铝/钢异种金属激光填充粉末熔钎焊接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对铝/钢异种金属接头的焊接问题,提出了一种宽带激光填充粉末熔钎焊方法。本方法中宽带激光光斑有助于扩大熔池、增加接头尺寸,同步送进的金属粉末不仅改善了焊缝组织成分,还提高了激光束与铝合金母材的能量耦合效率和焊接效率。
     主要研究内容为以下三个方面:1.系统研究了焊接工艺参数对接头成形、焊缝组织和接头力学性能的影响,重点分析了接头中金属间化合物组织与接头力学性能的关系。2.通过实验观察了激光束、粉末束和母材相互作用的物理过程,揭示了激光填充粉末熔钎焊焊接熔池形成的机制,揭示了增强激光能量耦合效率的根本原因。3.通过建立焊接过程中熔池温度场的有限元模型,分析了温度场对接头钎接界面宽度和金属间化合物生长的影响,以及合金元素扩散的距离,并提出了预测激光填充粉末熔钎焊接头性能的方法。
     采用本文提出的方法实现了无钎剂AA6061/镀锌钢接头熔钎焊连接。采用适当的焊接工艺参数获得了成形饱满,无裂纹、气孔等缺陷的焊缝。接头机械抗力达到152N/mm。焊接试验表明焊接工艺参数对接头成形有很大的影响。离焦量较小时,激光功率和焊接速度的参数范围较宽。接头界面宽度随激光功率和离焦量的增大而增加,随焊接速度增加而减小。离焦量相同时,激光功率和焊接速度对钎接界面宽度的影响相当;激光功率和焊接速度相同时,增大离焦量有助于增加钎接界面的宽度。
     熔钎焊接头中钎接界面上的金属间化合物由层状和枝晶状结构组成,层状组织以Fe2Al5相为主,Fe4Al13相仅分布在上层靠近铝合金组织区域。枝晶状组织以Fe-Al和Al-Fe-Si化合物为主,主要组成相为τ1、Fe4Al13和τ5。在焊缝/镀锌钢界面上生长有少量Al5Fe2Zn0.4。显微硬度测试表明金属间化合物组织的硬度明显高于母材硬度,其中层状组织的硬度最高。静载拉伸试验中,接头均断裂在焊缝/镀锌钢界面,呈脆性断裂特征。接头强度与的比值呈正比,层状Fe2Al5相是影响接头性能的主要因素。通过选择高功率高焊速的焊接条件能够获得力学性能较高的熔钎焊接头。
     激光束与粉末束相互作用后,约10-15%的激光能量被衰减。粉末束吸收激光能量后温度升高,但粉末束最高温度仅约100℃。粉末颗粒与母材表面发生非弹性碰撞,粉末束反弹角受保护气流态影响。实验发现粉末颗粒在母材表面熔化形成微熔池对提高能量耦合效率具有重要作用,是填充粉末能够提高激光能量偶和效率的根本原因。
     采用有限元法模拟了宽带激光填充粉末熔钎焊过程中的温度场。结果表明在钎料/镀锌钢界面会存在一定宽度的温度线。这种温度分布形式有助于增加钎接界面的宽度。金属间化合物层厚度则受热输入量和界面最高温度共同影响。通过温度场模拟计算了熔池凝固的时间,并根据扩散动力学分析结果计算了Fe元素的扩散距离。综合分析结果归纳出预测接头机械抗力的数值表达式,计算结果与实验结果较为吻合。
In this dissertation, contraposed to the problems of welding Aluminiumalloy/steel joint, a laser fusion welding-brazing method using rectangular spot withfiller powder is proposed. In this method, the technique of filling powder is adopted.In this method, broadband laser spot could enlarge the molten and the size of joint.The powder filled could improve the composition of weld organization, as well aslaser energy coupling efficiency and welding efficiency.
