基于有限元法的推铲焊接残余应力的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在焊接过程中由于急剧的非平衡加热及冷却,焊接构件将不可避免地产生不可忽视的焊接残余变形。焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。然而焊后变形矫正,既不经济又严重伤害其工作可靠性。因此,科学地、定量地预测焊接变形规律,并在此基础上给予控制,对指导焊接制造工艺具有重要的工程意义。
     本文的主要工作与研究成果概括为以下几个方面:
     (1)由于推铲的焊缝比较多,以及焊接时间长,因此焊接顺序对残余应力产生的影响极大,本文以推铲焊接为例,首先制定了两种焊接顺序,并根据中性轴对焊接的影响,分析和制定出第三种焊接顺序。
     (2)采用有限元分析软件ANSYS对焊接过程产生的应力场和变形进行了模拟研究,建立推铲焊件的有限元模型,利用生死单元法模拟焊接过程。对三种不同的焊接顺序进行有限元模拟,得到不同焊接顺序下的焊接残余应力分布及焊接变形。
     (3)对推铲按照三种焊接顺序进行焊接,并对焊接冷却后的推铲运用了平尺以及高精度三坐标测量仪对三种焊接顺序焊接后的推铲进行实物测量,分析它们的焊接变形情况。
     (4)最后本文对三种焊接顺序下的有限元模拟结果与实验测量结果进行了比较和分析,结果显示仿真结果与实验测量结果相吻合。证明了中性轴对焊接顺序选择与优化的重要性,具有一定的应用价值。
     通过研究和实例验证,本文建立了可行的推铲焊接残余应力的动态模拟分析方法,为复杂焊接结构进行三维焊接残余应力和变形的分析提供了理论和指导。
Welding residual stress and deformation occurred inevitably in the welding process because of the rapid non-equilibrium heating and cooling, and it can’t be ignored. Residual deformation is a key factor affects the structural design integrity, manufacturing process and the use of structure reliability. The post-weld correction, both diseconomy and injure severely its operational reliability. It is very important to weld engineering if we can scientific, quantitative prediction of welding deformation and give some control on this basis.
     The main work and research results of this paper summarized as follows:
     (1) As there are too many weld seams on the shovel, and cost a long time to weld, so the weld sequence impact the welding residual stress highly. This article take shovel welding as an example, developed two welding sequence first, and then analyzed and developed the third welding sequences according to the affects of neutral axis.
     (2) Finite element analysis software ANSYS used to establish the 3-D model for shovel, simulate the tress field which generated by the welding, establish finite element welding model for shovel, then simulate the welding process by birth and death element technology. Three different welding sequences were carried on the finite element to simulate, obtained the welding residual stress distribution and the welding deformation.
     (3) Weld the shovel according to the three different sequences, and then this article has also utilized the straight edge and the high accuracy measuring instrument CMM (Coordinate Measuring Machining) measure the shovel after the actual welding, compared and analyzed their welding deformation.
     (4) Finally we compared and analyzed the simulation results and the measurement results, and it showed that simulation results coincide with experimental results. It proved the important of neutral axis in the welding sequence optimization, and had certain application value.
     Verified through research and examples, this paper establishes a viable shovel thermal stress dynamic simulation and analysis, provided a theoretical and guidance for three-dimensional structure for complex welding temperature field, residual stress analysis.
引文
[1]霍立兴,王东坡,王文先.提高焊接接头疲劳性能的研究进展和最新技术[M].北京:机械工业出版社, 2001
    [2] G.A.Webster, A.N.Ezeilo.Residual Stress Distributions and Their Influence on Fatigue Lifetimes [J]. Intenrational Jounral of Fatigue, 2001, 23(Supplement 1): 375-383
    [3] O.Rutger, T Josefson, B.Lennart etc al. Residual Stresses at a Longitudinal Stiffener-Web Frame Intersection and Their Effects on Crack Growth [J]. Marine Structures, 1995, 8(6): 603-616。
    [4]武传松.焊接热过程数值分析[M].哈尔滨:哈尔滨工业大学出版社, 1990
    [5]谢雷,罗宇,焊接学报,谢志勇,帅克刚.基十固有应变的大型焊接结构变形的预测[J]. 2004. 25(2): 107-110
    [6] Turner M J, Clough R W, Martin H C, Topp L C. Stiffness and Deflection Analysis of Complex Structures [J]. Aero. Sci. 1956, 23: 805-823
    [7] Clough R W The Finite Element Method in Plane Stress Analysis. Proc. 2nd ASCE Conference on Electronic Computation [J]. Pittsburgh, PA, 345-378, Sept. 1960
    [8]宋天民.焊接残余应的产生与消除[M].中国石化出版社, 2005
    [9]田锡,唐主编.哈尔滨工业大学.焊接结构[M].机械工业出版社, 1996, 10
    [10]拉达伊著.熊第京,郑朝云,史耀武译.焊接热效应—温度场、残余应变形[M].北京:机械工业出版社, 1997
    [11]游敏,郑小玲,余海洲.关于焊接残余应力形成机制的探讨[J].焊接学报.2003. 4. 51-58.
