焦化废水强化处理工艺特性和机理及排水生物毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新的焦化废水排放标准正准备实施,其建议新建企业的COD和氨氮排放限值分别为50mg/L和10mg/L,但目前许多焦化企业的废水处理其COD和氨氮远不能达到现行的100mg/L和15mg/L的排放标准。因此,开展焦化废水强化处理工艺的研究,强化污染物的去除,可为新标准的实施提供技术支持。本研究为适应更严格的焦化废水处理要求,开发一种生物或化学强化处理工艺,以达到新排放标准的排放水质要求。
     采用厌氧/缺氧/生物沸石-膜生物反应器(A_1/A_2/ZB-MBR)处理实际焦化废水,考察了运行参数对处理效果的影响。结果表明,在HRT为73h,回流比为2:1,ZB-MBR内溶解氧控制为4-6mg/L时,系统出水氨氮浓度为5.6±4.1mg/L,可稳定达到新排放标准的要求,但出水COD为145±27mg/L,仍不能达到新标准要求。
     在ZB-MBR内投加苯酚、吡啶、喹啉、萘和咔唑等污染物的高效降解菌可有效去除焦化废水中以上难降解物质,但其出水COD仅由145mg/L下降至130mg/L左右,仍不能达到新标准。对生物强化出水进行物质分析,发现其有机物组成复杂,且每种有机物的含量均较低,其中相对含量较高的正十八烷浓度仅0.38mg/L。采用化学强化进一步降低出水COD,当混凝剂PAC投加量为120mg/L时,出水COD可降至约110mg/L,接近现有企业的排放限值;采用Fenton和电-Fenton氧化处理,出水COD稳定低于50mg/L,可满足新建企业的排放限值。
     采用T-RFLP和高通量测序技术研究生物处理过程的微生物群落结构,结果表明,系统运行前期增加膜过滤促进了氨氧化菌Nitrosospira的生长;而增加沸石后,Nitrosomonas和Nitrobacter的数量明显升高,并成为ZB-MBR内氨氮转化的优势菌群。此外,投加高效菌剂后,生物强化反应器的微生物多样性和主要微生物类群的含量也明显升高。
     对上述不同处理工艺的出水进行综合排水毒性测定,结果表明,A_1/A_2/ZB-MBR工艺、生物强化和混凝出水的急性和慢性毒性较低,而增加Fenton和电-Fenton化学处理后,出水的急性和慢性毒性均明显升高,说明化学强化处理会在一定程度上增大出水的生态风险,而以COD为首要控制目标所选择的处理工艺并非完全利于出水的安全排放。
A new coking wastewater discharge standard will be implemented in China, andthe COD and ammonia emission limits were recommended as50mg/L and10mg/L,respectively. However, the coking wastewater treatment in many plants could not evenreach the current COD and ammonia emission limits of100mg/L and15mg/L.Therefore, it could provide a technical support for the implementation of the newstandard to improve the coking wastewater treatment process and enhance the removalof pollutants. The purpose of this study is to explore an biologically/chemicallyenhanced treatment process for coking wastewater in order to meet the new dischargestandard.
     A combined anaerobic/anoxic/bio-zeolite–membrane bioreactor (A_1/A_2/ZB-MBR)process was used to treat real coking wastewater, and the influence of operatingparameters on the treatment efficiency was investigated. The results showed that whenHRT was73h, and the reflux ratio was2:1, and the dissolved oxygen in ZB-MBR was4-6mg/L, the effluent ammonia of5.6±4.1mg/L could reach the new emission standardstably, but the effluent COD (145±27mg/L) failed to meet the new emission standard.
     The recalcitrant contaminants, such as phenol, pyridine, quinoline, naphthalene,and carbazole, could be effectively removed by adding isolated strains in ZB-MBR.However, the COD removal was limited with the effluent COD of about130mg/L.Moreover, the analysis of bioaugmented effluent showed that the organic matters incoking wastewater were complex, and the concentration of each organic was low. Forexample, the concentration of octadecane was only0.38mg/L, which is proved to berelatively higher than other organics by GC/MS. Chemical treatment was conducted tofurther reduce the effluent COD. PAC coagulation could reduced the CODconcentration to about110mg/L, close to the existing emission limit. The effluent CODof Fenton and electro-Fenton oxidation was below50mg/L, which could meet the newemission limit.
