铝合金T型接头双束激光双侧同步焊接的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强铝合金薄板焊接结构替代传统的铆接结构能够有效减轻大型客机自重、降低生产成本、增加构件的承载能力。但大型铝合金薄壁件T型结构的双激光束双侧同步焊接(BSLBW)存在的焊接工艺问题、焊接残余应力及变形的控制问题等,使其实际应用受到了一定限制。本文针对某大型客机机身壁板铝合金6156蒙皮与铝合金6056桁条组成的T型接头,进行BSLBW的试验和数值模拟的研究。
     首先针对T型接头的BSLBW进行不同焊接工艺参数匹配的探索性研究,获得T型接头激光焊较优的工艺参数范围。然后对不同焊接功率和焊接速度条件下的焊缝成形进行了数值模拟和焊接试验,得出焊接功率和焊接速度对焊缝成形的影响规律。最终确定了本文所研究的薄板铝合金T型接头BSLBW的最优工艺。
     其次计算了单桁条基本件的焊接过程温度场、残余应力和变形,模拟结果与焊后试验测量结果吻合良好。研究结果表明:T型接头角焊缝的纵向残余应力明显高于横向残余应力,纵向压应力分布集中于很小的范围内,且最高应力值达到350MPa;单桁条基本件的焊后变形在一定范围内随焊接线能量的增大而增大。
     最后针对飞机壁板大型构件的三桁条典型件和七桁条模拟段的焊接温度场、应力场和变形进行了有限元分析,并进行了典型件焊接的试验验证。通过对典型件的三个桁条的焊接顺序优化研究,提出了控制典型件焊后变形方案。在此基础上,针对飞机壁板实际构件模拟段的七个桁条的焊接顺序进行优化研究,按照本文提出的装卡条件采用从两侧向中心逐步对称焊接的顺序,可获得较小的焊接变形。
     研究成果可用于指导大型客机机身壁板的生产制造过程,可提高生产效率,降低实验成本,从而提高铝合金薄板T型接头BSLBW技术在大型客机制造领域的应用。
Thin-walled laser welded aluminum alloy structures can decrease weight, reduce cost and increase the loading capability over conventional riveting. However, laser welding parameters, high residual stresses and distortion have restricted the wide application of aluminum alloy T-joint of BSLBW(bilateral synchronous laser beam welding). Research on experimental and finite element numerical simulation of BSLBW was carried out on T-joint composed of aluminum alloy 6156 plate and 6056 flitch. Numerical simulation was conducted for different laser welding parameters.
     Experimental and finite element numerical simulation was carried out to obtain the influence of laser power and weld velocity on weld configuration. The most optimized welding parameters of BSLBW are obtained on T-joint of aluminum alloy plate.
     A sequentially coupled thermal-mechanical analysis on basic specimen of one flitch is undertaken to predict the welding temperature field, residual stress and distortion distribution field. A comparison between the experimental and simulation results shows a good agreement. The result indicated that the temperature grades nearby weld pool were much greater. Longitudinal residual stress of T-joint weld is obviously higher than that of the transverse stress, longitudinal compression stress distribution focused on a very small range, and the peak stress reaches 350MPa. Welding distortion of the basic specimen increases with the welding energy increasing.
     Three-dimensional finite element model of the typical three flitch specimen has been developed to simulate the temperature field, residual stress distribution and distortion. Experimental testing was carried out to measure the distortions of the typical specimens and verify the FE results. The welding of the typical specimen composed of three flitch and base plate in different welding sequences was simulated to find out welding sequence of the smallest distortion. The distortion controlling measure was proposed. Seven flitch specimens in different welding sequences were calculated to identity the welding sequence of the smallest distortion.
     Research results can guide manufacturing process of airliner fuselage wall plate to improve production efficiency and reduce testing cost. This research enhances the application of high-strength aluminum alloy BSLBW in the astronautic field
引文
[1]钟宝华.激光焊接技术应用现状及发展趋势[J].现代焊接,2008,9:1-5.
    [2]纪春雨,李伟剑,李伟红,等.激光焊接技术发展及其在航空工业领域的应用[J].航空制造技术,2009,25:126-129.
    [3]王敏.激光焊接技术与航空制造[J].航空制造技术,2009,9:48-50.
    [4]董宝明,郭德伦,张田仓.钛合金焊接结构在先进飞机中的应用及发展[J].航空材料学报,2003(增刊):239-243.