    [12]江建华,陆浩.焊接残余应力形成机制与消除原理若干问题的讨论[J].焊接学报, 2002 Vol.23 No.3
    [13]董航海,刘建华,杜汉斌等.焊接应力应变与变形的数值研究进展[J].电焊机. 2003, 33 (9): 15-17
    [14] Watanabe M, Satoh K. Fundamental study on buckling of thin steel plate due to bead-welding. Journal of Japan Welding Society [J]. 1959, 27(6): 1320
    [15]赵海燕.焊接结构CAE中模拟仿真技术的实现[J].博士后研究工作报告,清华大学. 1999, 12
    [16] Y Ueda. Analysis of the Thermal Elastic-plastic Stress and Strain during Welding. Trans. Japan Welding [J]. Soc. 1971, 2(2): 90-100
    [17] K.Masubuchi. Prediction and control of residual stresses and distortion in welded structures [J]. Proc.Theoretical Prediction in Joining and Welding, Osaka, Japan, Nov. 1996: 71-88
    [18] B. Anderson. Thermal Stress in Large Butt-welded Plates [J]. Journal of Thermal Stress. 1981, (4): 492-500.
    [19] K. S. Alfredsson and B. L. Josefson. Harmonic Response of a spot Welding Box Beam Influence of Welding Residual and Deformations [J]. Proc IUTAM Symposium on the Mechanical Effects of welding LULEA, Sweden, June, 1991: 1-8
    [20] Leblond J B. A theoretical and numerical approach to during phase transformations [J]. Mech. Phys. Solids, 1986 the plastic behavior of steels 34 (4): 395-409.
    [21] M.U Shio, et al. Proc. Theoretical Prediction in Joining and Welding[M]. Osaka, Japan, Nov. 1996
    [22] Goldak J. Thermal Stress Analysis of Welds From Melting Point to Room Temperature [J]. Proc. Theoretical Prediction in Joining and Welding. 1996: 225-230
    [23] L.Karlsson. Thereto-mechanical FE-analysis of Residual Stresses and Stress Redistribution in Butt Welding of a Copper Canister for Spent Nuclear Fuel [J]. Nuclear Engineering and Design. 2002, 212(1): 401-408
    [24] Tso-Liang Teng. Effect of welding conditions on residual stresses due to butt welds [J] , International Journal of Pressure Vessels and Piping, 1998(75).
    [25] Z.Cao. Metallo-Thermo-Mechanics application to phase transformation incorporated processes [M]. Proc. Theoretical Prediction in Joining and Welding. Osaka, Japan, 2001.
    [26]唐慕尧,楼志文等.单面焊时终段裂纹的研究[J].焊接学报. 1986, 7(3): 123-132
    [27]汪建华等.考虑相变的焊接动态和残余应力的研究.第六届全国焊接年会论文集[C].第5册. 1990: 209-212
    [28]江建华,戚新海,钟小敏.压缩机焊接变形的二维数值模拟[J].机械工程学报, 1996.32(1): 85-91
    [29] Wang Jianhua et. An FEM model of buckling Deformation during welding of Thinplate [J]. of Shanghai Jiaotong University, 1999, E-4(2): 69-72
    [30]魏艳红,刘仁培,董祖钮.不锈钢焊接凝固裂纹应力应变数值模拟结果分析[J].焊接学报. 2002, 21(2): 36-38
    [31]刘仁培,董祖迁,魏艳红.不锈钢焊接凝固裂纹应力应变场数值模拟模型的建立[J].焊接学报,1999, 20 (4): 238-243
    [32]赵海燕,鹿安理,史清宇等.焊接结构CAE中数值模拟技术的实现[J].中国机械工程. 2007, 11(7): 732-734
    [33]鹿安理,赵海燕,史清宇等焊接过程仿真领域的若干关键技术问题及其初步研究[J].中国机械工程. 2000, 11(1-2): 201-205
    [34]董俊慧,林燕,林文光等.耐热钢厚壁管环焊残余应力的有限元分析[J].焊接学报. 2005, 26 (2): 25-27
    [35]董俊慧等.环焊缝管道焊接应力应变三维有限元分析[J].机械工程学报. 2001, 37(12): 87-89
    [36]王成强. 200Km/h高速动车组焊接构架侧梁焊接顺序优化研究[D]大连:大连交通大学, 2007
    [37]傅卫.导弹油箱焊接有限元前处理实现及焊接顺序优化[D].哈尔滨:哈尔滨工业业大学, 2006
    [38]张利国,姬书得,方洪渊,刘雪松.焊接顺序对T形接头焊接残余应力场的影响[J].机械程学报. 2007, 43(2): 234-237
    [39]增援兴著.焊接结构分析[M].北京:机械工业出版社, 1983. 158-161
    [40]张朝晖. Ansys热分析教程与实例解析[M].中国铁道出版社. 2007, 5
    [41]龚曙光. ANSYS操作命令与参数化编程[M].机械工业出版社, 2004, 4
    [42] T. Belytschko and J.R.Hughes et al. Transient Analysis, North-Holland, Computational Methods [M] , 1983
    [43] B A. B. Andersson. Thermal Stresses in a Submerged-Arc Welded Join Considering Phase Transformations ASME [J]. Engineering Materials and Technology, 1978,100: 356-362 P
    [44]王勛成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社, 1997
    [45]李景涌.有限元法[M],北京,北京邮电大学出版社, 1999: 3-6
    [46]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M],西安,西北工业大学出版社, 2000: 1-187
    [47]姚希梦.弹塑性力学[M].北京:机械工业出版社. 1987
    [48]刘敏.低碳钢圆管多层对焊焊接应力的研究[J].石油工程建设, 1998(1):1-4.
    [49] X. P Huang and W. C. Cui, Effect of Bauschinger Effect and Yield Criterion on Residual Stress Distribution of Autofrettaged Tube [J]. Pressure Vessel Technol. 128, 212 (2006)
    [50]由立臣,郭奇,王惠娟.焊接残余应力工程估算法的数值分析验证[J].吉林化工学院学报,1996. 13(3): 32-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700