     The microbial community structure was investigated by T-RFLP andhigh-throughput sequencing technology. The results showed that the membrane in thesystem promoted the growth of ammonia oxidation bacteria Nitrosospira, and the number of Nitrosomonas and Nitrobacter increased significantly after the addition ofzeolite in the system. They became the dominant microorganisms for ammoniatransformation in ZB-MBR. In addition, both the microbial diversity and the number ofthe main microbial groups increased after the addition of high efficiency strains.
     The determination of whole effluent toxicity for effluent of different enhancedprocesses showed that the acute and chronic toxicity of A_1/A_2/ZB-MBR andbioaugmentation effluent were low. However, Fenton and electro-Fenton treatmentincreased the acute and chronic toxicities of the effluent significantly, which indicatedthat chemically enhanced treatment may increase the ecological risk of the effluent to acertain extent. It is not always beneficial for water safety to select COD as the primarycontrol index.
引文
[1]李莉.关于《炼焦工业污染物排放标准》修订的若干问题探讨.煤化工,2009,4(4):12-15.
    [2] Van Caneghem J, Block C, Cramm P, et al. Improving eco-efficiency in the steel industry: TheArcelorMittal Gent case. Journal of Cleaner Production,2010,18(8):807-814.
    [3] Zhu X P, Ni J R, Lai P. Advanced treatment of biologically pretreated coking wastewater byelectrochemical oxidation using boron-doped diamond electrodes. Water Research,2009,43(17):4347-4355.
    [4] Huang X M, Chen T H, Pan M. Coking wastewater treatment by manganese ore oxidation andmagnesium ammonium phosphate precipitation. Proceedings of the2nd InternationalConference on Asian-European Environmental Technology and Knowledge Transfer,2008:166-171.
    [5] Lai P, Zhao H Z, Wang C, et al. Advanced treatment of coking wastewater by coagulation andzero-valent iron processes. Journal of Hazardous Materials,2007,147(1-2):232-239.
    [6] Vazquez I, Rodriguez-Iglesias J, Maranon E, et al. Removal of residual phenols from cokewastewater by adsorption. Journal of Hazardous Materials,2007,147(1-2):395-400.
    [7] Vazquez I, Rodriguez J, Maranon E, et al. Simultaneous removal of phenol, ammonium andthiocyanate from coke wastewater by aerobic biodegradation. Journal of Hazardous Materials,2006,137(3):1773-1780.
    [8] Zhao W T, Huang X, Lee D J. Enhanced treatment of coke plant wastewater using ananaerobic-anoxic-oxic membrane bioreactor system. Separation and Purification Technology,2009,66(2):279-286.
    [9] Park D, Lee D S, Kim Y M, et al. Bioaugmentation of cyanide-degrading microorganisms in afull-scale cokes wastewater treatment facility. Bioresource Technology,2008,99(6):2092-2096.
    [10] Maranon E, Vazquez I, Rodriguez J, et al. Treatment of coke wastewater in a sequential batchreactor (SBR) at pilot plant scale. Bioresource Technology,2008,99(10):4192-4198.
    [11] Yigit N O, Uzal N, Koseoglu H, et al. Treatment of a denim producing textile industrywastewater using pilot-scale membrane bioreactor. Desalination,2009,240(1-3):143-150.
    [12] Llop A, Borrull F, Pocurull E. Comparison of the removal of phthalates and other organicpollutants from industrial wastewaters in membrane bioreactor and conventional activatedsludge treatment plants. Water Science and Technology,2009,60(9):2425-2437.
    [13] Zhao W T, Huang X, Lee D J, et al. Use of submerged anaerobic-anoxic-oxic membranebioreactor to treat highly toxic coke wastewater with complete sludge retention. Journal ofMembrane Science,2009,330(1-2):57-64.