     The present work is concerned with the foundational research into the techniqueof laser fusion welding-brazing aluminium alloy to steel with following objectives:(1)The joints formation, weld microstructure, as well as the mechanical properties arestudied, especially the influence of intermetallic compounds on the strength of thejoint.(2) The interactions between the laser beam, the powder steam and base metalare studied by experiments. The weld pool formation mechanism of the fusionwelding-brazing with filler powder is summed up, as well as the basic reason of highutilization ratio between laser power and base metal.(3) A finite element model of thethermal cycle in welding process is established for studies in influences of thermalcycle on the width of weld interface and intermetallic compounds growing. Base onthe results of experiments and analysis, the method for predicting the mechanicalproperties of the joint is announced.
     A fusion welding-brazing weld of AA6061and galvanized steel without flux canbe achieved using the welding with filler powder. By optimizing the weldingparameters, the favorable weld without crack and porosity can be achieved, and themaximum intensity of152.5N/mm is obtained. The results of welding tests indicatethat the width of the weld interface increased with the laser power and defocusdistance, and decreased with the increasing of welding velocity. When the weldingparameters are same, increasing the defocus distance could wider the weld interface.
     The Intermetallic compounds on the interaction surface compose by layeredand dendritic structure. The layered intermetallic compound is mainly Fe2Al5phase.Fe4Al13phase was also observed in the joint close to the aluminium alloy. Thedendritic intermetallic compounds are composed of Fe4Al13, τ1and τ5phases.Al5Fe2Zn0.4phase was found on the brazing filler/galvanized steel interface.Microhardness tests indicate that the hardness of the intermetallic compounds layer ishigher than the two base metals, especially the layered intermetallic compound.Tensile tests indicate that samples fractured brittlely on the interface of brazingfiller/galvanized steel. The joint strength increase with the ratio of. Thethickness of intermetallic compounds, especially the thickness of the layered Fe2Al5phase structure, determines mechanical resistance of the joint. Welding technicalparameters, such as high laser power and high welding speed, is the crucial factor formechanical properties in the fusion welding-brazing joint.
     With the interaction of the laser beam and powder beam, about10-15%of the laser energy is attenuated. The temperature of powder steam raise with theincreasing of laser power output, and enlarged the high-temperature area. Themaximum temperature of the powder is only about100°C. Inelastic collisionhappened when the powder particles impact surface of base metal. The rebound angleof powder steam is influenced by airflow of the shielding gas. There are slightdifferences at different amount of filler powder and shielding gas. After the collision,the height of powder steam is proportional to amount of filler powder and shieldinggas. The formation basis of weld pool with filler powder is the melting of powderparticles on the base metal surface, which is the basic reason why the filler powdercould improve the utilization ratio of the laser power.
     A finite element model is created for simulating the thermal cycle of the fusionwelding-brazing process with filler powder. A certain width of the temperate zoneappeared on the filler metal/galvanized steel interface, which is benefit to enlarge thewidth of the weld interface. The thickness of intermetallic compounds layer isaffected by laser energy input and maximum temperature of braze metal/steelinterface. Combined with the influence of welding parameters on the weld formationand intermetallic compounds, this model can be used to predict the welding results.
