔池表面变形对流长和热场的影响[J].金属科学与工艺,1992,11(3,4): 108-113.
    [24]汪建华等.三维瞬态焊接温度场的有限元模拟[J].上海交通大学学报,1996,30(3):120-125.
    [25]汪建华等.不同接头形状下的焊接传热计算机系统[J].焊接学报,1990,11(1):57-64.
    [26]蔡洪能,TIG焊接温度场的有限元分析,机械工程学报,1996.32(2):34-39
    [27佐藤邦彦等.焊接接头的强度与设计[M].机械工业出版社,1983.
    [28]奥凯尔勃洛姆H O.雷原译.焊接应力与变形[M].中国工业出版社,1958.
    [29]L Tall.Residual Stress in Welding Plates-A Theoretical Study[J].Welding Journal, 964,43(1):10-23.
    [30]Yueda. Analysis of thermal elastic-plastic stress and strain during welding[J]. Trans. Japan Welding Soc.1971,2(2):90-94.
    [31]T Muraki, et al. Analysis of Thermal Stresses and Metal Movement during Welding [J]. Journal of Engineering Material and Technology,1975,82:81-91.
    [32]R L Carllson. Thermal Stress in Welding[M].Chapter5,Thermal Stress I,1985.
    [33]InoueT. Metallo-Thermo-mechanics Application to phase Transformation Incorporated Processes [J]. Proc. Theoretical Prediction in Joining and welding.1996,11:89-l 12
    [34]Afzaal M. Malik, Ejaz M. Qureshi, Analysis of circumferentially arc welded thin-walled cylinders to investigate the residual stress fields [J] Thin-Walled Structures 2008
    [35]D.G Karalis, V.J. Papazoglou, D.I. Pantelis, Mechanical response of thin SMAW arc welded structures:Experimental and numerical investigation[J] Theoretical and Applied Fracture Mechanics 2009
    [36]X. Shan, C.M. Davies b, T. Wangsdan, Thermo-mechanical modeling of a single-bead-on-plate weld using the finite element method[J] International Journal of Pressure Vessels and Piping 2009
    [37]Seok-Hoon Kim, Jong-Bum Kim, Won-Jae Lee, Numerical prediction and neutron diffraction measurement of the residual stresses for a modified 9Cr-1Mo steel weld[J] journal of materials processing technology 2009
    [38]陈楚,汪建华,罗宇.轴对称热弹塑性应力有限元分析在焊接中的应用[J].焊接学报,1987,8(4):196-203.
    [39]陈炳森.计算机辅助焊接技术[M].北京:机械工业出版社,1999.107-166
    [40]陆皓薄板结构焊接变形数值模拟及应用电焊机Vo137 No6 Jun 2007
    [41]兰春萍,张玉风.管道结构环焊缝焊接残余应力的计算与测量[J].焊接技术,19994:5-6
    [42]草俊惠,霍立兴,张玉风.低碳钢管焊接残余应力有限元分析[J].焊接,2000(12):11-15
    [43]梁晓燕中厚板多道焊焊接过程中温度场和应力场的三维数值模拟[D].华中科技大学硕士学位论文2004
    [44]肖顺湖薄板焊接过程数值模拟与试验研究[D].广西大学硕士学位论文2005
    [45]陈家权,沈炜良,尹志新,肖顺湖基于单元生死的焊接温度场模拟计算[J]. Hot Working Technology 2005 No.7
    [46]杨建国,李军,刘雪松,方洪渊Numerical simulation about the effect of fixture on the welding stress and distortion of thin aluminum plate joints[J] CHINA WELDING Vol17 No4 December 2008
    [47]杨建国,姬书得,方洪渊Theoretical study and numerical simulation of the stress fields of the Al2O3 joints brazed with composite filler materials[J] CHINA WELDING Vol15 No3 September 2006
    [48]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.16-18
    [49]莫春立,钱百年,国旭明,于少飞.焊接热源计算模式的研究进展[J].焊接学报,2001,22(3):93-96.
    [50]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社.
    [51]宋天民.焊接残余应力的产生与消除[M].北京:中国石化出版社,2005.1
    [52]王维容.关于焊接残余应力测试方法的研究焊接学报[j].Vol10,NO.3,1989
    [53]潘友光,钟善桐国内外焊接残余应力的测试技术和理论分析的综述钢结构[J].Vo1.9,NO.25,1994
    [54]宋建民,王有祁,王冬生等焊接残余应力的测试及研究[J].Vol30, No2,2007
    [55]钟文定.铁磁学[M].北京:科学出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700