    [14] Zhou Y, Xu Z L, Munib S, et al. Sustainable membrane operation design for the treatment of thesynthetic coke wastewater in SMBR. Water Science and Technology,2009,60(8):2115-2124.
    [15] Baker H M, Fraij H. Principles of interaction of ammonium ion with natural Jordanian deposits:Analysis of uptake studies. Desalination,2010,251(1-3):41-46.
    [16] Suh Y J, Park J M, Yang J W. Biodegradation of cyanide compounds bypseudomonas-fluorescens immobilized on zeolite. Enzyme and Microbial Technology,1994,16(6):529-533.
    [17] Jung J Y, Chung Y C, Shin H S, et al. Enhanced ammonia nitrogen removal using consistentbiological regeneration and ammonium exchange of zeolite in modified SBR process. WaterResearch,2004,38(2):347-354.
    [18] Van Limbergen H, Top E M, Verstraete W. Bioaugmentation in activated sludge: current featuresand future perspectives. Applied Microbiology and Biotechnology,1998,50(1):16-23.
    [19] Ahring B K, Christiansen N, Mathrani I, et al. Introduction of a denovo bioremediation ability,aryl reductive dechlorination, into anaerobic granular sludge by inoculation of sludge withdesulfomonile-tiedjei. Applied and Environmental Microbiology,1992,58(11):3677-3682.
    [20] Andersson S, Dalhammar G. Bioaugmentation for enhanced denitrification in a labscaletreatment system. Proceedings of the Second IASTED International Conference on AdvancedTechnology in the Environmental Field,2006:63-67.
    [21] Pandya M T. Enhancement of biological treatment of industrial waste-water usingbioaugmentation technology. Technologies and Management for Sustainable Biosytems,2009:25-34.
    [22] Wang J L, Quan X C, Wu L B, et al. Bioaugmentation as a tool to enhance the removal ofrefractory compound in coke plant wastewater. Process Biochemistry,2002,38(5):777-781.
    [23] Bai Y H, Sun Q H, Zhao C, et al. Simultaneous biodegradation of pyridine and quinoline by twomixed bacterial strains. Applied Microbiology and Biotechnology,2009,82(5):963-973.
    [24] Ang E L, Zhao H M, Obbard J P. Recent advances in the bioremediation of persistent organicpollutants via biomolecular engineering. Enzyme and Microbial Technology,2005,37(5):487-496.
    [25] Cycon M, Wojcik M, Piotrowska-Seget Z. Biodegradation of the organophosphorus insecticidediazinon by Serratia sp and Pseudomonas sp and their use in bioremediation of contaminatedsoil. Chemosphere,2009,76(4):494-501.
    [26] Bouchez T, Patureau D, Dabert P, et al. Successful and unsuccessful bioaugmentationexperiments monitored by fluorescent in situ hybridization. Water Science and Technology,2000,41(12):61-68.
    [27] Bouchez T, Patureau D, Dabert P, et al. Ecological study of a bioaugmentation failure.Environmental Microbiology,2000,2(2):179-190.
    [28] Ovreas L, Torsvik V. Microbial diversity and community structure in two different agriculturalsoil communities. Microbial Ecology,1998,36(3):303-315.
    [29] Spring S, Amann R, Ludwig W, et al. Phylogenetic analysis of uncultured magnetotacticbacteria from the alpha-subclass of proteobacteria. Systematic and Applied Microbiology,1995,17(4):501-508.
    [30] Wagner M, Amann R, Lemmer H, et al. Probing activated-sludge with oligonucleotides specificfor proteobacteria-inadequacy of culture-dependent methods for describing microbialcommunity structure. Applied and Environmental Microbiology,1993,59(5):1520-1525.
    [31] Park S, Ku Y K, Seo M J, et al. The characterization of bacterial community structure in therhizosphere of watermelon (Citrullus vulgaris SCHARD.) using culture-based approaches andterminal fragment length polymorphism (T-RFLP). Applied Soil Ecology,2006,33(1):79-86.
