高强度桥梁钢焊接性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,高强度桥梁钢在国外已经达到较高的水平,且形成了大量的专利技术。而在我国高强度桥梁钢的开发和研究却处在起步阶段,因此,国内急需开发高强度桥梁钢。本文在首钢总公司—东北大学“钢种开发”项目的支持下开展研究,对开发的高强度桥梁钢Q460q的焊接性能进行了系统研究。论文主要工作如下:
     1)采用热输入量较大的焊接方法即埋弧焊对Q460q进行不同工艺参数条件下的焊接,确定合理的焊接工艺参数,并对Q460q的使用焊接性和工艺焊接性进行评价。结果表明:高强度桥梁钢Q460q具有良好的使用焊接性能,即焊接接头的强度不低于母材,-60℃-20℃条件下韧性虽稍低于母材但均表现出较好的韧性,且焊接接头中焊缝、熔合区和热影响区的DBTT均在较低的温度范围内;高强度桥梁钢Q460q在焊接过程中产生冷裂纹的倾向不大,故其工艺焊接性较好。
     2)采用热模拟方法全面研究了高强度桥梁钢Q460q和Q460qNH不同焊接热输入条件下热影响区的组织性能。结果表明:Q460q和Q460qNH在t8/5为30s-200s条件下(E相当于38~117k J/cm)模拟热影响区粗晶区的组织主要为贝氏体,具有板条和粒状两种形态,贝氏体中的M-A组元的形态、分布和数量随着t8/5的改变而变化并对粗晶区的韧性产生显著影响;随着t8/5的增加,粗晶区原始奥氏体晶粒尺寸不断增大,有效晶粒尺寸的增大使粗晶区韧性显著变差。因此为提高焊接热影响区粗晶区的韧性,应采取合适的方法来控制粗晶区晶粒尺寸。
     3)测定了高强度桥梁钢Q460q和Q460qNH的SH-CCT图,为研究高强度桥梁钢焊接物理冶金规律、制定适宜的焊接工艺奠定了基础。
     4)利用R>0的正弦波对高强度桥梁钢Q460q焊接接头的疲劳S-N曲线、疲劳裂纹中速扩展区Paris公式材料常数C、指数m以及裂纹门槛值△Kth进行了测试,并对Q460q焊接接头疲劳裂纹萌生机理进行了研究。结果表明:Q460q在R>0时的疲劳极限为470MPa,在较高应力幅下的疲劳裂纹起源于试样表面的某种缺陷,在较低应力幅下疲劳裂纹起源于大尺寸夹杂物。焊接接头中焊缝的裂纹门槛值△Kth高于热影响区和母材,而裂纹扩展速率低于热影响区和母材。焊缝金属随着疲劳载荷下循环次数的增加,依次形成位错纠结→位错墙→位错胞→亚晶,亚晶界开裂从而形成裂纹。
     5)在较大热输入量条件下(t8/5>80),高强度桥梁钢热影响区粗晶区出现脆化,为了改善粗晶区的韧性,首次研究了第二相粒子对微钙钢焊接热影响区奥氏体晶粒尺寸的影响。通过对母材进行Ca处理,在钢中产生弥散细小的第二相粒子CaO、CaS.一方面充分利用微钙钢中细小的高温热稳定的CaO、CaS粒子在1350-1450℃对奥氏体晶界迁移的钉扎作用,有效地减少焊接热影响区粗晶区的组织粗化,细化粗晶区原始奥氏体晶粒,提高韧性;另一方面利用焊接热影响区中较大尺寸的CaO粒子作为针状铁素体的形核点,促进晶内高强韧性的针状铁素体的形成。结果表明:在大热输入量条件下,即t8/5为80S、200s(相当于E为87.117kJ/cm),粗晶区原始奥氏体晶粒尺寸得到明显细化,且随着t8/5的增加,晶粒长大趋势小,韧性得到明显改善。
     6)采用真实焊接和热模拟方法研究了微钙钢不同条件下热影响区的组织性能,并确定了微钙钢较小的热影响区奥氏体晶粒长大倾向。结果表明:t8/5=8s时的热影响区粗晶区奥氏体平均晶粒尺寸约20μm;t8/5=20s时,奥氏体晶粒尺寸约40μm;t8/5=40s时,奥氏体晶粒尺寸约60μm;t8/5=80s时,奥氏体晶粒尺寸约80μm;t8/5=200s时,奥氏体晶粒尺寸约110μm。结果表明:微钙钢与一般低合金高强钢相比焊接热影响区粗晶区的原始奥氏体晶粒长大程度明显降低,微钙钢焊接热影响区晶粒细化效果显著。
High strength bridge steel has been studied widely and substantive patents have been obtained in foreign countries at present. However, the study on high strength bridge steel in China has just been started recently. So, the development of high strength bridge is urgent to carry out in China. With the support of the project of "development of steels" taken on by Capital Steel Company and Northeastern University, the weldability of a high strength bridge steel Q460q was systematically studied in this thesis, and the main work is as follows:
     (1) In order to determine reasonable welding parameters, and to estimate the service weldability and fabrication weldability, Q460q was welded under different parameters using submerged-arc welding during which heat input is high. The results proved that, Q460q has high service weldability. The strength of the weld joint is not lower than the base metal, good toughness is obtained at -60℃~20℃, and the DATT of the welding line, bond and heat affected zone are low. In addition, cold crack is not formed during welding, proving the good fabrication weldability of Q460q.
