X80管线钢用自保护药芯焊丝的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自保护药芯焊丝是一种无需外加保护措施即可进行焊接的新型焊接材料。由于其抗风能力强、焊接设备简便等特点,尤其适合野外、高层建筑等施工场合。应用自保护药芯焊丝进行野外管道建设具有焊接效率高、焊缝质量好等特点,因此可大幅降低长输管线的综合建设成本。本文以BaF_2-Al-Mg渣系为基础渣系,对药芯组分选择、焊丝制作工艺、自保护机理、焊接工艺性能、熔覆金属强韧化等环节进行了系统研究,研制出与X80管线钢相匹配的高强韧性自保护药芯焊丝。
     BaF_2-Al-Mg渣系通过气、渣、金三元联合的方式保护熔滴和熔池,以气、渣保护降低氮的溶解量,以铝脱氮、固氮消除溶入熔池的氮可能产生的氮气孔、时效脆化等缺陷,强脱氧剂铝、镁脱氧可有效控制焊缝中的氧含量。本研究药粉预处理是将BaF_2、LiF、Fe_2O_3等药粉混合、造粒,经700℃~850℃烧结保温30min,粉碎、筛分保留粒度为60目~150目药粉的工艺流程。经过预处理的混合粉,具有粒度均匀、比重大、流动性好、吸湿性低的特点,保障了混合粉的均匀性和焊丝填充率的稳定性。
     通过混料回归设计建立了药芯组分中BaF_2、LiF、Fe_2O_3、Al-Mg、Li_2CO_3对熔渣覆盖率、飞溅率、发尘率影响的数学模型,并可通过模型预报和控制药芯组分对上述指标的影响。
     提出了新的熔滴-熔渣-钢皮结构模型,并借助高速摄影技术提出本研究焊丝熔滴过渡以外摆接触过渡和射流过渡为主,伴有少量的爆炸过渡。研究了Fe_2O_3、Li_2CO_3、Al-Mg对各种熔滴过渡频率的影响,得出它们在药芯中的适用范围。通过热力学分析,提出铝对熔池固氮存在最小临界值。该临界值随熔池中氮含量的提高而降低,铝含量低于临界值时熔池不具有固氮效果,超过临界值后随铝含量的增加熔池固氮能力提高,固氮产物为多面体的AlN。
     通过正交试验对熔敷金属进行强韧化设计,研究了Ni、Mn、Zr、Ce对熔覆金属强韧性的影响。得出Ni:1.6wt.%、Mn:1.1wt.%、Zr:0.02wt.%、Ce:0.009wt.%为本研究渣系自保护药芯焊丝的最优合金系统。熔敷金属以粒状贝氏体组织为主,抗拉强度为594MPa时,-40℃下Charpy-V冲击韧度平均值达164J。
     优化的焊丝通过在X80管线钢上进行焊接工艺性能和接头力学性能的综合焊接评定,评定结果满足西气东输二线相关规范对X80管线钢环焊缝的要求。
Self-shielded flux cored wire (SSFCW) is a new type welding material, which is capable of providing weld metal free from welding defects when welding in the open air without any intentionally protect. Due to its good wind resistant, simple equipment make it especially suitable for field, high-rise building and other fields. Using self-shielded flux cored wire for field pipeline construction has the characteristics of high efficiency, good weld quality and so on. As a result, long-distance pipeline construction costs can be greatly reduced. In this paper, BaF_2-Al-Mg slag system is selected as basis slag system. Through the study of flux ingredients selection, wire manufacturing process,self-protection mechanism, welding usability, deposited metal strengthening and toughening design in detail, a new kind of self-shielded flux cored wire with high strength and toughness was developed, which can be used for grade X80 pipeline steel welding.
     For BaF_2-Al-Mg slag system, gas, slag and alloy elements are jointly used to protect the droplet and molten pool from the contamination of air. By gas and slag protection, nitrogen dissolved in weld pool is reduced as much as possible. For the dissolved nitrogen, aluminum is used to form AlN, which is a stable nitride, so that nitrogen porosity and aging embrittlement are eliminated. Aluminum and magnesium both are strong deoxidizer, which can control the oxygen content in the weld effectively.
     In this paper, flux pretreatment is a process. BaF_2、LiF、Fe_2O_3 flux are mixed and granulated, then sintered at 700℃~850℃for 30min, 60 to 150 mesh flux is kept after grinding and sieving. Pretreated flux has the features of uniform particles, increased density, improved flux fluidity and low moisture absorption. As a result, the flux uniformity and wire feed rate are ensured.
