铁路重载货车结构分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重载运输是铁路提高大宗重质货物运输能力的主要技术手段,提高车辆轴重、增大车辆载重是发展重载运输的重要举措。在保证结构强度、刚度和稳定性满足要求的前提下,实现车体结构的轻量化是车体结构设计的首要问题。
     本文围绕研制目前世界上轴重最大40吨、自重系数最小0.16、调车允许安全连挂速度不低于9.5km/h、能承受5560kN纵向冲击载荷的重载敞车车体结构开展研究,形成一套铁路车辆结构非线性分析方法。
     研发了多车耦合调车冲击数值仿真程序。冲击是导致车辆损坏的重要原因之一,针对重载货车的调车安全连挂速度开展研究,建立经调车冲击试验得到的车钩缓冲器阻抗特性曲线,运用多体系统动力学理论,在ADAMS平台上开发了多车耦合调车冲击数值仿真程序。进行了5km/h以上不同调车冲击速度下,1节车对1节车、1节对3节车以及2节对2节车3种调车冲击动力特性研究,得到车钩缓冲器容量大小对冲击动能耗散影响的定量结果,提出重载货车调车冲击安全连挂速度限值。
     提出了铁路重载货车材料与几何结构非线性分析方法。重载车辆既需提高车辆轴重,又要降低车辆自重增大载重,单靠传统的线性结构分析方法已无法满足,需要在其计算的基础上,进一步采用非线性结构分析方法。提出重载货车结构设计按结构不失稳并允许产生局部塑性变形的原则进行,利用金属材料的强化性能,允许结构局部塑性变形并控制其扩展,以提高结构的整体承载能力,采用材料非线性理论完成车体结构冲击强度分析;应用几何非线性理论,对板梁组合的薄壁整体承载车体结构进行了屈曲稳定性分析。根据分析结果,提出了车体结构强度、刚度调整优化措施,完成了轴重40吨、车体结构自重8.36吨、材质为Q450NQR1的重载敞车车体结构的优化设计,产品已批量生产并投入实际运用,表明非线性结构分析方法是重载车辆结构优化设计的有效手段。
     针对纵向冲击作用下散粒货物的流动大变形特性,提出用任意拉格朗日-欧拉方法描述散粒货物的运动,进行纵向冲击下车体结构动强度分析的方法。该方法包括了散粒货物用ALE方法描述,车体结构用拉格朗日方法描述,流固耦合力学模型的创建,以及采用中心差分显式时间积分法、拉格朗日和欧拉算法相结合的算子分离技术实现ALE控制方程的求解。对纵向冲击下的车体结构进行了动强度分析,得到散粒货物的运动特性和车体结构的动力响应,解决了冲击过程中散粒货物不断前涌,如何求解冲击端端墙压力的难题。
     提出了铁路重载货车结构材料轻量化、低阻力车体。敞车侧墙立柱设计成内置,保持侧墙外壁平整,降低列车运行阻力;把耐腐蚀新材料NIROSTA(?)T4003不锈钢材质用于与矿石接触的部件,进一步降低车体自重,并减少车体的维护;结合自行编制的车体结构轻量化程序,进行了敞车车体结构的轻量化研究,使40t轴重不锈钢敞车载重为138吨的车体结构自重仅为7.02t。
Railway heavy haul transport is the main technological way to improve the transport capacity of large cargoes. And increasing the axle-weight of vehicle and improving the load of vehicle are important measures to develop the railway heavy haul transport. On the premise that the structure strength and stiffness of vehicle meet the requirements, it is a primary issue that the weight of vehicle structure has to be reduced.