     (2) The microstructure of heat affected zone(HAZ) in Q460q and Q460qNH with different heat input was studied through thermo mechanical simulation experiments. The results showe that bainite including lathing and granular formed in the coarse grain heat affected zone(CGHAZ) when t8/5 is in the range of 30s~200s. The morphology, distribution and quantity of the M-A constituents in bainite changed with t8/5 and has obvious effect on the toughness of coarse grain zone. The original austenite grain grows with the increase of t8/5-The increase of effective grain size deteriorate the toughness. Thus, in order to improve the toughness, the grain size of CGHAZ should be controlled with appropriate method.
     (3) The SH-CCT curve was determined, and it is greatly helpful to study the physical metallurgy during welding and to set down appropriate welding parameters.
     (4) The fatigue S-N curve of the welding joint, the material constant C, exponent m and the crack threshold value AKth in Paris Formula were determined with sine wave (R>0), and the initiation mechanism of fatigue crack was also investigated. The results showe that the fatigue value was 470MPa. The fatigue crack under higher stress amplitude originated from some defect at the surface of the sample, and originated from inclusion under lower stress amplitude. The AKth of welding line in the welding joint is higher than that of the base metal, while crack extension rate is lower than that of HAZ and base metal. The microstructure changes as follows with the increase of cycle index:dislocation tangle→dislocation wall formed→dislocation cell formed→subgrain formed. Then the crack developes when the subgrain boundary split.
     (5) The CGHAZ embrittlemented as t8/5>80. To improve the toughness of the CGHAZ, the effect of oxide on the physical metallurgy in low alloy high strength steel was firstly studied. Dispersed second-phase CaO and CaS formed by low Ca treatment. On one hand, The dispersed and steady CaO and CaS would pin the austenite boundary migrating at 1350~1450℃. As a result, the microstructure is refined in coarse grain zone and the toughness is improved. On the other hand, acicular ferrite can nucleate at larger CaO, leading to the formation of acicular ferrite with high toughness. It is observed that when t8/5 is 80s and 200s(E=87 and 117kJ/cm), the original austenite grains are refined evidently. The growing rate of grains slow down with the increase of t8/5, and the toughness is improved obviously.
     (6) The microstructure and properties as well as the growth tendency of austenite grains in HAZ of micro-added Ca steel were investigated by real welding and thermo mechanical simulation. Experiments were carried out under different conditions. The results showe that as t8/5= 8s,20s,40s,80s, and 200s, the average austenite grain diameter in CGHAZ is about 20μm,40μm,60μm,80μm and 110μm, respectively. Compared with the low alloy high strength steel, the austenite grain growth rate in coarse grain zone decrease dramatically in micro-added Ca steel. Grain refinement in HAZ is apparently effective in micro-added Ca steel.
