焊接圆柱壳轴压弹性及塑性屈曲实验研究和数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢制焊接圆柱壳结构广泛应用在石油、化工、冶金、环保等工业领域中。这类结构的共同点是壁厚小、径厚比大,在承受轴向压力载荷时容易发生屈曲失效。本文采用实验和数值模拟相结合的方法就钢制焊接圆柱壳在均匀轴向压力作用下的弹性和塑性屈曲问题进行研究,开展的主要工作如下。
     (1)提出了一种在环向施加扰动几何缺陷来计算带轴对称缺陷的轴压圆柱壳弹性屈曲分支载荷的方法。结合提出的环向扰动几何缺陷法,探讨了“焊接残余应力对轴压圆柱壳弹性屈曲临界载荷究竟有利还是不利”这一具有争议性的问题;分析了局部几何凹陷的存在及大小对焊接圆柱壳轴压弹性屈曲的影响。
     (2)自主研制了带几何缺陷自动采集功能的轴压屈曲试验平台。试验平台整体采用框架式结构,集几何缺陷测量系统、轴压加载系统和控制系统于一体。试件试验时仅需一次定位即可完成几何缺陷自动采集和轴压加载,具有几何缺陷测量精度高、轴向公称压力大、人机交互友好等优点,可以用于轴压圆柱壳的塑性屈曲试验研究。
     (3)制作了多个具有代表性的焊接组合圆柱壳试件,利用自主研制的屈曲试验平台,开展了带焊缝余高的组合圆柱壳在轴向均匀压力作用下的塑性屈曲实验研究。探讨了焊缝类型、环焊缝数量、焊缝余高大小、材料屈服强度和打磨余高等因素对轴压圆柱壳塑性屈曲的影响。
     (4)建立了一种综合考虑初始几何缺陷和焊接残余应力的轴压圆柱壳塑性屈曲分析有限元模型,并利用试验结果验证了该模型的正确性。分析了焊接残余应力的存在及大小对轴压圆柱壳塑性屈曲的影响,同时从试件内外表面屈曲区域应力性质的变化角度揭示了焊接残余应力对轴压圆柱壳塑性屈曲的影响机理。
     (5)提出了一种用于预测带焊缝余高的焊接圆柱壳轴压塑性屈曲临界载荷的数值预测方法,并采用已有的试验结果对其进行了验证。
Welded cylindrical shells have a wide application in petroleum, chemical, metallurgy, environmental protection and other industrial areas. The common characteristics of such structures are small wall thickness and large ratio of radius to thickness, which make them vulerable to axial buckling failure. In this paper, experimental and numerical methods are adopted to investigate on axial elastic and plastic buckling of welded steel cylindrical shells. The main works are as follows.
     (1) A circumferential geometric imperfection disturb method is proposed to calculate the axial elastic branch buckling load of cylindrical shells. Using the proposed method, the controversial issue "whether weding residual stress is favorable or unfavorable to axial elastic buckling critical load" is explored; the effect of the existence and size of local geometric depression on axial elastic buckling is analyzied.
     (2) An axial buckling test platform with automatic acquiring function of initial geometric imperfections and axial loading function is developed independently. The test platform adopts a frame structure form and assembles geometric imperfections measuring system, axial loading system and control system into one whole. The geometric imperfection measuring and axial loading of specimen can be finished by positioning the specimen only once during the test. The advantages of this test platform are high scaning accuracy of geometric imperfections, large nominal axial load and friendly human-computer interaction. It is suitable for experimental research of axial plastic buckling of cylindrical shells.
     (3) Several typical cylindrical shell specimens are made. Experimental study on axial plastic buckling of combined cylindrical shells with reinforcement is carried out by using the independently developed buckling test platform. The effect of weld type, the number of circumferential welds, the amplitude of weld reinforcement, the material yield strength and the polish of weld reinforcement, etc. on the axial plastic buckling is explored.