     This paper focused on the research of the body structure of heavy load gondola car which holds the heaviest axle load that is 40 tons, the least self-weight coefficient that is 0.16, the speed coupling of shunting vehicles which is less than 9.5km/h and withstands the longitudinal impact load of 5560kN. A set of nonlinear analysis of railway vehicle was systematically proposed. Numerical simulation system about impact of multi-vehicle coupling shunting was developed. Impact is one of the important causes which lead to the damages of vehicles. Aims at the safety coupling speed of shunting vehicles of heavy haul freight cars, the impedance curve about coupler buffer which was gotten from the shunting impact tests was presented. Numerical simulation programs about impact of multi-vehicle coupling shunting were developed on the platform of ADAMS based on the multi-body system dynamics theory. Dynamic impact characteristics of three different kinds of shunting operations that was one segment vehicle to one segment, two segment vehicle to two and three segment vehicle to three were studied under different shunting impact speeds conditions that were all above 5km/h. The quantitative results were obtained, which can describe the influence coupler buffer capacity with the size of the impact kinetic energy dissipation. And the safety coupling speed of shunting vehicles of heavy haul freight car was proposed.
     In addition, a series of nonlinear analysis methods for heavy haul freight cars and geometric structures were presented. As for the heavy vehicles, not only the axle-weight should be improved, but also the deadweight should be lightened and the load should be increased to improve their performances. However, the traditional linear elastic structure design methods for Chinese railway vehicles can't meet the demands. Based on the previous results, the further analysis of the nonlinear structure has to be done. The structure of the heavy haul freight car is designed on the principles that the structure is stable and local plastic deformation is allowed. With the utilization of the material hardening property, the local plastic deformation of the structure was allowable and its expansion was controlled to enhance the whole bearing capacity. The impact strength of body structure was analyzed based on the material nonlinear theory. The buckling analysis on the thin-walled whole bearing body structure, which was the combination of plate and beam, was carried out based on the geometric nonlinear theory. From the analysis results, the adjustment and optimization measures of body structure strength and stiffness were proposed. And the body structural optimal design of heavy load gondola car, of which axle load was 40 tons, body structure weight was 8.36 tons and material was Q450NQR1, was done. The products have been put into general production and practical application, which show that the nonlinear structural analysis method is an effective way of the structural optimal design of heavy vehicle.
     For the flow large-deformation characteristics of bulk goods under the longitudinal impact, using Lagrange_Euler method to describe the bulk goods'motion, the dynamic strength analysis method of body structure under the longitudinal impact was proposed firstly. It consists of the description of ALE Equations of bulk goods, the description of Lagrangian Equations of body structure, the establish of fluid and solid coupled mechanics model and the solving equations for ALE separation technology with the combination of central difference explicit time integration method, Lagrange and Euler algorithm. The dynamic strength analysis method of body structure under the longitudinal impact of different speeds was carried out to obtain the movement characteristics of bulk goods and the dynamic response of the body structure. The problem of the bulk goods flowing out in impact process and how to compute the wall pressure of impact side were solved.
     Railway heavy haul wagon body of low resistance, lightweight of structure and material was designed. The flat outside sidewall surface with the inner sidewall post can reduce the train running resistances. Besides, the new stainless steel comprised of NIROSTA(?)4003 materials with corrosion resistance was used to manufacture the parts that are with the ore directly. This optimization can further reduce the deadweight and maintenance cost. Based on the private software of car structure lightweight, the study on how to lighten the body structure of gondola car was finished which makes the deadweight of body structure of stainless Steel wagon of 40t axle and 138 tons load is only 7.02 tons.
引文
[1].钱立新.国际重载机车车辆的最新进展[J].机车电传动,2002,1(1):1-4.
    [2].钱立新.世界铁路重载运输技术的最新进展[J].世界轨道交通,2007,(12):20-24.
    [3].Harry Tournay.重载运输在南非.国外铁道车辆.2002,39(2):12-15.
    [4].钱立新.世界铁路重载运输技术[J].中国铁路Chinese Raiways,2007(6):49-53
    [5].BOWEY R(Austrlia). Research on Longitudinal Train Dynamics in Australia [C] Proceedings of the Seventh International Heavy Haul Railway Conference, Brisbane, Australia,2001:225-230
    [6].Frank Richter(美).美国铁路重载运输[J].国外铁道车辆,2006,43(5):1-5.
    [7].姚曙光,田红旗等.FMG轴重40T矿石敞车有限元分析报告.中南大学轨道交通安全教育部重点试验室,2007
    [8].耿志修.大秦铁路重载运输技术[J].北京:中国铁道出版社,2009.