    [32] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in-situ detection ofindividual microbial-cells without cultivation. Microbiological Reviews,1995,59(1):143-169.
    [33] Olsen G J, Lane D J, Giovannoni S J, et al. Microbial ecology and evolution-a ribosomal-rnaapproach. Annual Review of Microbiology,1986,40:337-365.
    [34]余素林.石油污染土壤修复中的微生物群落结构解析[博士学位论文].北京:清华大学环境科学与工程系,2008.
    [35] Liu W T, Marsh T L, Forney L J. Determination of the microbial diversity of anaerobic-aerobicactivated sludge by a novel molecular biological technique. Water Science and Technology,1998,37(4-5):417-422.
    [36] Osborn A M, Moore E R B, Timmis K N. An evaluation of terminal-restriction fragment lengthpolymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics.Environmental Microbiology,2000,2(1):39-50.
    [37] Marsh T L. Terminal restriction fragment length polymorphism (T-RFLP): an emerging methodfor characterizing diversity among homologous populations of amplification products. CurrentOpinion in Microbiology,1999,2(3):323-327.
    [38] Lukow T, Dunfield P F, Liesack W. Use of the T-RFLP technique to assess spatial and temporalchanges in the bacterial community structure within an agricultural soil planted with transgenicand non-transgenic potato plants. Fems Microbiology Ecology,2000,32(3):241-247.
    [39]余素林,吴晓磊,钱易.环境微生物群落分析的T-RFLP技术及其优化措施.应用与环境生物学报,2006,12(6):861-868.
    [40]柏耀辉.吡啶、喹啉微生物降解及生物强化去除的特性与机理[博士学位论文].北京:北京大学环境科学与工程学院,2009.
    [41] Culman S W, Bukowski R, Gauch H G, et al. T-REX: software for the processing and analysis ofT-RFLP data. Bmc Bioinformatics,2009,10.
    [42] Kent A D, Smith D J, Benson B J, et al. Web-based phylogenetic assignment tool for analysis ofterminal restriction fragment length polymorphism profiles of microbial communities. Appliedand Environmental Microbiology,2003,69(11):6768-6776.
    [43]段曌,肖炜,王永霞,等.454测序技术在微生物生态学研究中的应用.微生物学杂志,2011,31(5):76-81.
    [44]华蔚颖.应用454测序技术分析菌群结构的方法学研究[硕士学位论文].上海:上海交通大学生命科学技术学院,2010.
    [45] Schluter A, Krause L, Szczepanowski R, et al. Genetic diversity and composition of a plasmidmetagenome from a wastewater treatment plant. Journal of Biotechnology,2008,136(1-2):65-76.
    [46] Szczepanowski R, Bekel T, Goesmann A, et al. Insight into the plasmid metagenome ofwastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugsanalysed by the454-pyrosequencing technology. Journal of Biotechnology,2008,136(1-2):54-64.
    [47] Sanapareddy N, Hamp T J, Gonzalez L C, et al. Molecular diversity of a north carolinawastewater treatment plant as revealed by pyrosequencing. Applied and EnvironmentalMicrobiology,2009,75(6):1688-1696.
    [48] Zhang T, Ye L, Tong A H Y, et al. Ammonia-oxidizing archaea and ammonia-oxidizing bacteriain six full-scale wastewater treatment bioreactors. Applied Microbiology and Biotechnology,2011,91(4):1215-1225.
    [49] Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricatedhigh-density picolitre reactors. Nature,2005,437(7057):376-380.
    [50] Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: Open-Source,Platform-Independent, Community-Supported Software for Describing and ComparingMicrobial Communities. Applied and Environmental Microbiology,2009,75(23):7537-7541.
    [51] Cole J R, Wang Q, Cardenas E, et al. The Ribosomal Database Project: improved alignments andnew tools for rRNA analysis. Nucleic Acids Research,2009,37:141-145.