引文
1.史永吉.面向21世纪焊接钢桥的发展,第九次全国焊接会议论文集,第一册,1999.
    2.潘世建、杨盛福.厦门海沧大桥建设丛书,摄影专集,北京,人民交通出版社,2001.
    3.成昆铁路技术总结委员会,成昆铁路,第四册,桥梁,北京,人民铁道出版社,1980.
    4.中国铁路工程总公司、芜湖长江大桥有限责任公司,芜湖长江大桥钢梁制造技术,北京,科学出版社,2001.
    5.王永达,谢仕柜.低合金钢焊接基本数据手册[M],北京,冶金工业出版社,1998.
    6.李克中,陈伯蠡等.15锰钒氮桥梁钢埋弧自动焊焊接材料的研究[J],铁道学报,1989.
    7.钱维平等.14MnNbq钢的断裂抗力及其表述[J],材料开发与应用,2000,03.
    8. PROCEEDINS of the INTERNATIONAL CONFERENCE on WELDED STRUCTURS in particular WELDED BRIDGES, BUDAPEST, HUNGARY 2/3 September,1996.
    9.周至良,刘书华,谢明.局部脆化区对直接淬火回火钢焊接热影响区断裂韧性的影响[J],焊接学报,1998,19(3):147-153.
    10. M.D.Modzhuk. Problems of weldability and welding technology of low-alloy high-strength[J],Weld Res, Abroad,1996,42:10-16.
    11. C THAULOW,A J PAAUW. Proc,2nd Int. Conf. On'Offshore and polar engineering', CO, USA, Iiternational Society of Offshore and Polar Engineers[C],1992:226-233.
    12. Meester B de. Selection of steels according to their Charpy V Properties in order to avoid Fracture[J, Welding in the word,1988,26:(11/12):308-324.
    13. Miki C, Homma K, Tominaga T. High strength and high performance steels and their use in bridge structures [J],Journal of Constructional Steel Research,2002,58:3-20.
    14. Kawabata Fumimaru, Matsui Kazuyuki, Obinata Tadashi, et al. Steel Plates for Bridge Use and Their Application Technologies[J], JFE Technical Report No.2[R],2004.
    15. European structural steel standard EN 10025:2004:Explanation and comparison to previous standards[Z]. Corus Construction & Industrial,2004.
    16. ASTM A709/A709M-04 Standard Specification for Carbon and High Strength Low-Alloy Structural Steel Shapes, Plates, and Bars and Quenched-and-Tempered Alloy Structural Steel Plates for Bridges [Z],2004.
    17. Wilson A D. HPS Update[A], HPS Steering Committee,2004.
    18. AASHTO. Guide Specification for Highway Bridge Falrication with HPS 70W(HPS 485W) Steel,2nd Edition[M],2003.
    19. FHWA. High Performance Steel Designer Guide, Second Edition[M],2002.
    20.张朝生.日本桥梁用厚钢板最近的发展[J],国外桥梁2001(1): 64-68.
    21.候文葳,李伏欣.日本用于桥梁的高性能钢[J],世界桥梁,2000(2):65-70.
    22. Shoji Tamai, Yosiaki Yagata, Tomohide Hosoya. New technologies in fabrication of steel bridges in Japan[J],Journal of Constructional Steel Research,2002,58:151-192.
    23.钱叶祥.21世纪我国桥梁制造业的发展机遇与挑战[J], Steel Construction,2001(3), vol.16, No.53:1-3.
    24.肖英龙.桥梁结构用高性能钢材[J],宽厚板,2002(3):43-45.
    25. M leazan. Constructing the Team[M],1994.7
    26. F Leonhardt, W Zellner, Past, Present and Future of Cable strayed Bredges[R],1991
    27. M Virlogeux. Structural and Architectural Design of Bridge[J],SEI,1996(2).
    28. A E Churchman, J M C Cadai. Spaces a New Concept in Bridge Construction[R],IABSE Int. New Technologies in Stru.Eng.,Lisbon,1997.