    [9].Specifications for Design, Fabrication and Construction of Freight Cars M-1001 Standard[S]. American:The Association of American Railroads,1994.
    [10].严隽耄.车辆工程.北京:中国铁道出版社,2008.
    [11].米强林.求真务实推动大功率重载电力牵引机组的科技进步[J].矿山机械,2006,34(8):130-132
    [12].王孔明.重载货车轮轨动力作用研究[D].西南交通大学.2003.
    [13].Colin Cole等.昆士兰和COAL link重载煤炭运输列车动力学仿真的比较[J].国外铁道车辆,2003,40(2):33-39.
    [14].刘博.重载类车组合站通过能力研究[D].北京交通大学.2007.
    [15].耿志修,李学峰,张波.大秦线重载列车运行仿真计算研究[J].中国铁道科学,2008,29(2):89-93.
    [16].范佩鑫.重载列车牵引、调速及紧急制动的纵向力[J].西南交通大学学报.1994,29(1):57-64.
    [17].马大炜.繁忙干线开行5000t级重载列车的制动动力学问题[J].中国铁道科学,1994,15(1):14-23.
    [18].孙宝融.加拿大铁路的煤铁重载运输线[J].铁路进展,1978,1(1):16-18.
    [19].李萍,宋传云.我国铁路通用货车载重与轴重的发展[J].铁道车辆,2000,38(6):20-23.
    [20].TB/T1335-1996铁道车辆强度设计及试验鉴定规范[S].北京:中华人民共和国铁道部,1996.
    [21].范佩鑫,陈成元.重载组合列车纵向动力学的实验研究及理论分析[J].西南交通大 学学报.1991,(79):35-44.
    [22].陈清.重载列车纵向冲动的快速分析方法[J].西南交通大学学报.1991,(1):119-125.
    [23].丁彦闯,兆文忠等.屈曲分析在车辆应用中的关键技术[J].大连铁道学院学报,2003,24(2):44-47.
    [24].马玉梅,付兴滨.大型落下孔车车体的结构分析及稳定性计算[J].应用科技,2004,31(7):13-15.
    [25].王杰平.铰接式耐冲击车体进行优化设计[D].长沙铁道学院,1999.
    [26].赵洪伦,俞程亮,王文斌.高速磁浮列车车体承载结构优化设计研究[J].铁道学报,2007,29(4):43-47.
    [27].赵洪伦,李玉家,周劲松等.铰接式高速客车车体承载结构优化研究[J].铁道学报,1997,19(增刊):22-28.
    [28].郁志城,余建军.结构优化及其在铁道车辆设计中的应用[J].中国铁道科学,1999,20(2):79-85.
    [29].乔务本,孙丽萍,区锐容等.准高速客车车体的结构分析与优化研究[J].大连铁道学报,1995,16(3):41-48.
    [30].Milliiams C.Vantuono(美国).美国货车缓冲装置的新进展[J].国外机车车辆工艺,2002,(1):6-9.
    [31].严隽耄,翟婉明,陈清等.重载列车系统动力学[M].北京:中国铁道出版社,2003.
    [32].孙翔,翟婉明.重载列车动力学研究成果及其应用[J].中国铁路.1993,(4):10-13.
    [33].孙竹生,毛家驯等.重载列车动力学分析[J].西南大学学报.1986,(1):7-16.
    [34].孙翔,林金表,单立军.重载列车制动操纵技术的列车动力学分析[J].铁道学报.1989,11(2):1-9.
    [35].赵永翔,李扬辉,林松等.铁路货车新型橡胶缓冲器设计[J].交通运输工程学报,2002,2(3):15-18
    [36].江伯涛.重载货车橡胶缓冲器参数和性能研究[D].北京交通大学,2006.
    [37].陈慧.万吨列车最佳缓冲器曲线研究[D].大连交通大学,2004.
    [38].朱思本.重载列车的缓冲器[J].铁道学报,1987,9(3):90-95.
    [39].马玉坤.基于ADAMS的高速客车PW200和货物运输安全性的动力学仿真[D].重庆交通大学.2004.