     (4) A finite element analysis model, which considers initial geometric imperfections and welding residual stress, for learning axial plastic buckling of cylindrical shells with weld reinforcement is established and its corectness is verified by using existed experimental results. The effect of the existence and maginitude of welding residual stress on axial plastic buckling is analyzed. The mechanism of why welding residual stress has an effect on axial plastic buckling is revealed from the point of stress variation of the inner and outer surface of buckling zone.
     (5) A numerical method used for predicting the axial plastic buckling critical load of welded cylindrical shells with reinforcement is proposed and its corectness is verified by using existed experimental results.
引文
[1]Chen Z P, Sun B, Yu C L, et al. Finite-element analysis of liquid-storage tank foundations using settlement difference as boundary condition [J]. Proc. IMechE Part E:Process Mechanical Engineering,2009,221(3):119-127.
    [2]Adam J S, Rotter J M. Buckling of very slender metal silos under eccentric discharge [J]. Engineering Structures,2011,33(4):1187-1194.
    [3]Harry W S, Francis P H. Seismic response of isolated elevated water tanks [J]. Journal of Structural Engineering,1999,125(9):965-976.
    [4]Seung-Eock Kim, Chang-Sung Kim. Buckling strength of the cylindrical shell and tank subject to axially compressive loads [J]. Thin-walled Structures,2002,40(4):329-353.
    [5]Shih C F, Babcock C D. Buckling of oil storage tanks in SPPL tank farm during the 1979 Imperial Valley earthquake [J]. Journal of Pressure Vessel Technology,1987,109(2):249-255.
    [6]沈建明.大型油罐的静强度及动力响应分析[D].浙江大学,硕士,2006.
    [7]Hatayama K. Lessons from the 2003 Tokachi-oki, Japan, earthquake for prediction of long-period strong ground motions and sloshing damage to oil storage tanks [J]. Journal of Seismology,2008,12(2):255-263.
    [8]Changa J I, Lin C C. A study of storage tank accidents [J]. Journal of Loss Prevention in the Process Industries,2006,19(1):51-59.
    [9]Adem D, Zeki K, Ahmet D, et al. Cause of damage and failures in silo structures [J]. Journal of Performance of Constructed Facilities,2009,23(2):65-71.
    [10]Elisabeth K, Ana M C, Bastien A. The impact of the 12 May 2008 Wenchuan earthquake on industrial facilities [J]. Journal of Loss Prevention in the Process Industries,2010, 23(2):242-248.
    [11]Teng J G, Rotter J M. Buckling of pressurized axisymmetrically imperfect cylinders under axial loads [J]. Journal of Engineering Mechanics,1992,118(2):229-247.
    [12]Hamdan F H. Seismic behavior of cylindrical steel liquid storage tanks [J]. Journal of Constructional Steel Research,2000,53(3):307-333.
    [13]Marwan E B, Ralf P. Plastic buckling of unanchored roofed tanks under dynamic loads [J]. Journal of Engineering Mechanics,1998,124(6):648-657.
    [14]Greiner R, Guggenberger W. Buckling behavior of axially loaded steel cylinders on local supports—with and without internal pressure [J]. Thin-walled Structures,1998,31(1-3): 159-167.
    [15]夏志斌,潘有昌.结构稳定理论[M].上海:高等教育出版社,1988.
    [16]Jaiswal O R, Jain S K. Modified proposed provisions for seismic design of liquid storage tanks [J]. Journal of Structural Engineering,2005,32(4):297-310.
    [17]余雏麟,陈志平,曾明,等.焊接对大型石油储罐象足屈曲的影响规律[J].浙江大学学报:工学版,2011,43(9):1679-1683.
    [18]潘家华.圆柱形金属油罐设计[M].北京:烃加工出版社,1984.
    [19]湛卢炳.大型储罐设计[M].北京:化学工业出版社,1986.
    [20]Chen J F, Rotter J M, Teng J G. A simple remedy for elephant's foot buckling in cylindrical silos and tanks [J]. Advances in Structural Engineering,2006,9(3):409-420.