引文
1. Kyoto Protocol. United Nations Framework Convention on Climate Change,1997
    2.汽车产业发展政策.中华人民共和国工业和信息化部产业政策司,2008
    3. L. Agudo, D. Eyidi, C. H. Schmaranzer, et al. Intermetallic FexAly-phases in asteel/Al-alloy fusion weld. Journal of Material Science.2007,42:4205–4214
    4. M. L. Giorgi, J. B. Guillot. Theoretical model of the interfacial reactions betweensolid iron and liquid zinc-aluminum alloy. Journal of Materials Science.2005,40:2263-2268
    5. Z. Sun, J. C. Ion. Laser welding of dissimilar metal combinations. Journal ofMaterials Science.1995,30:4205-4214
    6. K. Nishimoto, K. Saida, S. Kuroda. Removing of surface oxide film of SUS316and improvement of diffusion-bondability of A6061aluminum alloy to SUS316stainless steel using surface-activated pre-coating technique. Quarterly Journal ofthe Japan Welding Society.2000,18(4):563-571
    7.狄建华,吕春玲,宋新社. LY12铝合金与A3钢爆炸焊接条件的确定.华北工学院学报.2001,1(22):66-69
    8. M. Marya, S. Marya, D. Priem. On the characteristics of electromagnetic weldsbetween aluminum and other metals and alloys. Welding in the World.2005,5-6(49):74-84
    9. S.D. Korea, P. P. Datea, S.V. Kulkarnib. Electromagnetic impact welding ofaluminum to stainless steel sheets. Journal of Materials Processing Technology.2008, doi:10.1016/j.jmatprotec.2008.01.039
    10. M. Kimchi, H. Shao, W. Cheng, et al. Magnetic pulse welding aluminum tubes tosteel bars. Welding in the World.2004,3-4(48):19-22
    11. H. Abdel-Aleem, K. Mitsuaki, N. Kazumasa, et al. Evaluation by ultrasonictesting and TEM observation of bond interface for ultrasonic bonds of5052/SUS304and5052/SPCC.熔接学会论文集.2005,2(23):194-202
    12. H. Uzun, C. D. Donne, A. Argagnotto, et al. Friction stir welding of dissimilar Al6013-T4to X5CrNi18-10stainless steel. Materials and Design.2005,26:41-46
    13. G. Sierra, P. Peyre, F. Deschaux-Beaume, et al. Galvanized steel to aluminumjoining by laser and GTAW processes. Material Characterization,2008,doi:10.1016/j.matchar.2008.03.016
    14. T. Murakami. Dissimilar metal joining of aluminum to steel by MIG arc brazingusing cored wire. ISIL International2003.10(43):1596-1620
    15. G. Sierra, P. Peyre, F. Deschaux-Beaume, et al. Steel to aluminum key-hole laserwelding. Materials Science and Engineering A.2007,444:197-208
    16.张明军,陈根余,李时春,梅丽芳,张正.车用铝合金与镀锌钢光纤激光搭接焊试验研究.中国激光.2011,38(6):0603010
    17. M. J. Torkamany, S. Tahamtan, J. Sabbaghzadeh. Dissimilar welding of carbonsteel to5754aluminum alloy by Nd:YAG pulsed laser. Materials and Design.2010,31:458-465
    18. A. Haboudou, P. Peyre, A. B. Vannes, G. Peix. Reduction of porosity contentgenerated during Nd: YAG laser welding of A356and AA5083aluminium alloys.Materials Science and Engineering A.2003,363(12):40-52
    19. M. Pastor, H, L, Zhao, T. DebRoy. Pore formation during CWNd: YAG laserwelding of aluminum alloys for automotive applications. Revista De Metalurgia.2000,36(2):108-117
    20.张洪涛,何鹏,孔庆伟等.铝钢异种材料焊接研究现状与发展.焊接,2006,12:7-12
    21. M. Rathod, M. Kutsuna. Use of pulsed CO2laser in laser roll bonding of A5052aluminum alloy and low carbon steel. Welding in the World.2006,7/8(50):28-36