    [40].J F Milho, J A C Ambrosio, M F O S Pereira. Validated multibody model for train crash analysis. International Journal of Crashworthiness,2003,8(4):339-352.
    [41].K.Farahani, M.Mofid, A.Vafai. United elements method for general contact-impact problems. Computer methods in applied mechanics and engineering,2001,191: 843-860.
    [42].许平,姚曙光.核燃料运输车2次缓冲装置的仿真分析[J].铁道机车车辆,2005,25(2):10-13.
    [43].陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京,清华大学出版社,2005.
    [44].Sami A. Kilic, Faisal Saied, Ahmed Sameh. Efficient iterative solvers for structural dynamics problems. Computers & Structures,2004,82:2363-2375.
    [45].张雄王天舒.计算动力学.北京:清华大学出版社,2007.
    [46].洪嘉振.计算多体系统动力学[M].上海:高等教育出版社,1998.
    [47].胡健伟,汤怀民.微分方程数值解法.北京:科学出版社,2001.
    [48].P. Mata, A.H. Barbat, S. Oiler. Two-scale approach for the nonlinear dynamic analysis of RC structures with local non-prismatic parts[J]. Engineering Structures,30 (2008) 3667-3680.
    [49].翟婉明.非线性结构动力分析的Newmark预测校正积分模式[J].计算结构力学及其应用,1990,7(2):51-58.
    [50].王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [51].龙志飞,岑松.有限元法新论原理·程序·进展.北京:中国水利水电出版社,2001.
    [52].章国泉,王生武等.重载电力机车车体的设计与强度计算[J].计算机仿真.2009,26(5):283-285.
    [53].姚曙光,许平.高速磁浮列车车体国产化.交通运输工程学报,2004,4(2):43-46.
    [54].刘华.轻量化通用敞车设计[J].铁道车辆,2004,42(3):21-24.
    [55].李华.C70型敞车的研制[J].铁道车辆,2006,44(12):18-20.
    [56].张胜民.基于有限元软件ANSYS7.0的结构分析[M].北京:清华大学出版社,2003.
    [57].Tung-Yueh Wu, Wen-Chang Tsai. Dynamic elastic-plastic and large deflection analysis of frame structures using motion analysis of structures[J]. hin-Walled Structures.2009, (47):1177-1190.
    [58].陈惠发,A.F.萨里普.弹性与塑性力学[M].北京:中国建筑工业出版社,2004
    [59].谢贻权,何福保.弹性和塑性力学中的有限元法.北京:机械工业出版社,1986.
    [60].徐芝纶.余同希,华云龙.结构塑性动力学引论.合肥:中国科技大学出版社,1994.
    [61].杨桂通.弹塑性力学引论.北京:清华大学出版社,2006.
    [62].王仁.塑性力学基础.北京:科学出版社,1998.
    [63].周张义,李芾,傅茂海.材料参数对机车车辆结构有限元分析的影响研究[J].中国铁道科学,2008,29(2):100-103.
    [64].G.Shi, S.N. Atluri, Elasto-Plastic Large Deformation Analysis of Space-Frame:A Plastic-Hinge and Stress-based Explicit Derivation of Tangent Stiffnesses, Int. J. Numer. Methods Engng., Vol 26,1988,589-615
    [65].常亮明.弹塑性有限元分析的有效数值方案[J].固体力学学报.1984,(1):37-48.
    [66].黄克智等.板壳理论,清华大学出版社,1987
    [67].吴连元.板壳理论,上海交通大学出版社,1989
    [68].Phill-Seung Leea, Ghyslaine McClure. Elastoplastic large deformation analysis of a lattice steel tower structure and comparison with full-scale tests[J]. Journal of Constructional Steel Research,63 (2007) 709-717.
    [69].宋天霞.非线性结构有限元计算.武汉:华中理工大学出版社,1996.
    [70].匡震邦.非线性连续介质力学基础.西安:西安交通大学出版社,1989.
    [71].Ted Belytschko, Wing Kam Liu, Brian Moran.连续体和结构的非线性有限元.北京:清华大学出版社2002.