    [21]徐英,杨一凡,朱萍,等.球罐和大型储罐[M].北京:化学工业出版社,2005.
    [22]陈志平,余雏麟,曾明,等.多层不等厚组合圆柱壳屈曲数值模拟分析[J].浙江大学学报:工学版,2009,43(9):1679-1683.
    [23]王雷.十五万方非锚固油罐地震时程响应及动力屈曲分析[D].浙江大学,硕士,2011.
    [24]James G A. Design analysis for buckling of tanks and silos [J]. Journal of Structural Engineering,2006,132(1):43-49.
    [25]Chen Z P, Sun B, Yu C L, et al. Comparison of the strength design and prevention method of elephant foot buckling among countries' standards of oil tanks [C].2009 ASME Pressure Vessels and Piping Division Conference, July 26-30, Prague, Czech Republic,2009.
    [26]Chen Z P, Yu C L, Yan S J, et al. Effect of local geometric imperfections on axial buckling of welded steel tanks [C].2011 ASME Pressure Vessels and Piping Conference, July 17-21, Baltimore, Maryland, USA,2011.
    [27]钱江,鲁亮,沈成康,等.圆柱薄壳容器的振动与屈曲[M].上海:上海科学技术出版社,2007.
    [28]陈铁云,沈惠申.结构的屈曲[M].上海:上海科学技术文献出版社,1993.
    [29]吴连元.板壳稳定性理论[M].武汉:华中理工大学出版社,1996.
    [30]Stein M. The effect on the buckling of perfect cylinders of pre-buckling deformations and stresses induced edge support [R]. NASA TND-1510,1962.
    [31]Von K T, Tsien H S. The buckling of thin cylindrical shells under axial compression [J]. Journal of Aeronaut,1941,40(6):302-312.
    [32]Donnell L. H. A new theory for the buckling of thin cylinders under axial compression and bending [J]. Trans. ASME,1934,12(56):795-806.
    [33]Koiter W T. On the stability of Elastic Equilibrium [R]. NASA, TT-F10,1967.
    [34]沈惠申,陈铁云.圆柱薄壳在外压作用下屈曲的边界层理论[J].应用数学和力学,1988,9(6):515-527.
    [35]Shen H. S, Zhou P, Chen T Y. Buckling and post-buckling of stiffened cylindrical shells under axial compression [J]. Applied Mathematics Mechanics,1991,12:1195-1207.
    [36]Shen H S. Post-buckling analysis of stiffened laminated cylindrical shells under combined external liquid pressure and axial compression [J]. Engineering Structures,1998,20(8): 738-751.
    [37]Shen H S, Chen T Y. A boundary layer theory for the buckling of thin cylindrical shells under axial compression [J]. Appl. Math, and Mech. in China.1990,2:155-172.
    [38]Yamaki N, Otorno K. Experiments on the post-buckling behavior of circular cylindrical shells under compression [J]. Experimental Mechanics,1975,15(1):23-28.
    [40]Arnold M A, van der Heijden. W. T. Koiter's Elastic stability of solids and structures [M]. UK: Cambridge University Press,2009.
    [40]周承倜.薄壳弹塑性稳定性理论[M].北京:国防工业出版社,1979.
    [41]Donnell L H, Wan C C. Effect of imperfections on buckling of thin cylinders and columns under axial compression [J]. Journal of Applied Mechanics,1950,17:73-83.
    [42]Brush D O, Almroth B O. Buckling of bars, plates and shells [M]. NewYork:McGraw-Hill, 1975.
    [43]Babcock C D. Shell stability [J]. Journal of Applied Mechanics,1983,50(4):935-940.
    [44]Norman. F K, Starnes J H. Developments in cylindrical shell stability analysis [J]. AIAA Journal,1997,10(6):1933-1948.