    22. H. Ozaki, M. Kutsuna. Laser-roll welding of a dissimilar metal joint of lowcarbon steel to aluminium alloy using2kW fiber laser. Welding International.2009,5(23):345–352
    23. R. Manoj. Laser roll bonding A5052aluminum alloy and SPCC steel.熔接学会论文集.2005,2(21):282-294
    24. K. Nishimoto, H. Fujii, S. Katayama. Laser pressure welding of Al alloy and lowC steel. Science and Technology of Welding and Joining.2006,11:224-231
    25. K. Nishimoto, Y. Okumotoa, T. Haranoa, K. Atagia, H. Fujiia, S. Katayama.HR-TEM observation of laser pressure weld of galvannealed steel and purealuminium. Quarterly Journal of the Japan Welding Society.2008,2(26):181–186
    26.左铁钏等.高强铝合金的激光加工,国防工业出版社,2002:10-16
    27. R. Borrisutthekul, T. Yachi, Y. Miyashita, et al. Suppression of intermetallicreaction layer formation by controlling heat flow in dissimilar joining of steel andaluminum alloy. Materials Science and Engineering A.2007,(467):108–113
    28. T. Takemoto, S. Kimura, Y. Kawahito, et. al. Fluxless joining of aluminium alloyto steel by laser irradiation method. Journal of Light Metal Welding andConstruction.2008,46(7):300-308
    29. K. Saida, K. Nishimoto. Laser brazing of aluminium to steel. Journal of LightMetal Welding and Construction.2009,47(8):366-379
    30. K. J. Lee, S. Kumai, N. Kawamura, er al. Growth manner of intermetalliccompounds at the weld interface of steel/aluminum alloy lap joint fabricated by adefocused laser beam. Materials Transactions.2007,48(6):1396-1405
    31. K. J. Lee, S. Kumai, T. Arai. Interfacial microstructure and strength of steel toaluminum alloy lap joints welded by a defocused laser beam. MaterialsTransactions.2005,46(8):1847-1856
    32. Fluxless laser beam joining of aluminium with zinc coated steel. Science andTechnology of Welding and Joining.2008,10(2):219-226
    33. P. Peyre, G. Sierra, F. Deschaux-Beaume, et al. Generation of aluminum–steeljoints with laser-induced reactive wetting. Materials Science and Engineering A.2007,444:327–338
    34. G. Sierra, P. Peyre, F. Deschaux-Beaume, et al. Steel to aluminum braze weldingby laser process with Al–12Si filler wire. Science and Technology of Welding andJoining.2008,13:430-437
    35. A. Mathieu, S. Pontevicci, J. Viala, et al. Laser brazing of a steel/aluminiumassembly with hot filler wire (88%Al,12%Si). Materials Science andEngineering A.2006,435–436:19–28
    36. A. Mathieua, R. Shabadib, A. Deschampsb, et al. Dissimilar material joiningusing laser (aluminum to steel using zinc-based filler wire). Optics&LaserTechnology.2007,39:652–661
    37. K. Saida, H. Ohnishi, K. Nishimoto. Fluxless laser brazing of aluminium alloy togalvanized steel using a tandem beam–dissimilarlaser brazing of aluminiumalloy and steels. Quarterly Journal of the Japan Welding Society.2008,26(3):235-241
    38. H. Laukant, E. Guimaraens, U.Glatzel. Laser beam aluminum-steel joints-mechanical and dynamical properties and detailed microstructural analysis ofintermetallic FeAl-phases. ICALEO2007, Orlando,2007. USA, Laser Institute ofAmerica,2007::588-595
    39.林尚扬.一种大光斑激光与电弧复合热源连接异种金属的方法.中国专利:1806995,2006-7-26
    40.雷振.铝/钢大光斑Nd:YAG激光-脉冲MIG复合热源高效熔-钎连接技术.哈尔滨:哈尔滨工业大学,2007.