    29.刘榴,范铮.美国的《桥梁焊接规范》和断裂控制计划概念[J],焊接,2002(4):38-40.
    30. Veljkovic M, Johansson B. Design of hybrid steel girders[J], Journal of Constructional Steel Research,2004.
    31. Mans P, Yakei A J, Azizinamini A. Full-scale testing of composite plate girders constructed using 485MPa high performance steel[J],Journal of Bridge Engineering,2001.
    32. Azizinamini A, Asce M, Barth K. High performance steel; research front-historical account of research activities[J], Journal of Bridge Engineering,2004.
    33.王元良,胡久富,周友龙.用细双丝双弧改善强韧匹配的研究[J],焊管,2002,25(121):25.
    34.王元良,周友龙,胡久富.药芯焊丝自动双丝焊工艺研究[J],焊管,2001,24(116):3-6.
    35. Crecol N, Earls C J. Structural ductility in hybrid high performance steel beams[J],Journal of Bridge Engineering,2002.
    36. Wasserman E P. Optimization of HPS 70W applications[J],Journal of Bridge Engineering, 2002.
    37.龚根生.日本NKK今年开发的桥梁用高功能钢板[J],世界钢铁,2000(1):79-80.
    38.盛尔迈,李思明.美日用于桥梁结构的高性能钢材[J],上海建材,2004(4):19-21.14.
    39.许向军.高强度桥梁结构钢及其焊接技术[J],焊接,2007(6):37-41.
    40.王元良,周友龙,胡久富.我国钢桥焊接技术及其发展[J],电焊机,2004,Vol34.No4,1-5.
    41.张玉玲,戴福忠,陶小燕.14MnNbq,16Mnq钢及其焊接冲击韧性CVN试验研究[J],中国铁道科学,2004,25(3):80-85.
    42.张显辉,孙维峰,张静.松花江斜拉大桥Q420E钢对接接头埋弧焊焊接工艺[J],焊接,2003(11):21-24.
    43.缪凯,黄治军,黄汉雄14MnNbq钢超厚板(60mm)焊接性能研究[J],钢铁研究,2005(4):1-4.
    44. K.Hulka, F.Heisterkamp.Material Science Forum,1998:284-286,343-350.
    45. T.Mohandas,G M Reddy, B S Kumar.J.Mater.process.Technol,1999(88):284-294.
    46. Horii.128th Nishiyama Memorial Lecture[J],JISI,1989:39-76.
    47. Tanaka.128th Nishiyama Memorial Lecture[J],JISI,1989:77-105
    48. Fukuhisa Matsuda,ZhonglinLi,Peter Bernasovsky.An investigation on the behaviour of the M-A constituent in simulated HAZ of HSLA steels [J], Welding in the World,1990,Vol.29:307-313.
    49. K poorhaydari,B M Patchett, D G Ivey. Observation of twinned martensite in weld heat affected zone of grade 100 low carbon microalloyed steel[J],Science and Technology of welding and Joining,2004,9(2):177-180.
    50. A Lambert, J Drillet,A F Gourgues. Microstructure of martensite-austenite constituents in heat affected zones of high strength low alloy steel welds in relation to toughness prop-erties[J],Science and Technology of Welding and Joining.2000,5(3):168-173.
    51. Emin Bayraktar,Dominique Kaplan. Mechanical and metallurgical investigation of martensite-austenite constituents in simulated welding conditions[J],Journal of Materials Processing Technology,2004,5(4):87-92.
    52. K S Kweon,J H Kim,J H Hong.Microstructure and toughness of intercritically reheated heat affected zone in reactor pressure vessel steel weld[J],Science and Technology of Welding and Joinning,2000,5(3):168-173.
    53. E Bonneviea, G Ferrierea,A Ikhlefa. Morphological aspects of martensite-austenite constituents in intercritical and coarse grain heat affected zones of structural steels[J],Materials Science and engineering A385(2004):352-358.