    [45]Hoff N J, Rehfield L W. Buckling of axially compressed circular cylindrical shell at stresses smaller than the classical critical value [R]. Stanford Unicersity Department of aeronautics and Astronautics,1964.
    [46]Almroth B O. Influence of edge conditions on the stability of axially compressed cylindrical shells [J].AIAA Journal,1965,4(1):134-140.
    [47]Simitses J G Buckling and postbuckling of imperfect cylindrcial shells:a review [J]. Applied Mechanicals Review.1986,39(10):1517-1524.
    [48]Tennyson R C, Muggeridge D B. Buckling of axisymmetric imperfect circular cylindrical shells under axial compression [J]. AIAA Journal,1969,7(11):2127-2131.
    [49]Horton W H, Bailey S C, Edwards A M. Nonsymmetric buckle patterns in progressive plastic buckling [J]. Experimental Mechanics,1965,6(9):433-444.
    [50]Horton W H, Durham S C. Imperfections, a main contributor to scatter in experimental values of buckling load [J]. International Journal of Solids and Structures,1965, 1(1):59-62.
    [51]Almroth B O, Holmes A M C, Brush D O. An experimental study of the bucking of cylinders under axial compression[J]. Experimental Mechanics,1964,4(9):263-270.
    [52]Koiter W T. The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression [C]. Proc. Koninklijke Nederlandse Akademie van Wetenschappen, the Netherland,1963.
    [53]Hutchinson J W, Tennyson R C, Muggeridge D B. Effect of a local axisymmetric imperfection on the buckling behavior of a circular cylindrical shell under axial compression [J]. AIAA Journal,1971,9(1):48-52.
    [54]Arbocz J, Babcock C D. The effect of general imperfections on the buckling of cylindrical shells [J]. Journal of Applied Mechanics.1969,36(1):28-38.
    [55]Yamaki, N. Elastic stability of circular cylindrical shells [M]. Elsevier Science Publishers, B.V.,1984.
    [56]Elishakoff I, Vanmanen S, Vermeulen P G, et al. First-order second-moment analysis of the buckling of shells with random initial imperfections [J]. AIAA Journal,1985, 25(8):1113-1117.
    [57]Speicher G, Saal H. Numerical calculation of limit loads for shells of revolution with particular regard to the applying equivalent initial imperfection, Buckling of Shell Structures, on Land, in the Sea, and in the Air, London [M], Elsevier Applied Science,1991.
    [58]Rotter J M, Teng J G. Elastic stability of cylindrical shells with weld depressions [J]. Journal of Structural Engineering,1989,115(5):1244-1263.
    [59]Teng J G. Buckling of thin shells:recent advances and trends [J]. Applied Mechanics Review, 1996,49(4):263-274.
    [60]Holst, J.M.F.G., Rotter, J.M., Calladine, C.R.. Imperfections in cylindrical shells resulting from fabrication misfits [J]. Journal of Engineering Mechanics,1999,125(4):410-418.
    [61]Gellin, S. Effect of axisymmetric imperfection on the plastic buckling of an axially compressed cylindrical shell [J]. Journal of Applied Mechanics,1979,46(1):125-131.
    [62]Jamal, M, Lahlou L, Midani M, et al. A semi-analytical buckling analysis of imperfect cylindrical shells under axial compression [J]. International Journal of Solids and Structures, 2003,40(5):1311-1327.
    [63]Pircher M, Bridge R. The influence of circumferential weld-induced imperfections on the buckling of silos and tanks [J]. Journal of Constructional Steel Research,2001, 57(5):569-580.
    [64]Berry P A, Rotter J M, Bridge R Q. Compression tests on cylinders with circumferential weld depressions [J]. Journal of Engineering Mechanics,2000,126(4):405-413.
    [65]贺贵仁,许鹏鹰.15万m3储油罐的安装工艺[J].石油化工建设.2006,28(1):57-59.
    [66]徐至钧,燕一鸣.大型立式圆柱形储液罐制造与安装[M].北京:中国石化出版社,2003.