    41.秦国梁,李小宇,王旭友,林尚扬. Nd:YAG激光+脉冲GMAW复合热源焊接参数对焊缝熔宽的影响.焊接学报.2006,27(9):73-76
    42.秦国梁,雷振,林尚扬,等. Nd:YAG激光+脉冲MAG电弧复合热源规范参数对平板堆焊焊缝表面成形的影响.中国表面工程.2006,19(3):23-27
    43.秦国梁,雷振,王旭友,林尚扬. Nd:YAG激光+脉冲MAG电弧复合热源焊接参数对焊缝熔深的影响.机械工程学报.2007,43(1):225-228
    44.秦国梁,雷振,王旭友,王威,林尚扬. Nd: YAG激光+脉冲MAG电弧复合热源焊接规范参数对焊缝表面成形的影响.应用激光.2006,26(2):97-100
    45.王旭友,王威,林尚扬.焊接参数对铝合金激光—MIG电弧复合焊缝熔深的影响.焊接学报.2008,29(6):13-16
    46.王威,王旭友,赵子良,冷凯波,卜大川.激光—MAG电弧复合热源焊接过程的影响因素.焊接学报.2006,27(2):6-10
    47.雷振,秦国梁,王旭友,林尚扬.铝/镀锌钢复合热源熔—钎接头的局部“未钎合”缺陷分析.焊接学报.2007,28(10):37-40
    48.雷振,王旭友,王伟波,林尚扬.铝/镀锌钢复合热源熔—钎接头中的Al-Fe金属间化合物层分析.焊接学报.2007,28(11):65-68
    49.雷振,秦国梁,林尚扬,王旭友,王威.铝/钢异种金属Nd:YAG激光-MIG复合热源熔-钎焊接工艺.焊接.2006,(6):35-37
    50.王威,王旭友,秦国梁,雷震.铝合金激光—小功率脉冲MIG电弧复合热源焊接特性分析.焊接学报.2007,28(8):37-40
    51.张启运,庄鸿寿.钎焊手册,机械工业出版社,2008:57-89
    52. J. Wloka, H. Laukant, U. Glatzel, et al. Corrosion properties of laser beam jointsof aluminum with zinc-coated steel. Corrosion Science.2007,49:4243-4258
    53. J. Lawrence, L. Li. Carbon steel wettability characteristics enhancement forimproved enameling using a1.2Kw high power diode laser. Optics and Lasers inEngineering.2000,32:353-365
    54. R. N. Wenzel. Resistance of solid surfaces to wetting by water. IndustrialEngineering Chemistry.1936;28:988-994
    55. A. B. D. Cassie, S. Baxter. Wettability of porous surfaces. Transactions of theFaraday Society.1994,40:546-551
    56. T. T. Chaua, W. J. Bruckarda, P. T. L. Koh, A. V. Nguyen. A review of factors thataffect contact angle and implications for flotation practice. Advances in Colloidand Interface Science.2009,150:106-115
    57.赵旭东,肖荣诗.镀锌钢表面光纤激光宽带熔覆铝合金涂层研究.应用激光.2010,30(6):498-502
    58. A. Mathieu, S. Matte, A. Deschamps, et al. Temperature control in laser brazingof a steel/aluminum assembly using thermographic measurements. NDT&EInternational.2006,39:272-276
    59.张庆茂,刘喜明,钟敏霖等.送粉式激光熔覆过程激光有效能量的表征方法.稀有金属材料与工程.2003,32(7):550-553
    60. P. A. Vetter, T. Engel, J. Fontaine. Laser cladding: the relevant parameters forprocess control. SPIE.1994,207(2):452-462.