    54. N Yurioka.TMCP steels and their welding[J].Welding in the World,1995,Vol.35,375-390.
    55. H Ikawa, H Oshige, T tanoud. Effect of martensite-austenite constituent on HAZ toughness of a high strength steel[J],Trans,Jws,1980,Oct:11-20.
    56. K Yamaoto,S Matsuda,T Haze. Symp on Residual and Unspecified Elements in steel[J],ASTMSTP1042.1987:266-284.
    57. Jye-Long Lee,Yeong-Tsuen Pan. The Formation of Intragranular Acicular Ferrite in Simulate Heat affected Zone[J],ISIJ International,1995,Vol.35,No.8:1027-1033.
    58.焦伟,张显辉.14MnNbq焊接性试验[J],焊接,2003(5):29-33.
    59.汪绘,郑云龙,卜华全.12MnNiVR钢板焊接裂纹敏感性的实验研究[J],压力容器,20(6):19-23.
    60. Hart P H M,Watkinson E. Weld Metal implant Test Ranks Cr-Mo Hydrogen Cracking Resistance[J],Welding Journal,1975,54(9):288-295.
    61. SUN Jun-sheng,WU Chuan-song. The Effect of Welding Heat Input on the Weldpool Behavior in MIG Welding[J],Science in China,2002,45(3):291-299.
    62.牛靖,董俊明,何源等.30CrMnSiNi2A钢冷裂纹敏感性研究[J],材料开发与应用,2006,21(4):1-3.
    63.王振家,盘勇琨.F/B复相钢JB800的焊接冷裂纹敏感性[J],热加工工艺,2004,No.3:23-25.
    64.孙俊生,田志凌,栾守成等.JG509钢的焊接冷裂纹敏感性[J],钢铁研究学报,2006,18(12):38-42.
    65.汪辉,卜华全,房务农.NK-HITEN610 U2L钢板焊接冷裂纹敏感性[J],石油化工设备,2006,35(4):13-16.
    66.谢建良.ZG25MnCrNiMo的焊接冷裂敏感性[J],热加工工艺,2004,(5):62-63.
    67.王青峰,王亚楠,尚成嘉等.超细化低碳贝氏体钢焊接性能的研究[J],钢铁2006,41(3):77-81.
    68.何长红,肖红军,杨柏.非调质低焊接裂纹敏感性(WDB620)钢的焊接[J],钢铁,2003,38(2):51-55.
    69.周振丰.焊接冶金学[M],北京:机械工业出版社,1993:179-185.
    70. Yeong-Tsuen Pan,Jye-Long Lee. Development of TiOx-bearing Steels with Superior Heat-affected zone Toughness[J],Materials&Design,199415(6):331-338.
    71. S.Matsuda,N.Okumura.Effect of TiN Precipitate particles on the Austenite Grain Size of Low Carbon Low alloy Steels[J],Trans,ISIJ,1989(18):198-205.
    72. Stephen Liu,Fang-Chun Liao. Precipitate stability in the Heat Affected Zone of Nitrogen-Enhanced High Strength Low Alloy Steel[J],Materials Science and Engineering A,1998,244(2):273-283.
    73. Mukae S. Solution of Tin during Synthetic Weld Thermal Cycling and HAZ Toughness in Low Carbon Steels[J],Trans JWS,1987,18(2):148-156.
    74. Young-Ho An. Status of Welding Technology in Fine Grained Structural Steel[C], Proceeding of the 4th Workshop on the Development of High Performance Structural Steels for 21st Century,Pohang,Korea,2002,295-298.
    75.陈茂爱,武传松,杨敏.Ti-V-Nb微合金钢第二相粒子在焊接热循环过程中的变化规律[J],金属学报,2004,40(2):148-154.
    76.洪永昌,尹桂全.Ti、Nb对结构钢焊接热影响区组织和韧性的影响[J],电焊机,2002,32(4):21-24.
    77.陈茂爱,唐逸民,楼松年.Ti对低合金高强度钢焊接粗晶热影响区组织及性能的影响[J],特殊钢,2001,22(5):5-9.