    [72].Tung-Yueh Wu, Edward C. Ting. Large deflection analysis of 3D membrane structures by a 4-node quadrilateral intrinsic element[J]. Thin-Walled Structures 46 (2008) 261-275.
    [73].Bathe K-J, Finite Element Procedure in engineering analysis, Prentic Hall Inc Net Jersey,1982
    [74]. I.M. Smith, D.V. Griffiths. Programming the Finite Element Method. New Jersey: John Wiley & Sons Inc,1998.
    [75].Zienkiewicz O C. The Finite Element. Boston:Oxford University Press,2000.
    [76].Zienkiewicz O C and Taylor R L. The Finite Element Method, Fifth Edition. Butterworth Heinemann,2000.
    [77].Bathe K J. Finite Element Procedures. Prentic-Hall Inc.,1996
    [78].田红旗.轨道车辆结构分析理论[M].长沙:中南大学出版社,2008.
    [79].姚曙光,田红旗,许平.冲击载荷作用下重载敞车结构分析.中国铁道科学,2009,30(4):63-67.
    [80].P.Mata, S.Oller. Static analysis of beam structures under nonlinear geometric and constitutive behavior[J].ScienceDirect.196(2007):4458-4478.
    [81].Y.-L.Pi, M.A.Bradford, F. Tin-Loi. Nonlinear analysis and buckling of elastically supported circular shallow arches[J].International Journal of Solids and Structures.2007, (44):2401-2425.
    [82].J.W.Larsen, R.Iwankiewicz.Nolinear stochastic stability analysis of wind turbine wings by Monte Carlo simulations.ScienceDirect.2007, (22):181-193.
    [83].D.S.Sophianopoulos. Nonlinear stability of simplified structural models simulating elastic shell panels of revolution under step loading. International Journal of Solids and Structures.2001, (38):915-934.
    [84].H.R.Ronagh, M.A.Bradford. Nonlinear analysis of thin-walled members of variable cross-section. Computer and Structures.2000, (77):285-299.
    [85].Shi J. Computing Critical Points and Secondary Paths in Nonlinear Structural Stability Analysis by the Finite Element Method. Computers & Structures,1996,58: 203-220.
    [86].程鹏.两铰圆弧拱非线性弯曲理论和弹塑性稳定[D].浙江大学.2005.
    [87].董震.考虑局部稳定的铝合金构件及板件的承载力研究[D].同济大学.2007.
    [88].王全风.偏压薄壁杆稳定计算的有限杆元法[J].固体力学学报.26(2):207-210.
    [89].陈铁云,沈惠中.结构的屈曲.上海科学文献出版社,1993.
    [90].Karmen, Th. Von, and Tsien, H. S. The buckling of spherical shells by external pressure. J. Of Areo.Scie.,7,43-50,1939
    [91].Karmen, Th. Von, and Tsien, H. S., The buckling of thin cylindrical shells under axial compression, J. Of Areo.Scie.,8,303,1941
    [92].Kuldeep S. Virdi. Finite difference method for nonlinear analysis of structures[J]. Journal of Constructional Steel Research,62 (2006) 1210-1218.
    [93].G. Eccher, K.J.R.Rasmussen, R.Zandonini. Geometric nonlinear isoparametric spline finite strip analysis of perforated thin-walled structures[J]. Thin-Walled Structures, 2009, (47):219-232.
    [94].P.G. Bergan, GHorriginoe, B.Krake Land et al. Solution Techniques for Nonlinear Finite Element Problems, Int. J. Numer. Methods. Eng.,1978,12:1677-1696
    [95].Belytschko T, Hsieh B J., Nonlinear finite element analysis with collected coordinates, Int. J.Num Meth. Eng,1973,7:255-271
    [96].Borri C, Chiostilli S., Numerical approaches to the nonlinear stability analysis of Single-layer reticulated and grid-shell structures. Int. J. Space Struct,1992,7(4): 285-298
    [97].Chajes A, Churchill, J.E., Nonlinear frame analysis by finite element methods, J. Structural Engineering,1987,113(6):1221-1235.