     The effect of flux ingredients (including BaF_2, LiF, Fe_2O_3, Al-Mg, Li_2CO_3) on slag coverage rate, spattering rate and welding fume have been studied by mixture regression design, by which mathematical models were established. The effect of flux ingredients on as mentioned parameters can be predicted and controlled by the mathematical models.
     A new droplet, molten slag and wire shell relationship mode has been proposed in this paper. The kinds of droplet transfer modes and the effect of Fe_2O_3、Li_2CO_3、Al-Mg flux ingredients on them have been studied by means of high-speed photography technique. Suitable quantity of each ingredient was obtained.
     Thermodynamic analysis shows that aluminum-nitrogen reaction in the molten pool has a critical value for aluminum content. The critical value is decreased with the increasing of nitrogen content in molten pool. Lower the critical value, the aluminum in molten has no nitrogen-fixation effect. Beyond it, nitrogen-fixation effect is increasing with the increase of aluminum in molten pool.
     The effect of Ni, Mn, Zr, Ce on the strength and toughness of deposited metal have been studied by orthogonal design. The optimal alloy system for as studied SSFCW was obtained, that is Ni: 1.6wt.%, Mn: 1.1wt.%, Zr: 0.02wt.%, Ce: 0.009wt.%. With this alloying system, the tensile strength and Charpy-V impact value at -40℃are 594MPa and 164J respectively.
     Welding usability and weld joint mechanical properties of the developed wire have been evaluated by means of welding at X80 pipeline steel. The evaluation results meet the specifications of the second“West-East Gas Transmission”project for grade X80 girth weld requirements.
引文
[1]戴均陶,齐国治.药芯焊丝的发展及其制造技术[J].电焊机,1995,(6):28-30.
    [2]丁春.国内外药芯焊丝电弧焊发展状况[J].电焊机,1992, (4):1-3.
    [3]李春范. 2006年中国焊接材料生产情况[C]. 2007年中国焊材论坛.
    [4]唐伯钢.今后五年我国焊接材料的发展趋势和问题[J].电焊机,2006,36(11):1-4.
    [5]田志凌,潘川,梁东图.药芯焊丝[M].北京:冶金工业出版社,1999.
    [6]马凤辉,李春范.中国药芯焊丝行业现状[J].焊接,2003, (2):5-8.
    [7]陈邦固,金力鸿,王秀文.我国药芯焊丝应用现状与发展趋势[J].机械工人,2002, 491(8):14-16.
    [8] A 5.20 Specification for carbon steel electrode for flux cored arc welding [S]. AWS, 2005.
    [9] A 5.22 Specification for stainless steel electrodes for flux cored arc welding and stainless steel flux cored rods for gas tungsten arc welding [S]. AWS, 1995.
    [10] A 5.29 Specification for low-alloy steel electrodes for flux cored arc welding [S]. AWS, 2005.
    [11] G.G. Landis, D.M. Patton, Method and mean of bare electrode welding [P]. U.S. Patent, 2909778, 1959.
    [12]李铜,钱莉,王文杰.管道焊接技术[J].电焊机,2007,37(12):32-35.
    [13]陶然,陈辉,陈鹏。自保护药芯焊丝在钢轨冷焊修复中的应用[J].电焊机,2005,35(11):46-47.
    [14]黄辰奎.采用自保护药芯焊丝电弧焊焊补高锰钢辙叉工艺的研究[J].铁道建筑,1991,(2):4-8.
    [15]栗卓新,陈邦固,张文钺.自保护药芯焊丝的研究进展评述[J].中国机械工程,1996,7(5):60-64.
    [16] D.J. Kotecki, R.A. Moll. A toughness study of steel weld-metal from self-shielded flux-cored electrodes-Part II [J]. Welding Journal, 1972, 51(3):138-155.
    [17] D.J. Kotecki, R.A. Moll. A toughness study of steel weld-metal from self-shielded flux-cored electrodes-Part I [J]. Welding Journal, 1970, 49(4):157-165.
    [18]张振永.长输油气管道的自保护药芯焊丝半自动焊[J].焊接,2006,(6):51-54.
    [19] D. Millington. Self shielded arc welding Welding institute research bulletin, 1973, 14(2):31-35.