    78.陈茂爱,唐逸民,赵能.Ti微合金钢及其焊接粗晶区中的第二相粒子分析[J],钢铁钒钛,2000,21(2):1-5.
    79.史弼,曹涵清,邬君飞.Nb-Ti微合金钢中的含氮量对焊接粗晶热影响区韧性的影响[J],宝钢技术,2001,No.2:28-32.
    80.尹桂全,王世俊,黄贞益.地毯微合金Ti-Nb可焊钢中的N及其第二相粒子[J],焊接学报,2006,27(5):57-62.
    81.尹桂全,黄龙旺.微Ti钢焊接热循环过程中的第二相粒子[J],焊接学报,2000,21(4):50-53.
    82.尹桂全,高甲生,洪永昌.微量Nb对微Ti钢焊接HAZ奥氏体晶粒长大的影响[J],焊接学报,1998,19(1):13-18.
    83. Jeong Hong Chul,An YoungHo,Choo WungYong. The Effect of High Nitrogen TiN Particles on the HAZ Microstructure and Toughness[C], Proceddings of the Second International Conference on Advanced Structural Steels,Shanghai,China,2004:965-968.
    84. K.S Oh, W.Y.Choo,H.G.Lee. Behavior of Nonmetallic Inclusions during Steelmaking of the 4th Workshop on the Development of High Performance Structural Steels for 21st Century[C],Pohang,Korea,2002:103-107.
    85. Homma H,Ohkita S. Improvement of HAZ toughness in HSLA steel by introducing finely dispersed Ti-Oxide[J], Welding Journal,1987,66(10):301-309.
    86. Akihiko KOJIMA,Akihito KIYOSE.Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles[J], NIPPON STEEL TECHNICAL REPORT. 2004 (6):2-6
    87. Massaki NAGAHARA, Hidenori FUKAMI.530N/mm2Tensile Strength Grade Steel Plate for Multi-purpose Gas Carrier[J],NIPPON STEEL TECHNICAL REPORT,2004 (6):11-13.
    88. Masanori MINAGAWA Koji SHIDA,390MPa Yield Strength Steel Plate for Large Heat-input Welding for Large Container Ships[J], NIPPON STEEL TECHNICALREPORT,2004 (6):7-10.
    89. Yoshio TERADA,Akihiko KOJIMA.High-strength Linepipes with Excellent HAZ Toughness [J], NIPPON STEEL TECHNICALREPORT,2004(6):88-93.
    90. Akihiko KOJIMA,Ken-ichi YOSHII. Development of High HAZ Toughness Steel Plates for Box Columns with High Heat Input Welding[J], NIPPON STEEL TECHNICAL REPORT, 2004(6):39-44.
    91. Jye-Long LEE,Yeong-Tsuen PAN. The Formation of Intragranular Acicular Ferrite in Simulatede Heat-affected Zone[J],ISIJ International,1995,vol.35,No.8:1027-1033.
    92. KIMURA Tatsumi,SUMI Hiroyuki,KITANI Yasushii. High Tensile Strength Steel Plates and Welding Consumables for Architectural Construction with Excellent Toughness in Welded Joint-"JFE EWEL" Technology for Excellent Quality in HAZ of High Heat Input Welded Joints[J],JFE TECHNICAL REPORT,2005,No.5:45-51.
    93. SUZUKI Shinichi,ICHIMIYA Katsuyuki,AKITA Toshikazu. High Tensile Strength Steel Plates Excellent HAZ Toughness for Shipbuilding-"JFE EWEL" Technology for Excellent Quality in HAZ of High Heat Input Welded Joints[J],JFE TECHNICAL REPORT,2005,No.5:24-28.
    94.卜勇,尹法章,胡本芙等.稀土和Ca、Mg元素对高强度钢焊接热影响区组织和韧性的影响[J],钢铁,2006,41(4):71-76.
    95.卜勇,胡本芙,尹法章等.低碳钢中以氧化物为核心针状铁素体的形成[J],北京科技大学学报,2006,28(4):387-360.
    96.束德林.工程材料力学性能[M],北京:机械工业出版社,2003.