    [52] McLellan S L, Huse S M, Mueller-Spitz S R, et al. Diversity and population structure ofsewage-derived microorganisms in wastewater treatment plant influent. EnvironmentalMicrobiology,2010,12(2):378-392.
    [53] Bai Y H, Sun Q H, Sun R H, et al. Bioaugmentation and adsorption treatment of cokingwastewater containing pyridine and quinoline using zeolite-biological aerated filters.Environmental Science and Technology,2011,45(5):1940-1948.
    [54] Wells G F, Park H D, Eggleston B, et al. Fine-scale bacterial community dynamics and thetaxa-time relationship within a full-scale activated sludge bioreactor. Water Research,2011,45(17):5476-5488.
    [55] Tokutomi T, Shibayama C, Soda S, et al. A novel control method for nitritation: The dominationof ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidizedbed reactor. Water Research,2010,44(14):4195-4203.
    [56] Lipponen M T T, Martikainen P J, Vasara R E, et al. Occurrence of nitrifiers and diversity ofammonia-oxidizing bacteria in developing drinking water biofilms. Water Research,2004,38(20):4424-4434.
    [57] Wang X H, Wen X H, Criddle C, et al. Community analysis of ammonia-oxidizing bacteria inactivated sludge of eight wastewater treatment systems. Journal of EnvironmentalSciences-China,2010,22(4):627-634.
    [58] Racz L, Datta T, Goel R. Effect of organic carbon on ammonia oxidizing bacteria in a mixedculture. Bioresource Technology,2010,101(16):6454-6460.
    [59] Brock T D, Brock M L. Autoradiography as a tool in microbial ecology. Nature,1966,209(5024):734-740.
    [60] Wagner M, Nielsen P H, Loy A, et al. Linking microbial community structure with function:fluorescence in situ hybridization-microautoradiography and isotope arrays. Current Opinion inBiotechnology,2006,17(1):83-91.
    [61] Dumont M G, Murrell J C. Stable isotope probing-linking microbial identity to function. NatureReviews Microbiology,2005,3(6):499-504.
    [62] Kreuzer-Martin H W. Stable isotope probing: Linking functional activity to specific members ofmicrobial communities. Soil Science Society of America Journal,2007,71(2):611-619.
    [63] Narihiro T, Terada T, Kikuchi K, et al. Comparative analysis of bacterial and archaealcommunities in methanogenic sludge granules from upflow anaerobic sludge blanket reactorstreating various food-processing, high-strength organic wastewaters. Microbes andEnvironments,2009,24(2):88-96.
    [64] Kovacik W P, Scholten J C M, Culley D, et al. Microbial dynamics in upflow anaerobic sludgeblanket (UASB) bioreactor granules in response to short-term changes in substrate feed.Microbiology-Sgm,2010,156:2418-2427.
    [65] USEPA. Technical support document for water quality-based toxics control. Washington DC:Office of Water, USEPA,1991.
    [66]马梅,王毅,王子健.城市污水生物处理过程中有毒有机污染物浓度及毒性变化的规律.工业水处理,1999,19(6):9-12.
    [67]黄满红,李咏梅,顾国维.生物测试方法在城市污水毒性评价中的应用.同济大学学报(自然科学版),2005,33(11):1489-1493.
    [68]胡洪营,吴乾元,杨扬,等.面向毒性控制的工业废水水质安全评价与管理方法.环境工程技术学报,2011,1(1):46-51.
    [69] USEPA. Methods for aquatic toxicity identification evaluations: Phase I toxicitycharacterizatidn procedures.2nd ed. Duluth: Office of Research and Development, USEPA,1991.
    [70] USEPA. Methods for aquatic toxicity identification evaluations: Phase II toxicity identificationprocedures for samples exhibiting acute and chronic toxicity. Duluth: Office of Research andDevelopment, USEPA,1993.
    [71] USEPA. Methods for aquatic toxicity identification evaluations: Phase III toxicity confirmationprocedures for samples exhibiting acute and chronic toxicity. Duluth: Office of Research andDevelopment, USEPA,1993.