    [20] D.C. Smith, K.P. Johannes. Developent a notch-tough self-shielded flux-cored electrode [J]. Welding Journal, 1968, 47(3):207-214.
    [21]薛振奎.国内长输管道下向焊用焊接材料的发展现状与建议[J].机械工人,2006,(10):16-17.
    [22]薛振奎,隋永莉.国内外油气管道焊接施工现状与展望[J].焊接技术,2001,30:16-18.
    [23]李为卫,左晨.石油天然气管道焊接材料发展现状及建议[J].现代焊接, 2007,(11):1-10.
    [24]潘家华.我国天然气管道工业的发展前景[J].油气储运,2005,26(6):1-3.
    [25]潘家华.高强度管线钢发展中的几个重要课题[J].焊管,2005,28(4):1-2.
    [26]潘家华.我国天然气管道工艺的发展前景[J].油气储运,2006,25(8):1-3.
    [27]王仪康,潘家华,杨柯等.高性能输送管线钢[J].焊管,2007,30(1):11-16.
    [28]赵贤正,李景明,李东旭等.中国天然气资源潜力及供需趋势[J].天然气工业,2004,24(3):1-4.
    [29]马秋荣,霍春勇,冯耀荣.国外管道钢管的研究与应用现状[J].油气储运,2000,19(11):9-13.
    [30]黄德志.油气长输管道焊接技术的发展[J].焊接技术,2007,36:12-14.
    [31]薛振奎.西气东输与中国管道焊接技术的发展[J].机械工人,2002,491(8):12-13.
    [32]王文焱,曾九令,孙伟等.药芯焊丝自保护焊在长输管道施工中的应用[J].管道技术与设备,2007,(3):23-24.
    [33]刘成玉,许先果,赵建华.长输管道焊接方法的选择与应用[J].电焊机,2007,37(11):56-59.
    [34]蔡宏伟.金相检验[M].上海:上海科学普及出版社,2003.
    [35] Ikawa H, Oshige H, Tanoue T. Study on the Martensite-Austenite Constituent in Weld-Heat Affected Zone of High Strength Steel[J]. Journal of the Japan Welding Society, 1980, 49(7):467-472.
    [36] Q/SY GJX 0110:西气东输二线管道工程线路焊接技术规范[S].中国石油天然气股份公司企业标准,2007.
    [37] Q/SY GJX 0111:西气东输二线管道工程基于应变设计的X80钢管焊接技术规范[S].中国石油天然气股份公司企业标准,2007.
    [38] Masayasu Arikawa, Fujisawa-shi, Izumi Ichihara, et al. Arc welding electrode for steel without using gas or the like [P]. U.S. Patent, 3531620, 1970.
    [39]温家伶,王强,陈明等.自保护药芯焊丝研究的现状[J].武汉理工大学学报,2002,26(6):733-736.
    [40]张文钺,张智,陈邦固.氟钙钛型自保护药芯焊丝降氢机理的研究[J].中国机械工程,1995,6(5):57-59.
    [41]王清宝,刘景凤,沈风刚.钛钙型自保护药芯焊丝工艺性能的研究[J].焊接,2005,(4):20-23.
    [42]吴安如,高为国,夏平等.自保护药芯焊丝焊缝金属化学成分与性能的研究[J].湖南工程学院学报,2002,12(2):24-26(38).
    [43]肖兵.管道全位置自保护药芯焊丝的研究[D].天津:天津大学,2004.
    [44] Yoshiya Sakai, Yasuhiro Nagai, Kazuo Ikemoto, et al. Flux cored wire electrodes for self-shielded arc welding [P]. U.S. Patent, 4571480, 1986.
    [45]喻萍,潘川,薛锦.氟化物对自保护药芯焊丝焊接工艺性能的影响及熔敷金属中P、Si的控制[J].焊接学报,2004,25(6).
    [46]胡强,蒋建敏,熊第京.自保护药芯焊丝粉芯材料制备方法的研究[J].北京工业大学学报,1998,24(3):85-88.
    [47]傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社,1996.
    [48]周振丰,张文钺.焊接冶金与金属焊接性[M].北京:机械工业出版社,1987.
    [49]许贵芝.焊接规范对管道焊接接头性能的影响[J].焊管,2006,29(5):89-92.
    [50]隋少华,蔡玮玮,宋天革等. Ti-B微合金化焊缝金属的韧化机制[J].焊接学报,2004,25(6):103-106.