    [67]Arbocz J, Williams J G Imperfection surveys on a 10-ft-Diameter shell structure [J]. AIAA Journal,1977,15(7):949-956.
    [68]Clarke M J, Rotter J M. A technique for the measurement of imperfections in prototype silos and tanks [R]. University of Sydney,1988.
    [69]Ding X L. Precise engineering surveying-application to the measurement of large steel silos[D]. School of Civil and Mining Engineering University of Sydney, PhD,1992.
    [70]Uwe H, Helmut S. Buckling loads of tank shells with imperfection [J]. Non-linear Mechanics. 2002,37:605-621.
    [71]Steinhardt O, Schulz U, Zur Beulstabilitat von Kreiszylinderschalen. Bericht der Versuchsanstalt fuer Stahl [R], Holz, Steine, Universitaet Karlsruhe,1970.
    [72]White J D, Dwight J B. Weld shrinkage in large stiffened tubulars [C]. In:Proceedings of a Conference on Residual Stresses in Welded Constructions, London:The Welding Institute; 1977.
    [73]Hafner L. Einfluss einer Rundschweissnaht auf die Stabilitat und Traglast des axialbelasteten Kreiszylinders [D]. Universitat Stuttgart, PhD,1982.
    [74]Fritschi H. Shape deviations in the vicinity of circumferential welds at standing cylindrical steel shell structures [R]. Research report, Versuchsanstalt fur Stahl, Holz und Steine, University of Karlsruhe, Karlsruhe,1995.
    [75]Pircher M, Berry P A, Ding X, et al. The shape of circumferential weld-induced imperfections in thin-walled steel silos and tanks [J]. Thin-walled Structures,2001,39:999-1014.
    [76]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2004.
    [77]Crisfield M A. An arc-length method including line searches and accelerations [J]. International Journal for Numerical Methods in Engineering,1983,19(9):1269-1289.
    [78]Huang N C. Unsymmetrical buckling of thin shallow spherical shells [J]. Journal of Applied Mechanics,1964,31 (3):447-457.
    [79]Teng J G, Rotter J M. Non-symmetric bifurcation of geometrically nonlinear elastic-plastic axisymmetric shells under combined loads including torsion [J]. Computers & Structures, 1989,32(2):453-475.
    [80]李黎明ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005.
    [81]赵腾伦,姚新军.ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
    [82]Rotter J M. Elastic plastic buckling and collapse in internally pressurised axially compressed silo cylinders with measured axisymmetric imperfections:interactions between imperfections, residual stresses and collapse [C]. CA-Silo, Lyon,1996.
    [83]Rotter J M. Experiments on the buckling of thin-walled model silo structures [J]. Journal of Constructional Steel Research,1997,13(4):271-299.
    [84]Rotter J M. Shell structures:the new European standard and current research needs [J].Thin-Walled Structures,1998,31(1-3):3-23.
    [85]Teng J G, Hong T. Nonlinear thin shell theories for numerical buckling predictions [J]. Thin-Walled Structures,1998,31(1-3):89-115.
    [86]Pircher M, Berry P A, Bridge R Q. The properties of circumferential weld-induced imperfections in silos and tanks [R]. University of Western Sydney, School of Engineering & Industrial Design, Engineering Report CE17,2000.
    [87]Song C Y, Teng J G, Rotter J M. Imperfection sensitivity of thin elastic cylindrical shells subject to partial axial compression [J]. International Journal of Solids and Structures,2004, 41(24-25):7155-7180.
    [88]赵阳,金峰.轴压作用下矩形开口圆柱壳的稳定性[J].工程设计学报,2004,11(5):249-255.
    [89]赵阳,滕锦光.轴压圆柱钢薄壳稳定设计综述[J].工程力学,2003,20(6):116-126.
    [90]林翔.有多条轴对称焊接凹陷的钢圆柱薄壳在内压力和轴压力共同作用下的强度[J].空间结构,2004,10(4):52-56.