    97.邓增杰.工程材料的断裂与疲劳[M],北京:机械工业出版社,1995.
    98.林吉忠等.金属的缺陷、载荷与疲劳[M],中国铁道出版社,1993.
    99.林吉忠,刘淑华.金属材料的断裂与疲劳[M],中国铁道出版社,1988.
    100.霍立兴.焊接结构的断裂行为及评定[M],机械工业出版社,2000.
    101.周昌玉,沈士明,李荣锋等.桥梁用14MnNbq焊接接头的疲劳设计曲线[J],南京化工大学学报,2001,23(2):49-53.
    102.何雪宏.复杂应力状态低周疲劳寿命评价和裂纹扩展规律研究[D],大连理工大学,1992.
    103.尚德广.疲劳裂纹萌生尺寸的定义及其确定方法[J],机械强度,1996,18(2):65-69.
    104. K.Hussain. Short Fatigue Crack Behavior and Analysis Models:A Review[J],Engineering Fracture Mechanics,1997,15(4):327-354.
    105. C.Blochwitz, W.Tirschler.In-situ scanning electron microscope observations of the deformat-ion behavior of short cracks[J],Materials Science and Engineering,2000,27(6):273-276.
    106. M.D.Chapetti,H.Miyata,T.Tagawa. Fatigue crack propagation behaviour in ultra-fine grained low carbon steel[J],International Journal of Fatigue,2005,vol.27:235-243.
    107. Herold H,Streiten berger M. An experimental and theoretical approach for an estimation of ΔKth[J],Fatigue Fract Eng Mater Struct,2000,vol.23:805-812.
    108. Luca Susmel,David Taylor. Non-propagating cracks and high-cycle fatigue failures in sharplynotched specimens under in-phase Mode I and II loading[J],Engineering Failure Analysis,2007,vol.14:861-876:
    109. Wan-Young Maeng, Mun-Hwan Kim. Comparative study on the fatigue crack growth behavior of 316L and 316LN stainless steels:effect of microstructure of cyclic plastic strain zone at crack tip [J] Journal of Nuclear Materials,2000,vol.282:32-39.
    110. E.J.Rao,B.Guha,G.Malakondaiah. Effect of welding process on fatigue crack growth behaviour of austenitic stainless steel welds in a low alloy(Q&T) steel[J],Theoretical and Appied Fracture Mechanics,1997,vol.27:141-148.
    111. S.W.Kim,A.Kohyama,H.K.Yoon. Fatigue crack growth behavior and microstructure of redu-ced activation ferritic/martensitic steel(JLF-1)[J],Fusion Engineering and Design,2006, vol.81:1105-1110.
    112.罗尔夫ST.结构中的断裂与疲劳控制[M],北京:机械工业出版社,1985.
    113. Meester B. Selection of steels according to their charp V properties in order to avoid Brittle Fracture[J], Welding in the world,1988,26(11/12):308-324.
    114.陈旭,张源,安柯,等.14MnNbq钢焊接接头低周疲劳性能[J],天津大学学报,2001,34(3):386-388.
    115. Z.F.Zhang,Z.G.Wang,Y.M.Hu.Cyclic deformation behavior and intergranular fatigue cracking of a copper bicrystal with a parallel grain boundary[J],Materials Science and Engineering,1999,27(2):410-417.
    116.盛光敏.应变疲劳循环软化机制的观察、确证及定量估测[J],理化检测-物理分册,1997,33(7):17-19.
    117. V.Sinha,C.Mercer,W.O.Soboyejo. An investigation of short and long fatigue crack growth behavior of Ti-6Al-4V[J],Materials Science and Engineering,2000,28(7):30-42.
    118. K.S.Ravichandran,Xu-Dong Li.Fracture Mechanical character of small cracks in polycrysta-lline materials:concept and mumerial K calculations[J],Acta Mater,2000,48:525-540.
    119.回丽,董广成.钛合金焊缝表面疲劳断裂纹的扩展行为[J],中国有色金属学报,2004,14(9):1483-1488.