    [72] Libralato G, Volpi Ghirardini A, Avezzu F. How toxic is toxic? A proposal for wastewatertoxicity hazard assessment. Ecotoxicology and Environmental Safety,2010,73(7):1602-1611.
    [73] de Vlaming V, Connor V, DiGiorgio C, et al. Application of whole effluent toxicity testprocedures to ambient water quality assessment. Environmental Toxicology and Chemistry,2000,19(1):42-62.
    [74] USEPA. Short-time methods for estimating the chronic toxicity of effluent and receiving waterto freshwater organisms. Washington DC: Environmental Protection Agency Office of Water,USEPA,2002.
    [75] Chapman P M. Whole effluent toxicity testing-Usefulness, level of protection, and riskassessment. Environmental Toxicology and Chemistry,2000,19(1):3-13.
    [76] Perez E, Rodriguez-Malaver A. Biotoxicity of black liquor and residual distillery wastewatertreated with Fenton's reagent. Free Radical Biology and Medicine,2003,35:S178-S178.
    [77]国家环境保护总局.水和废水监测分析方法.第四版.北京:中国环境科学出版社,2002.
    [78]赵风云,孙根行.工业废水生物毒性的研究进展.工业水处理,2010,30(4):22-25.
    [79]王丽莎,胡洪营,魏杰,等.城市污水再生处理工艺中发光细菌毒性变化的初步研究.安全与环境学报,2006(1):72-74.
    [80]潘力军,高世荣,孙凤英,等.应用大型水蚤和斑马鱼对几种工业废水和生活污水的毒性监测.环境科学与管理,2007(2):180-183.
    [81] Liu R, Kameya T, Kobayashi T, et al. Evaluating the fish safety level of river water andwastewater with a larval medaka assay. Chemosphere,2007,66(3):452-459.
    [82] Zha J M, Wang Z J. Acute and early life stage toxicity of industrial effluent on Japanese medaka(Oryzias latipes). Science of the Total Environment,2006,357(1-3):112-119.
    [83] Chen C M, Yu S C, Liu M C. Use of Japanese medaka (Oryzias latipes) and tilapia (Oreochromismossambicus) in toxicity tests on different industrial effluents in Taiwan. Archives ofEnvironmental Contamination and Toxicology,2001,40(3):363-370.
    [84]查金苗,王子健.利用日本青鳉早期发育阶段暴露评估排水的急、慢性毒性和内分泌干扰效应.环境科学学报,2005,25(12):1682-1686.
    [85] Zha J M, Wang Z J. Assessing technological feasibility for wastewater reclamation based onearly life stage toxicity of Japanese medaka (Oryzias latipes). Agriculture Ecosystems andEnvironment,2005,107(2-3):187-198.
    [86]文一波.降低焦化废水COD、氨、氮生物处理新技术[硕士学位论文].北京:清华大学环境科学与工程系,1989.
    [87]朱洪涛,文湘华,黄霞.臭氧对膜法水处理中膜污染的影响.环境科学,2009,30(1):302-312.
    [88]刘昕,陈福泰,黄霞,等.在线超声对膜生物反应器膜污染的控制.中国环境科学,2008(6):517-521.
    [89] Jorgensen T C, Weatherley L R. Ammonia removal from wastewater by ion exchange in thepresence of organic contaminants. Water Research,2003,37(8):1723-1728.
    [90] Pak D, Chang W, Hong S. Use of natural zeolite to enhance nitrification in biofilter.Environmental Technology,2002,23(7):791-798.
    [91] Gorra R, Coci M, Ambrosoli R, et al. Effects of substratum on the diversity and stability ofammonia-oxidizing communities in a constructed wetland used for wastewater treatment.Journal of Applied Microbiology,2007,103(5):1442-1452.
    [92] Fernandez I, Vazquez-Padin J R, Mosquera-Corral A, et al. Biofilm and granular systems toimprove Anammox biomass retention. Biochemical Engineering Journal,2008,42(3):308-313.