    [51]唐伯钢,严士科,王玉荣等.低碳钢与低合金高强钢焊接材料[M].北京:机械工业出版社,1987.
    [52]张智,张文钺,陈邦固.高韧性自保护药芯焊丝[J].焊接学报,1996,17(2):71-75.
    [53]胡强,熊第京,史耀武.微量元素对自保护药芯焊丝熔敷金属韧性的影响[J].焊接,2002,(2):15-18.
    [54]栗卓新,陈邦固,金立鸿等.自保护药芯焊丝熔敷金属韧化的机理[J].焊接学报,2001,22(4):5-8.
    [55]郭铮匀.钢的氮化[M].北京:国防工业出版社,1979.
    [56] B.H.雅沃依斯基.炼钢炉熔池中的气体[M].北京:重工业出版社,1955.
    [57]张文钺.焊接冶金学(基本原理)[M].北京:机械工业出版社,1996.
    [58]魏琪,熊第京.氧氮氢对自保护药芯焊丝焊缝气孔的影响[J].北京工业大学学报,1998,24(3):89-92.
    [59]《合金钢》编写组.合金钢[M ].北京:机械工业出版社,1978.
    [60]Ю.И.奥斯特罗什科.锂的化学与工艺学[M ].北京:中国工业出版社,1965.
    [61]石霖.合金热力学[M].北京:机械工业出版社,1992.
    [62] J.G. Verhagen. Nitrogen absorption by ferritic weld metal during arc welding [J]. Metal construction & Brutush weld, 1970, 2(4):135-143.
    [63]陈伯蠡.焊接冶金原理[M].北京:清华大学出版社,1991.
    [64]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,1981.
    [65] R Sahoo, T. Debroy, M.J. McNallan. Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy [J]. Metallurgical and Materials Transactions B, 1988, 19(2):483-491.
    [66] E. Ricci, E. Arato, A. Passerone et al. Oxygen tensioactivity on liquid-metal drops [J]. Advances in Colloid and Interface Science, 117(1-3):15-32.
    [67] Ana Ma. Paniagua-Mercado, Victor M. Lopez-Hirata, Maribel L. Saucedo Munoz. Influence of the chemical composition of flux on the microstructure and tensile properties of submerged-arc welds [J]. Journal of Materials Processing Technology, 2005, 169(3):346-351.
    [68] Cochrane RC, Kirkwood PR. The effect of oxygen on weld metal microstructure. Proceedings of theInternational Conference on Trends in Steel and Consumables for Welding, The Welding Institute,London, pp 103–121(1978)
    [69]关颖男.混料试验设计[M].上海:上海科学技术出版社,1990.
    [70]施雨湘,肖诗祥,杨世柏.焊接气溶胶粒子均质形核机制研究[J].武汉交通科技大学学报,1997,21(4):396-400.
    [71]蒋建敏,李现兵,王智慧等.焊接烟尘发尘机理及其影响因素[J].焊接,2006,(1):7-11.
    [72]刘和平.焊接烟尘的危害及其防止措施[J].机械工人,2001,(5):23-25.
    [73]唐伯钢.焊接职业危害与防护[J].机械工人,2006,(8):12-16.
    [74] E. Baune′, C. Bonnet, and S. Liu. Assessing metal transfer stability and spatter severity in flux cored arc welding [J]. Science and Technology of Welding and Joining, 2001, 6(3):139-148.
    [75]栗卓新,李桓,陈邦固.熔滴过渡对自保护药芯焊丝工艺性能影响的研究[J].机械工程学报,2000,36(5):66-68.
    [76]栗卓新,皇甫平,陈邦固等.自保护药芯焊丝熔滴过渡的控制[J].机械工程学报,2001,37(7):108-112.
    [77]潘川,喻萍,薛振奎等.自保护药芯焊丝飞溅的形成机理及其影响因素[J].焊接学报,2007,28(8):108-112.
    [78]姜焕中.电弧焊及电渣焊[M].北京:机械工业出版牡,1988.
    [79]张承甫.液态金属的净化与变质[M].上海:上海科学技术出版社,1989.
    [80]魏琪,胡强,蒋建敏等.铝对自保护药芯焊丝性能的影响[J].焊接学报,2000,21(2):10-13.
    [81] M. A. Quintana, J. McLane, S. S. Babu et al. Inclusion formation in self-shielded flux cored arc welds [J]. Welding Journal, 2001, 80(4):98-105.