    [5] Swifthook D F, Gick A E F. Penetration Welding with Lasers[J]. Welding Journal, 1973, 52:492-499.
    [6] Bunting K A, Cornfield G. Toward a General Theory of Cutting:a Relationship Between the Incident Power Density and the Cut Speed[J]. Journal of Heat Transfer-transactions of the ASME, 1975:116-122.
    [7] Mazumber J, Steen W M. Heat Transfer Model for cw Laser Welding[J]. Applied Physics, 1980, 51(2):941-947.
    [8] Dowden J. A Keyhole Model in Penetration Welding with a Laser[J]. Journal of Physics D, 1987, 20(1):36-44.
    [9] Steen M W, Dowden J, Davis M, et al. A Point and Line Source Model of Laser Keyhole Welding[J]. Journal of Physics D, 1988, 21:1255-1260.
    [10] Akhter R, Davis M. A Method for Calculating the Fused Zone Profile of Laser Keyhole Welds[J]. Journal of Physics D, 1989, 21:23-28.
    [11] Kross J, Atzke U, Simon G. Towards a Self-consistent Model of the Keyhole in Penetration Laser Beam Welding[J]. Journal of Physics D, 1993, 6:474-480.
    [12] Kaplan A. A Model of Deep Penetration Laser Welding Based on Calculation of the Keyhole Profile[J]. Journal of Physics D, 1994, 7:1805-1814.
    [13] Goldark J. A New Finite Model for Welding Heat Source[J]. Metallurgical Transactions, 1984, 15B(2):299-305.
    [14] Mueller R. A Model for Predicting Keyhole and Fusion Zone Depths in Blind Keyhole Welding[J]. Proceedings of the ICALEO, 1994:509-518.
    [15]薛忠明,贾兰,张彦华.激光焊接温度场数值模拟[J].焊接学报,2004,25(1):91-94.
    [16] Sonti N, Amateau M F. Finite-element Modeling of Heat Flow in Deep-penetration Laser Welds in Aluminum Alloys[J]. Numerical Heat Transfer A, 1989, 16:351-370.
    [17]李存洲.激光深熔焊热场的数值模拟研究[D].北京,北京航空航天大学学位论文,2004.
    [18]吴甦,赵海燕,王煜,等.高能束焊接数值模拟中的新型热源模型[J].焊接学报,2004,25(1):91-94.
    [19]杜汉斌,胡伦骥,王东川.激光穿透焊温度场及流动场的数值模拟[J].焊接学报,2005,26(12):65-68.
    [20]王庆,张彦华.高温合金电子束焊接温度场数值模拟[J].焊接学报,2007,28(6):97-100.
    [21] Paolo F, Andrea Z, Franco B. Investigation of Electron-beam Welding in Wrought Inconel 706—Experimental and Numerical Analysis[J]. Materials Science and Engineering, 2005, 392:94-105.
    [22] Rybicki E F, Stonesifer R B. Computation of Residual Stresses Due to Multi-pass Welds in Piping Systems[J]. Journal of Pressure Vessel Technology, 1979, 101(5):149-154.
    [23] Karlsson L. Thermal Stresses in Welding, in R. Hetnarski(ed)[J]. Thermal Stresses I, North-Holland, Amsterdam, 1986, 5(1):299-389.
    [24] Leblond J B. A Theoretical and Numerical Approach to the Plastic Behavior of Steels during Phase Transformations[J]. Journal of the Mechanics and Physics of Solids, 1986, 34(4):394-405.
    [25] Lelindgren L E. Deformations and Stresses in Welding of Shell Structures[J]. International Journal for Numerical Methods in Engineering, 1998, 25(2):635-638.
    [26] Lindgren L E. Finite Element Modeling and Simulation of Welding(Part 1:Increased complexity)[J]. Journal of Thermal Stresses, 2001, 24(2):141-192.
    [27] Teng T L, Analysis of Residual Stresses and Distortions in T-Joint Fillet Welds[J]. International Journal of Pressure Vessels and Piping, 2001, 78:523-538.
    [28] Teng T L. Effect of Welding Sequences on Residual Stresses[J]. Computers and Structures, 2003, 81:273-286.
    [29] Dean Deng, Wei Lian Hidekazu Murakawa. Determination of Welding Deformation in Fillet-welded Joint by Means of Numerical Simulation and Comparison with Experimental Measurements[J]. Journal of Materials Processing Technology, 2007, 183: 219-225.