    [98].丁美.结构稳定性分析中ANSYS的应用[J].低温建筑技术,2003,96(6):42-44.
    [99].邓可顺.复杂结构静力分析和屈曲分析程序系统DDJTTQ[J]计算结构力学及其应用.1995,12(3):344-352
    [100].辛克贵,钱良忠.高层筒体结构的整体稳定及二阶位移分析[J].清华大学学报.2003,43(10):1386-1389.
    [101].工炜.引信贮液瓶结果屈曲分析与冲击特性研究[D].西北工业大学.2005.
    [102].张氢,卢耀祖等.承受大吨位载荷的门框形立柱稳定性分析[J].同济大学学报,2003(31)9:1068-1071.
    [103].刘涛,沈丰等.移动式救生钟耐压壳强度与稳定性计算分析[J].中国造船,1995,133(2):71-78.
    [104].圣良,石永久等.大型火力发电厂钢烟道结构的稳定性分析[J].长沙电力学院学报(自然科学版),21(3):20-23.
    [105].姚曙光,田红旗.重载轨道车辆非线性结构设计.交通运输工程学报,2009,9(4):43-48.
    [106].Chan S L. A Nonlinear Numerical Method for Accurate Determination of Limit and Bifurcation Points. Int. J. Num. Meth. Eng.,1993,36:2779-2790.
    [107].Fujikake M. A Simple Approach to Bifurcation and Limit Point Calculations. Int. J. Num. Meth. Eng.,1985,21:183-191.
    [108].Forde B W R, Stiemer S F. Improved Arc length Orthogonality Methods for Nonlinear Finite Element Analysis. Computers & Structures,1987,27:625-630
    [109].Surana K S. Geometrically Nonlinear Formulation for the Curved Shell Elements. Int. J. Num. Meth. Eng.,1983,19:581-615
    [110].G. M. Van-Erp and C. M. Menken, The spline finite strip method in the buckling analysis of thin-walled structures. Commun. Appl. Num. Meth.1990,6:477-484
    [111].E. Riks, An incremental approach to the solution of snapping and buckling problems, International Journal of Solid and Structures.1979,15:529-551
    [112].K.K.Choong, E.Ramm.Simulation of Buckling process of shells by using the finite element method [J].1998, (31):39-72
    [113].Jinsong Huang, Guangwu Zeng.Finite-element strength and stability analysis and experimental studies of a submarine-launched missile composite dome[J].Engineering Structures.2000, (22):1189-1194.
    [114].Crisfield M A. A Fast Incremental/Iterative Solution Procedure that Handles "Snap-through". Computers & Structures,1981,13:55-62
    [115].Eduard Riks. Buckling and post-buckling analysis of stiffened panels in wing box structures [J]. International Journal of Solids and Structures,2000, (37):6795-6824
    [116].Bo Yu, LuFengYang. Elastic modulus reduction method for limit analysis of thin plate and shell structures[J]. Thin-Walled Structures,2010(48):291-298
    [117].L.Z.Li, K.C.Hung.Shell element of relative degree of freedom and its application on buckling analysis of thin-walled structures[J]. Thin-Walled Structures,2002, (40): 865-876
    [118].G. Eccher, K.J.R. Rasmussena, R. Zandonini. Elastic buckling analysis of perforated thin-walled structures by the isoparametric spline finite strip method[J]. Thin-Walled Structures,2008, (46):165-191.
    [119].E. Providas, M. A. Kattis. A simple finite element model for the geometrically nonlinear analysis of thin shells. Computational Mechanics,1999,24:127-137.
    [120].戴大农.流固耦合系统动力分析的若干基本问题与数值方法[D].清华大学工程力学系,北京,1988.
    [121].邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [122].Chen X.Y., Zha G.C. Fully coupled fluid-structural interactions using an efficient high-resolution upwind scheme[J]. Journal of Fluids and Structures,2005,20(8):11 05-1125.
    [123].张立翔,杨柯.流体结构互动理论[M].科学出版社,北京,2004.
    [124].魏群.散体单元法的基本原理数值方法及程序[M].科学出版社,北京,1991.