    [93] Xiao-Ming L, Liang G, Qi Y, et al. Removal of carbon and nutrients from low strength domesticwastewater by expanded granular sludge bed-zeolite bed filtration (EGSB-ZBF) integratedtreatment concept. Process Biochemistry,2007,42(8):1173-1179.
    [94] Vazquez I, Rodriguez J, Maranon E, et al. Study of the aerobic biodegradation of cokewastewater in a two and three-step activated sludge process. Journal of Hazardous Materials,2006,137(3):1681-1688.
    [95]时孝磊,丁丽丽,任洪强,等.厌氧-缺氧-预曝气-移动床生物膜系统对焦化废水特征有机污染物降解研究.环境科学学报,2010,30(6):1149-1157.
    [96] Li Y M, Gu G W, Zhao I, et al. Treatment of coke-plant wastewater by biofilm systems forremoval of organic compounds and nitrogen. Chemosphere,2003,52(6):997-1005.
    [97]张自杰,张忠详,钱易.水污染防治卷.北京:高等教育出版社;1996.
    [98] Kim Y M, Lee D S, Park C, et al. Effects of free cyanide on microbial communities andbiological carbon and nitrogen removal performance in the industrial activated sludge process.Water Research,2011,45(3):1267-1279.
    [99]张伟,韦朝海,彭平安,等. A/O/O生物流化床处理焦化废水中酚类组成及降解特性分析.环境工程学报,2010,4(2):253-258.
    [100] Kim Y M, Park D, Lee D S, et al. Inhibitory effects of toxic compounds on nitrification processfor cokes wastewater treatment. Journal of Hazardous Materials,2008,152(3):915-921.
    [101]郑习健.煤炭焦化废水中的重金属及其络合作用.国外环境科学技术,1992(1):60-63.
    [102]任源,韦朝海,吴超飞,等.焦化废水水质组成及其环境学与生物学特性分析.环境科学学报,2007,27(7):1094-1100.
    [103]陈素华,孙铁珩,周启星,等.微生物与重金属间的相互作用及其应用研究.应用生态学报,2002(2):239-242.
    [104] Westerman P W, Bicudo J R, Kantardjieff A. Upflow biological aerated filters for the treatmentof flushed swine manure. Bioresource Technology,2000,74(3):181-190.
    [105] van der Wielen P, Voost S, van der Kooij D. Ammonia-oxidizing bacteria and archaea ingroundwater treatment and drinking water distribution systems. Applied and EnvironmentalMicrobiology,2009,75(14):4687-4695.
    [106]温东辉.天然沸石吸附-生物再生技术及其在滇池流域暴雨径流污染控制中的试验与机理研究[博士学位论文].北京:北京大学环境科学与工程学院,2002.
    [107] Bai Y H, Sun Q H, Zhao C, et al. Microbial degradation and metabolic pathway of pyridine by aParacoccus sp strain BW001. Biodegradation,2008,19(6):915-926.
    [108] Bai Y H, Sun Q H, Zhao C, et al. Quinoline biodegradation and its nitrogen transformationpathway by a Pseudomonas sp strain. Biodegradation,2010,21(3):335-344.
    [109] Zhu X, Tian J, Chen L. Phenol degradation by isolated bacterial strains: kinetics study andapplication in coking wastewater treatment. Journal of Chemical Technology and Biotechnology,2012,87:123-129.
    [110] Jiang H L, Tay J H, Maszenan A M, et al. Bacterial diversity and function of aerobic granulesengineered in a sequencing batch reactor for phenol degradation. Applied and EnvironmentalMicrobiology,2004,70(11):6767-6775.
    [111] Essam T, Amin M A, El Tayeb O, et al. Kinetics and metabolic versatility of highly tolerantphenol degrading Alcaligenes strain TW1. Journal of Hazardous Materials,2010,173(1-3):783-788.
    [112] Ania C O, Cabal B, Arenillas A, et al. Removal of naphthalene from aqueous solution onchemically modified activated carbons. Water Research,2007,41(2):333-340.