    [30]汪建华.陶瓷金属扩散焊接的残余应力及其缓和措施[J].硅酸盐学报,1995,23(2):605-609.
    [31]薛小龙,王志亮,桑芝富,等. T型焊接接头的三维有限元模拟[J].中国机械工程,2005,16(9):811-815.
    [32]张利国,姬书德,方洪渊,等.焊接顺序对T型接头焊接残余应力场的影响[J].机械工程学报,2007,43(2):234-237.
    [33] Carmignani C, Mares R, Toselli G. Transient Finite Element Analysis of Deep Penetration Laser Welding Process in a Single pass Butt-welded Thick Steel Plate[J].Computer Methods in Applied Mechanics and Engineering, 1999, 179:197-214.
    [34] Tsirkas S A, Papanikos P, Kermanidis T. Numerical Simulation of the Laser Welding Process in Butt-joint Specimens[J]. Journal of Materials Processing Technology, 2003, 134:59-69.
    [35] Cho S K, Yang Y S, Sona K J, et al. Fatigue Strength in Laser Welding of The Lap Joint[J]. Finite Elements in Analysis and Design, 2004, 40:1059-1070.
    [36] Ringsberg J W, Skyttebol A, Josefson B L. Investigation of the Rolling Contact Fatigue Resistance of Laser Cladded Twin-disc Specimens:FE Simulation of Laser Cladding, Grinding and a Twin-disc Test[J]. International Journal of Fatigue, 2005, 27:702-714.
    [37] Moraitis G A, Labeas G N. Residual Stress and Distortion Calculation of Laser Beam Welding for Aluminum Lap Joints[J]. Journal of Material Processing Technology, 2008, 198:260-269.
    [38] Zain-ul-Abdein M, Nelias D. Prediction of Laser Beam Welding-induced Distortions and Residual Stresses by Numerical Simulation for Aeronautic Application[J]. Journal of Material Processing Technology, 2009, 209:2907-2917.
    [39] Dean Deng, Shoichi Kiyoshima. Numerical Simulation of Residual Stresses Induced by Laser Beam Welding in a US316 Stainless Steel Pipe with Considering Initial Residual Stress Influences[J]. Nuclear Engineering and Design, 2010, 240:688–696.
    [40] Kong F R, Junjie M, Radovan Kovacevic. Numerical and Experimental Study of Thermally Induced Residual Stress in the Hybrid Laser–GMA Welding Process[J]. Journal of Materials Processing Technology, 2011, 211:1102-1111.
    [41]何小东,张建勋,裴怡,等.钛合金薄板激光焊接和TIG焊接残余应力数值模拟[J].机械工程材料,2005,29(3):25-28.
    [42]汪苏,王春侠,郭军刚.航空发动机薄壁机匣激光焊接有限元数值模拟[J].北京航空航天大学学报,2006,32(7):833-837.
    [43]丁林,周永涛,李明喜. T型接头激光焊接的温度场和应力场的数值模拟[J].安徽工业大学学报,2007,24(4):384-388.
    [44]徐凤林.齿科钛金属的激光焊接性及接头应力有限元模拟[D].南京:南京航空航天大学学位论文,2008.
    [45]陈素玲,孙学杰,雷世明.钛合金管口激光焊接的温度场和应力场数值模拟[J].热加工工艺,2010,39(17):165-168.
    [46] Goldak J. Computational Weld Mechanics[J]. NASA Report, N87-i7052.
    [47]魏艳红,刘仁培,董祖珏.不锈钢焊接凝固裂纹应力应变场数值模拟模型的建立[J].焊接学报,1999,20(4):238-243.
    [48] Zhang Y M, Pan C, Male A T. Improved Microstructure and Properties of 6061Aluminum Alloy Walden’s Using a Double-Sided Arc Welding Process[J]. Metallurgical and Materials Transactions, 2000, 10:2537-2543.
    [49]苗玉刚,李俐群,陈彦宾,等.铝合金激光-电弧双面焊接头特征分析[J].焊接学报,2007,28(12):85-88.
    [50]焦传江.铝合金T型接头激光-电弧两侧同步焊接技术研究[D].北京:北京工业大学学位论文,2009.
    [51] Zain-ul-Abdein M. Experimental Investigation and Finite Element Simulation of Laser Beam Welding Induced Residual Stresses and Distortions in Thin Sheets of AA 6056-T4[J]. Materials Science and Engineering A, 2010, 527:3025-3039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700