    [125].Fabian D., Raul G., Srinivasan N. Arbitrary Lagrangian-Eulerian method for Navier-Stokesequations with moving boundaries [J]. Computer Methods in Applied Mechanics and Engineering,2004,193(45-47):4819-4836.
    [126].Hirt C.W., Amdsen A.A., Cook J.L. An arbitrary Lagrangian-Eulerian computing method for all flaw speeds [J]. Journal of Computational Physics,1974,14:227-53.
    [127].Girodroux L.P., Grisval J.P. Guillemot S.et al. Comparison of static and dynamic fluid-structure interaction solutions in the case of a highly flexible modern transport aircraft wing[J]. Aerospace Science and Technology,2003,7(2):121-133.
    [128].Stone A.K., Pericleous K., Bailey C, et al., Dynamic fluid-structure interaction using finite volume unstructured mesh procedures[J]. Computers and Structure,2002, 80(5-6):371-390.
    [129].Matthias H. An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems[J]. Computerr Methods in Applied Mechanics and Engineering,2004,193(1):1-23.
    [130].Hermann G.M., Jan S. Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction [J]. Computer & Structures,2002,80(27-30): 1991-1999.
    [131].Bathe K L, Ramm E, Wilson E L. Finite Element Formulations for Large Deformation Dynamic Analysis. Int. J. Num. Meth. Eng.,1975,9:353-386
    [132].Wilhelm Rust, Karl Schweizerhof. Finite element limit load analysis of thin-walled structures by ANSYS (implicit), LS-DYNA (explicit) and in combination[J]. Thin-Walled Structures,2003, (41):227-244.
    [133].Samul W.Key, Claus C.Hoff. An improved constant membrane and bending stress shell element for explicit transient dynamics. Computer methods in applied mechanics and engineering,1995,124:33-47.
    [134].彼得·艾伯哈特,胡斌.现代接触动力学[M].南京:东南大学出版社,2003.
    [135].Chen Jian Ken Lee, Hirohisa Noguchi. Fluid-shell structure interaction analysis by coupled particle and finite element method[J]. ScienceDirect.85(2007):688-697.
    [136].叶元烈,秦东晨,陈丽华.薄壁覆盖件的结构优化设计[J].机械强度,1999,21(3):182-185.
    [137].Joo-Ho Choi. Shape design sensitivity analysis and optimization of general plane arch structures[J].Finite Elements in Analysis and Design.2002, (39):119-136.
    [138].姚曙光,田红旗.高速不锈钢车体结构设计.铁道科学与工程学报,2008,5(1):72-75.
    [139].邢宪峰.矿石车用Nirosta3005不锈钢的焊接工艺[J].焊接,2007,6:56-58.
    [140].刘惟信.机械最优化设计[M].北京:清华大学出版社,1997.
    [141].杨爱国,张志强,杨江天.基于有限元建模的敞车轻量化设计[J].中国铁道科学,2007,28(3):79-83.
    [142].A.M. Harte. A multi-level approach to the optimization of a composite light rail vehicle body-shell[J]. Foreign Rolling Stock,2005,42(4):18-22.
    [143].F.S.Almeida, A.M.Awruch. Design optimization of composite laminated structures using genetic algorithms and finite element analysis[J].Composite Structures.2009, (88):443-454.
    [144].S.S. AL-Mosawi, M.P.Saka.Optimum design of single core shear walls[J].Computer and Structures.1999, (71):143-162.
    [145].王勇,蔡自兴,曾威,等.求解约束优化问题的一种新的进化算法[J].中南大学学报:自然科学版,2006,37(1):119-123.
    [146].苏文力,徐长生.基于一阶优化方法的桥式起重机结构有限元分析[J].武汉理工大学学报,2006,30(4):619-622.
    [147].林文泉,朱尔玉,孙玲.一阶优化法在拱桥施工控制中的应用[J].北京交通大学学报,2007,31(4):89-91.
    [148].博弈创作室.APDL参数化有限元分析技术及其应用实例.北京:中国水利水电出版社,2004.
    [149].袁亚湘,孙文瑜.最优化理论和方法[M].北京:科学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700