    [91]林翔,李慧婕.残余应力对局部轴压焊接圆柱壳承载力的影响[J].空间结构,2010,16(1):82-86.
    [92]月兰,田汝珉,王忠东,等浮顶油罐的电测应力与磁测残余应力分析[J].压力容器’2001,18(2):34-37.
    [93]洪江波,杜仲明,侯海量,等.大型耐压壳环焊缝焊接残余应力试验研究[J].船舶工程,2006,28(5):14-18.
    [94]焦建雄,陈海辉.大型储罐环焊缝残余应力测定与分析[J].石油化工腐蚀与防腐,2010,27(2):62-64.
    [95]Bornscheuer FW, Hafner L. The influence of an imperfect circumferential weld on the buckling strength of axially loaded circular cylindrical shells [C]. Third international colloquium on stability and metal structures, Paris,1993.
    [96]Holst J M F G, Rotter J M, Calladine C R. Imperfections and buckling in cylindrical shells with consistent residual stresses [J]. Journal of Constructional Steel Research,2000, 54(2):265-282.
    [97]Hubner A, Teng J G, Saal H. Buckling behavior of large steel cylinders with patterned welds [J]. International Journal of Pressure Vessels and Piping.2006,83(1):13-26.
    [98]Hubner A. Imperfections and buckling of extensively-welded cylinders in steel silos and tanks [D]. Universitat Karlsruhe and The Hong Kong Polytechnic University, Master,2002.
    [99]Pircher M, Bridge R. The influence of weld-induced residual stresses on the buckling of cylindrical thin-walled shells [C]. In:Proceedings of the Thin-Walled Structures Conference, Singapore,1998.
    [100]Krishnakumar S, Foster C G. Multiple geometric defects:their effect on stability of cylindrical shells [J]. Experimental Mechanics.1991,31(3):213-219.
    [101]Krishnakumar S, Foster C G Axial load capacity of cylindrical shells with local geometric imperfections [J]. Experimental Mechanics.1991,31(2):104-110.
    [102]Foster C G. Axial compression buckling of conical and cylindrical shells [J]. Experimental Mechanics.1986,27(3):255-261.
    [103]Gavrilenko G D, Krasovskii V L. Stability of circular cylindrical shells with a single local dent [J]. Strength of Materials,2004,36(3):260-268.
    [104]Jamal M, Lahlou L, Midani M, et al. A semi-analytical buckling analysis of imperfect cylindrical shells under axial compression [J]. International Journal of Solids and Structures, 2003,40(5):1311-1327.
    [105]Prabu B, Raviprakash A V, Rathinam N. Parametric study on buckling behaviour of thin stainless steel cylindrical shells for circular dent dimensional variations under uniform axial compression [J]. International Journal of Engineering, Science and Technology,2010,2(4): 134-149.
    [106]Khamlichi A, Bezzazi M, Limam A. Buckling of elastic cylindrical shells considering the effect of localized axisymmetric imperfections [J]. Thin-Walled Structures,2004,42(7): 1035-1047.
    [107]Toda S. Buckling of cylinders with cutouts under axial compression [J]. Experimental Mechanics.1982,23(4):414-417.
    [108]Jullien J F, Limam A. Effects of openings of the buckling of cylindrical shells subjected to axial compression [J]. Thin-Walled Structures,1998,31(1-3):187-202.
    [109]Yoshimura, Y. On the mechanism of buckling of a circular cylindrical shell under axial compression [R]. NACA TM-1390,1955.
    [110]Aliphanov L A, Romanenko K, Samofalov M. FEM application in geometrically non-linear analysis of local shape defects on steel cylindrical tank walls [C]. International conference "17th Nordic Seminar on Computational Mechanics", Stockholm, Sweden, Stockholm,2004.
    [111]Singer J. Experimental studies in shell buckling [J]. AIAA,1997,10(2):1922-1932.