    61. X. Y. Zeng, Z. Y. Tao, B. D. Zhu. Investigation of laser cladding ceramic metalcomposite coatings processing modes and mechanisms. Surface and CoatingsTechnology.1996,79(2):209-217
    62. M. Picasso, C. F. Marsden, J. D. Wagniere, A. Frenk, M. Rappaz. A Simple butrealistic model for laser cladding. Metallurgical and Materials Transactions B.1994,5B (2):281-291
    63.陈铠,肖荣诗,张盛海等.高强铝合金激光填粉焊接过程.焊接学报.2006,27(10):33-36
    64.陈铠,杨武雄,肖荣诗等.几种高强铝合金的激光填粉焊接.应用激光.2005,25(4):222-226
    65. A. Matsunawa. CO2laser weldability of aluminium alloys: effect of weldingconditions on melting charicristics.1998,12(7):7-10
    66.陈铠, G. Roth.铝合金的大功率扩散型CO2激光粉末焊接技术.激光杂志.2000,21(5):198-201
    67. T. DebRoy, S. A. David. Physical processes in fusion welding. Reviews ofModern Physics.1995,67(1):85-112
    68. A. A. Fasching, D. I. Ash, G. R. Edwards, S. A. David. Hydrogen crackingbehavior in an iron aluminide alloy weldment. Saipta Metailwgica et Materialia.1995,32(3):389-394
    69. D. James, M. Leonard. Darchuk, JamesBasics of laser welding. Lasers&Applications.1985,4(3):59-66
    70. N. C. Sekhar, B. Bj rneklett. Laser welding of complex aluminium structures.Science and Technology of Welding and Joining.2002,7:19-25
    71. O. Kessler, C. Prinz, F. Hoffmann, P. Mayr, Experimental study of distortionphenomena in manufacturing chains. Material Science Technology.2002,18:913-916
    72.杨武雄.高强铝合金的激光填粉焊接.北京工业大学工学硕士论文.2004
    73. R. Braun. Nd: YAG laser butt welding of AA6013using silicon and magnesiumcontaining filler powders. Materials Science and Engineering A.2006,426:250-262
    74.李明星.镀锌板的激光填充粉末焊接.北京工业大学工学硕士论文.2006
    75. X.D. Zhao, R. S. Xiao, K. Chen. Study on welding of2024aluminum alloy sheetwith disc laser. ICALEO2009, Orlando,2009. USA, Laser Institute of America,2009::192-197
    76.赵旭东,肖荣诗.一种铝合金钎焊缝缺陷激光修复方法.国防发明专利:ZL200810077152.6,2011-10-19
    77. Y. Kizaki, H. Azuma, S. Yamazaki et al. Phenomenological studies in lasercladding. Part Ⅱ. Thermometrical experiments on the melt pool. Japan Journalof Applied Physics.1993,32(1A):213-220
    78.王旭葆.金属粉末激光微成型系统研究.北京工业大学工学博士论文.2006
    79. M. Picasso, C. F. Marsden, J. D. Wagnniere, A. Frenk, M. Rappaz. A simple butrealistic model for laser cladding. Metallurgical and Materials Transactions B.1994,25B(4):281-291
    80.张庆茂,刘喜明,钟敏霖,刘文今.送粉式激光熔覆过程激光有效能量的表征方法.稀有金属材料与工程.2003,7:550-553
    81.刘喜明,关振中.送粉式激光熔覆过程中透光率的理论推算、测试方法及其影响因素.中国激光.1999,26(6):86-91
    82.刘珍峰.送粉式激光熔覆温度场的三维有限元模拟.华中科技大学硕士论文.2006
    83. J. M. Jouvard, K. Girard, O. Perret. Keyhole formation and power deposition inNd:YAG laser spot welding. Journal of Physics D: Applied Physics.2001,34(18):2894-2901
    84.刘振侠,陈静,黄卫东等.侧向送粉激光熔覆粉末温升模型及实验研究.中国激光.2004,31(7):875-878
    85. J. Lin. Temperature analysis of the powder streams in the coaxial laser cladding.Optics&Laser Technology,1999,31(8):565-570
    86. J. Lin, O. G. Rodríguez-Herrera, F. Kenny, D. Lara, J. C. Dainty. Fast vectorialcalculation of the volumetric focused field distribution by using athree-dimensional Fourier transform. Optic Express.2012,20(2):1060-1069