    [82] Liu S, Olson DL. The influence of inclusion in controlling HSLA steel weld microstructures [J]. Welding Journal, 1986, 65(6):139-149.
    [83] Kluken AO, Grong O. Mechanisms of inclusion formation in Al-Ti-Si-Mn deoxidized steel weld metals [J]. Metallurgical transactions A, 1989, 20A (8):1335-1349.
    [84] Francis RE, Jones JE, Olson DL. Effect of shielding gas oxygen activity on weld metal microstructure of GMA welded microalloyed HSLA steel [J]. Welding Journal, 1990, 69(11):408-415.
    [85] Tae-Kyu Lee, H.J. Kim, B.Y. Kang, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds [J]. ISIJ International, 2000, 40(12):1260-1268.
    [86]余圣甫,李志远,张国栋等.低合金高强度钢药芯焊丝焊缝中夹杂物诱导针状铁素体形核的作用[J].机械工程学报,2001,37(7):65-70.
    [87] J.-S. Byun, J.-H. Shim, Y.W. Cho, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C–Mn steel [J]. Acta Materialia, 2003, 51(6):1593-1606.
    [88] S.S. Babu. The mechanism of acicular ferrite in weld deposits [J]. Current Opinion in Solid State and Materials Science, 2004, 8(3-4):267-278.
    [89]杨军,吴鲁海,茅及放.低合金高强钢焊缝熔敷金属强韧化机理[J].焊接学报,2006,27(3):86-90.
    [90]张德堂,施炳弟.钢中非金属夹杂物图谱[M].北京:国防工业出版社,1980.
    [91]张德堂.钢中非金属夹杂物鉴别[M].北京:国防工业出版社,1991.
    [92] Y Maehara, K Yasumoto, H Tomono. Surface cracking mechanism ofcontinuously cast low carbon low alloy steel slabs [J]. Material Science and Technology, 1990, 6(9):793-806.
    [93] E.T.特克道根.高温工艺物理化学[M].北京:冶金工业出版社, 1988.
    [94]魏寿昆.冶金过程热力学[M].上海:上海科学技术出版社,1980.
    [95] M. Binnewies, E. Milke. Thermochemical data of elements and compounds [M]. New York: John Wiley & Sons Ltd, 1999.
    [96] S.S. Babu, S.A. David, M.A. Quintana. Modeling microstructure development in self-shielded flux cored arc welds [J].Welding Journal, 2000, 80(4):91-97.
    [97]喻萍,潘川,薛锦.铝对自保护药芯焊丝焊缝组织及力学性能的影响[J].西安交通大学学报,2004,38(9): 951-954.
    [98] S.D. Bhole, J.B. Nemade, L. Collins, et al. Effect of nickel and molybdenum additions on weld metal toughness in submerged arc welded HSLA line-pipe steel[J]. Journal of Materials Processing Technology, 2006, 173(1):92-100.
    [99] W. Wang, S. Liu, Alloying and microstructural management in developing SMAW electrodes for HSLA-100 steel [J]. Welding Journal, 2002, 81(7):132-145.
    [100] G.M. Evans. Microstructure and properties of ferritic steel welds containing Ti and B [J]. Welding Journal, 1996, 75(8):251-260.
    [101] M. Pontremoli, P. Bufalini, A. Aprile et al. Development of grade API X80 pipeline steel plates produced by controlled rolling [J]. Metals Technology, 1984, 11(11):504-514.
    [102]张汉谦.钢熔焊接头金属学[M].北京:机械工业出版社,2000.
    [103] Z. Zhang, R.A. Farrar. Influence of Mn and Ni on the microstructure and toughness of C–Mn–Ni weld metals [J]. Welding Journal, 1997, 76 (5):183-196.
    [104] E. Keehan, L. Karlsson and H.-O. Andren. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals Part 1– Effect of nickel content [J]. Science and Technology of Welding and Joining, 2006, 11(1):1-8.
    [105]余宗森.钢中稀土[M].北京:冶金工业出版社,1982.
    [106]徐光宪.稀土[M].北京:冶金工业出版社,1995.
    [107]胡强,魏琪,蒋建敏等.稀土元素对自保护药芯焊丝的影响[J].焊接学报,2001,22(2):39-42.
    [108]任露泉.试验优化技术[M].北京:机械工业出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700