    [112]Schmidt H, Swadlo P. Two buckling tests demonstrating the influence of the pattern of geometrical and structural imperfections on the axial compressive buckling strength of cylindrical shells [C]. Proceedings, international workshop on imperfections in metal silos, INSA, Lyon, France,1996.
    [113]Teng J G, Lin X. Fabrication of small models of large cylinders with extensive welding for buckling experiments [J]. Thin-Walled Structures,2005,43(7):1091-1114.
    [114]Berry P A, Rotter J M, Bridge R Q. Compression tests on cylinders with circumferential weld depressions [J]. Journal of Engineering Mechanics,2000,126(4):405-413.
    [115]Zhao Y. Stability and strength of steel silo transition junctions [D]. The Hong Kong Polytechnic University, PhD thesis,2001.
    [116]Verduyn W D, Elishakoff I. A testing machine for statistical analysis of small imperfect shells [J]. Journal of Applied Mechanics,1950,17(l):73-83.
    [117]Singer J, Abramovich H. The development of shell imperfection measurement techniques [J]. Thin-Walled Structures,1995,23(1-4):379-398.
    [118]Berry P A, Bridge R Q, Rotter J M. Imperfection measurement of cylinders using automated scanning with a laser displacement meter [J]. Strain,1996,32(1):3-8.
    [119]Ding X L, Coleman R, Rotter J M. Effect of imperfections on buckling of thin cylinders and columns under axial compression [J]. Journal of Surveying Engineering,1996,122(1):3-13.
    [120]Pircher M, Wheeler A. The measurement of imperfections in cylindrical thin-walled members [J]. Thin-Walled Structures,2003,41(5):419-433.
    [121]Lancaster E R, Calladine C R, Palmer S C. Paradoxical buckling behaviour of a thin cylindrical shell [J]. International Journal of Mechanical Sciences,2000,42(5):843-865.
    [122]Bernarda E S, Colemanb R, Bridge R Q. Measurement and assessment of geometric imperfections in thin-walled panels [J]. Thin-Walled Structures,1999,33(2):103-126.
    [123]Athiannan K, Palaninathan R. Experimental investigations on buckling of cylindrical shells under axial compression and transverse shear [J]. Sadhana,2004,29(1):93-115.
    [124]Stoffel M. An experimental method for measuring the buckling shapes of thin-walled structures [J]. Thin-Walled Structures,2006,44(1):69-73.
    [125]Teng J G, Zhao Y, Lam L. Techniques for buckling experiments on steel silo transition junctions [J]. Thin-Walled Structures,2001,39(8):685-707.
    [126]Shanley F R. Engineering aspects of buckling:the buckling of simple columns and flat plates simply explained for the engineer [J]. Aircraft Engineering and Aerospace Technology, 1939,11(1):13-20.
    [127]Phillips A. Solution of a plastic buckling paradox [J].AIAA,1972,10(7):951-953.
    [128]Marwan El-Bkaily, Peek R. Load shortening in plastic buckling of cylinders [J]. Journal of Engineering Mechanics,118(9):1892-1906.
    [129]Lin M C, Yeh M K. Buckling of elastoplastic circular cylindrical shells [J]. AIAA,1994, 32(11):2309-2315.
    [130]Lu G, Mao R J. A study of the plastic buckling of axially compressed cylindrical shells with a thick-shell theory [J]. International Journal of Mechanical Sciences,2001, 43(10):2319-2330.
    [131]梁炳文,胡世光.弹塑性稳定理论[M].北京:国防工业出版社,1983.
    [132]李建中,岑章志,徐秉业.轴对称壳体弹塑性屈曲的有限元分析[J].清华大学学报自然科学版,1999,39(2):82-85.
    [133]惠兴中,冯众齐,林家骥轴压圆柱壳的弹塑性屈曲[J].西安冶金建筑学院学报,1991,23(4):396-403.