    87.杨永强,宋永伦.送粉激光熔覆时激光与粉末的交互作用.中国激光.1998,A25(3):280-284
    88.李延民,刘振侠,杨海鸥等.激光多层涂敷过程中的温度场测量与数值模拟.金属学报.2003,39(5):521-525
    89. D. M. Hu, R. Kovaceic. Sensing, modeling and control for laser-based additivemanufacturing. International Journal of Machine Tools and Manufacture.2003,43(1):51-60
    90.陈静,谭华,杨海鸥等.激光快速成形过程熔池行为的实时观察研究.应用激光.2005,25(2):77-80,96
    91.武强.激光粉末快速微成形送粉系统的研究.北京工业大学工学硕士论文.2003
    92.张正伟.激光熔覆快速制造送粉装置的研制.北京工业大学工学硕士论文.2006
    93.张盛海,陈铠,肖荣诗,李明星,胡治华,左铁钏.铝合金高功率CO2激光粉末焊接.中国激光.2006,33(5):714-718
    94. H. R. Shahverdi, M.R. Ghomashchi, S. Shabestari et al. Microstructural analysisof interfacial reaction between molten aluminum and solid iron. Journal ofMaterials Processing Technology.2002,124:345-352
    95.谭敦强,黎文献,唐谊平. Al-Fe系合金中的相及相转变.材料导报.2003,17(5):18-27
    96. V. Stefaniay, A. Griger, T. Turmezey. Intermetallic phases in the aluminium-sidecorner of the AlFeSi-alloy system. Journal of Materials Science.1987,22:539-546
    97. Z. Liu, Y. A. Chang. Thermodynamic assessment of the Al-Fe-Si system.Metallurgical And Materials Transactions A.1997,30A(4):1999-1081
    98. Y. S. Han, J. O. Choi, C. O. Choi, D. G. McCartney. Intermetallic phaseformation in directionally solidified Al-Si-Fe alloy. Metals and MaterialsInternational.2004,10(1):27-32
    99. O. Seri, K. Furumata. Effect of Al-Fe-Si intermetallic compound phases oninitiation and propagation of pitting attacks for aluminum1100. Materials andCorrosion.2002,53:111-120
    100.N. Krendelsberger, F. Weitzer, J. C. Schuster. On the reaction scheme and liquidussurface in the ternary system Al-Fe-Si. Metallurgical And Materials TransactionsA.2007,38A(8):1681-1691
    101.S. Masayoshi, M. Jun, K. Kazuhisa, O. Masahiro, M. Toshihiro. Properties ofAluminum Coated Steels for Hot-forming.新日鉄技報.2003,378:15-20
    102.高超,高明,王平.硅对钢/铝轧制复合界面化合物抑制效应的研究.沈阳师范大学学报(自然科学版).2010,28(2):185-188
    103.韩炜,尹付成,苏旭平,王建华,徐琛.硅对Fe/Al固态扩散反应中Fe2Al5生长动力学的影响.材料热处理学报.2010,31(6):28-32
    104.王平,谢佩佩.钢-铝轧制复合界面化合物的抑制机理.中国有色金属学报.2010,20:284-288
    105.V. Raghavan. Al-Fe-Si (Aluminum-Iron-Silicon). Journal of Phase Equilibria andDiffusion.2009,30(2):184-188
    106.T. Heumann, N. Dittrich. Structure character of the Fe2Al5intermetallicscompound in hot dip aluminizing process. Z Metallk.1959,50:617-623
    107.X. M. Luo, D. K. Li, L. Wang, K. M. Chen. Complex boronized layer on thehot-dip aluminized steels and its surface performances. Transactions of Materidsand Heat Treatment.2004,25(5):653-656
    108.N. W. Ashcroft, N. D. Mermin. Solid state physics. Holt, Rinehart and Winston,NY,1976:123-142
    109.T. E. Itina, O. Utéza, N. Sanner, M. Sentis. Ultra-short laser interaction withmetals and optical multi-layer materials: transport phenomena and damagethresholds. Process of SPIE.2008,7005·0277-786X
    110.A. Mahrle1, E. Beyer. Theoretical aspects of fibre laser cutting. Journal of PhysicD: Applied Physic.2009,42:3022-3727
    111.梁铨延.物理光学.电子工业出版社.2008:36-55
    112.武恭.铝及合金材料手册.科学出版社.1994:222-225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700