    120. C.A.Rodopoulos,E.R.delos. Theoretical Analysis on the Behavior of Short Fatigue Cracks[J] ,International Journal of Fatigue,2002,24
    121. Zhou J,Soboyejo W O. An investigation of the effects of crack front curvature on the crack-tip opening displacement of A707 steel[J],International Journal of Fracture,2002,115(3):287-304.
    122. Masahito M,Masaru K,Hiroshi S. Crack initiation and propagation in ferrite/martensite dual-phase steel with microscopic heterogeneity by fracture toughness tests [J], Journal of the Material Science,2003,52(8):932-938.
    123. Yoshiaki A,Keisuke T,Hidehiko K,et al. Simulation of propagation behavior of microstructu-rally small fatigue cracks[J],Journal of the society of Materials Science,2000,49(9):1002-1009.
    124.钱维平.焊接桥梁结构的断裂驱动力分析[J],材料开发与应用,2001,16(5):16-19.
    125.钱维平,李刚,马建坡.14MnNbq钢及其焊缝的断裂抗力表述[J],材料开发与应用,2000,15(3):33-36.
    126.马成勇.新一代800MPa级超低碳微合金钢焊材及接头组织性能研究[D],天津大学,2002:111-123.
    127.GB2651-89《焊接接头拉伸实验方法》[S].
    128.GB2653-88《焊接接头弯曲及压扁试验方法》[S].
    129.GB2650-89《焊接接头冲击试验方法》[S].
    130.王亚楠.超低碳贝氏体钢焊接性研究[D].燕山大学,2006年.
    131.GB4675.5-84《焊接热影响区最高硬度测试方法》[S].
    132.周振丰.焊接冶金学(金属焊接性)[M],机械工业出版社,1993,7-9.
    133.张德勤.微合金钢焊缝金属忠针状铁素体形成机理的研究[D],天津大学,2006年.
    134.张友谊.Domex700MC低合金高强钢C02气体保护焊焊接工艺及焊接接头性能研究[D],西华大学,2007年.
    135.王学.20MnMo低合金调制铸锻钢焊接性研究[D],武汉大学,2004年.
    136.于少飞,钱百年,国旭明.加速冷却对X70钢热影响区组织与韧性的影响[J],金属学报,2005,41(4):402-406.
    137.田德允,张瑞成.微合金高强钢焊接热影响区中粒状贝氏体微观结构的实验研究[J],金属学报,2000,36(2):181-186.
    138.徐雪利,辛希贤,石凯等.焊接热循环对X80管线钢粗晶区韧性和组织的影响[J],焊接学报,2005,26(8):69-74.
    139.赵琳,张旭东,陈武柱.800MPa级低合金钢焊接热影响区韧性的研究[J],金属学报,2005,41(4):392-396.
    140.陈翠欣.X80高强管线钢的焊接性及其模拟仿真[D],天津大学,2005年.
    141.王磊.材料的力学性能[M],沈阳:东北大学出版社,2005:153-181.
    142.高彩茹.500MPa级超级钢开发及使用性能的研究[D],东北大学,2006:110-120.
    143.GB9447-88,《焊接接头疲劳裂纹扩展速率试验方法》[S].
    144.GB6398—2000《金属材料疲劳裂纹扩展速率》[S].
    145. S.Suresh(王中光译).材料的疲劳[M],北京:国防工业出版社,1993:321-345.
    146.N.E.弗罗斯特,K.J.马什,L.P.普克(汪一麟,邵本逑译).金属疲劳[M],北京:冶金工业出版社,1984:285-327.
    147.胡赓祥,钱苗根等.金属学IM],北京:高等教育出版社,1986年.
    148.陈家祥.钢铁冶金学[M],北京:机械工业出版社,1989.
    149.田德蔚,钱百年,斯重遥.适用图像仪测定M-A相的腐蚀方法[J],物理测试,1994,No.2:35-39.
    150.田德蔚,钱百年,斯重遥.用图像仪测定M-A组元的腐蚀方法的比较研究[J],理化检验-物理分册,1994, Vol.30, No.1:23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700