    [134]费鹏,刘土光.有初始缺陷圆柱壳轴向压力下的静态塑性屈曲[J].海军工程大学学报,2000,1:33-35.
    [135]李之达,黄靓.圆柱壳的弹塑性稳定性分析[J].湘潭大学自然科学学报,2008,30(3):65-72.
    [136]Budiansky B. Notes on nonlinear shell theory [J]. Journal of Applied Mechanics, 1968,35(2):393-401.
    [137]章亮炽,余同希,王仁.板壳塑性屈曲中的佯谬及其研究进展[J].力学进展,1990,21(1):40-45.
    [138]余同希,章亮炽.塑性弯曲理论及其应用[M].北京:科学出版社,1992.
    [139]Shao F L, Wang S, Chen S Z. The strength of welded steel unstiffened cylinders under axial compression [C]. Proceedings of the international colloquium on the stability of plate and shell structures, ECCS, Gent,1987.
    [140]Ravn-Jensen K, Tvergaard V. Effect of residual stresses on plastic buckling of cylindrical shell structures [J]. International Journal of Solids and Structures,1990,26(9):993-1004.
    [141]Arbocz J, Babcock J R. Prediction of buckling loads based on experimentally measured initial imperfections [C]. Buckling of structures; Proceedings of the Symposium, Cambridge, Mass, Germany; 17-21 June 1974.
    [142]Schmidt H, Krysik R. Toward recommendations for shell stability design by means of numerically determined buckling loads [M]. London, Buckling of Shell Structures, on Land, in the Sea, and in the Air, Elsevier Applied Science,1991.
    [143]Schmidt H. Stability of steel shell structures:general report [J]. Journal of Constructional steel research,2000,55(1-3):159-181.
    [144]Samuelson L, Eggwertz S. Shell stability handbook [M]. London, Elsevier Applied Science, 1992.
    [145]Teng J G, Rotter J M, Stability assessment of complex shell structures by numerical analysis [J]. Austr. Civil Engng. Trans,1995,37(1):61-69.
    [146]Featherston C A. Imperfection sensitivity of flat plates under combined compression and shear [J]. International Journal of Non-linear Mechanics.2001,36(2):249-259.
    [147]ENV 2007-1-6 Eurocode 3:Design of Steel Structures, Part 1-6:General Rules: Supplementary Rules for Shell Structures [S]. European Committee for Standardisation, Brussels,2007.
    [148]王宽福,冯丽云.焊接与化机焊接结构[M].浙江:浙江大学出版社,1992
    [149]王者昌.关于焊接残余应力消除原理的探讨[J].焊接学报,2000,21(2):55-58.
    [150]宋天民.焊接残余应力的产生与消除[M].北京:中国石化出版社,2006.
    [151]Ueda Y, Yamakawa T. Analysis of thermal elastic-plastic stress and strain during welding by finite element method [J]. Transactions of Japan Welding Society,1971,2(2):90-100.
    [152]奥凯尔勃洛姆H O.雷原译.焊接应力与变形[M].北京:中国工业出版社,1958.
    [153]上田幸雄,村川英一,麻宁绪.焊接变形和残余应力的数值计算方法和程序[M].成都:四川大学出版社,2008.
    [154]陈楚,汪建华,杨洪庆.非线性焊接热传导的有限元分析和计算[J].焊接学报,1983,3(6):139-148.
    [155]汪建华,陆皓.固有应变有限元法预测焊接变形理论及其应用[J].焊接学报,2002,23(6):36-40.
    [156]Wang J H, Lu H, Hidekazu M. An FEM model of buckling distortion during welding of thin plate [J]. Journal of Shanghai Jiaotong University (Science),1999,4(2):69-72.
    [157]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [158]孙博.圆柱壳轴压屈曲实验平台研制[D].浙江大学,硕士,2011.
    [159]吴春雷,赵阳.基于激光测距仪的薄壳结构初始缺陷测量系统[J].实验力学,2007,22(2):119-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700