    [113]雷萍,聂麦茜,张志杰,等.一株多环芳烃降解菌在焦化废水降解中的应用研究.西安交通大学学报,2001(10):1055-1058.
    [114]沈萍,范修容,李广武.微生物学实验.北京:高等教育出版社,1999.
    [115] Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. Journal of MolecularBiology,1990,215(3):403-410.
    [116] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular evolutionary genetics analysis (MEGA)software version4.0. Molecular Biology and Evolution,2007,24(8):1596-1599.
    [117] Godejohann M, Berset J D, Muff D. Non-targeted analysis of wastewater treatment planteffluents by high performance liquid chromatography-time slice-solid phase extraction-nuclearmagnetic resonance/time-of-flight-mass spectrometry. Journal of Chromatography A,2011,1218(51):9202-9209.
    [118] Padilla-Sanchez J A, Plaza-Bolanos P, Romero-Gonzalez R, et al. Simultaneous analysis ofchlorophenols, alkylphenols, nitrophenols and cresols in wastewater effluents, using solid phaseextraction and further determination by gas chromatography-tandem mass spectrometry. Talanta,2011,85(5):2397-2404.
    [119] Li Y, Li J, Wang C, et al. Growth kinetics and phenol biodegradation of psychrotrophicPseudomonas putida LY1. Bioresource Technology,2010,101(17):6740-6744.
    [120] Banerjee A, Ghoshal A K. Isolation and characterization of hyper phenol tolerant Bacillus spfrom oil refinery and exploration sites. Journal of Hazardous Materials,2010,176(1-3):85-91.
    [121] Dong X J, Hong Q, He L J, et al. Characterization of phenol-degrading bacterial strains isolatedfrom natural soil. International Biodeterioration and Biodegradation,2008,62(3):257-262.
    [122] Kotresha D, Vidyasagar G M. Isolation and characterisation of phenol-degrading Pseudomonasaeruginosa MTCC4996. World Journal of Microbiology and Biotechnology,2008,24(4):541-547.
    [123] Kwon K H, Yeom S H. Optimal microbial adaptation routes for the rapid degradation of highconcentration of phenol. Bioprocess and Biosystems Engineering,2009,32(4):435-442.
    [124] Yang C F, Lee C M. Enrichment isolation, and characterization of phenol-degradingPseudomonas resinovorans strain P-1and Brevibacillus sp strain P-6. InternationalBiodeterioration and Biodegradation,2007,59(3):206-210.
    [125] Zhao W T, Huang X, Lee D J. Enhanced treatment of coke plant wastewater using ananaerobic-anoxic-oxic membrane bioreactor system. Separation and Purification Technology,2009,66(2):279-286.
    [126] Di Gennaro P, Terreni P, Masi G, et al. Identification and characterization of genes involved innaphthalene degradation in Rhodococcus opacus R7. Applied Microbiology and Biotechnology,2010,87(1):297-308.
    [127] Pathak H, Kantharia D, Malpani A, et al. Naphthalene degradation by Pseudomonas sp HOB1:In vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms.Journal of Hazardous Materials,2009,166(2-3):1466-1473.
    [128]温洪宇,廖银章,李旭东.菌株N-1对萘的降解特性研究.应用与环境生物学报,2006,12(01):96-98.
    [129]贾燕,尹华,叶锦韶,等.假单胞菌N7的萘降解特性及其降解途径研究.环境科学,2008,29(03):756-762.
    [130] Kilic N K. Enhancement of phenol biodegradation by Ochrobactrum sp isolated from industrialwastewaters. International Biodeterioration and Biodegradation,2009,63(6):778-781.
    [131] Shumkova E S, Solyanikova I P, Plotnikova E G, et al. Phenol degradation by Rhodococcusopacus strain1G. Applied Biochemistry and Microbiology,2009,45(1):43-49.
    [132] Lu Y, Yan L H, Wang Y, et al. Biodegradation of phenolic compounds from coking wastewaterby immobilized white rot fungus Phanerochaete chrysosporium. Journal of Hazardous Materials,2009,165(1-3):1091-1097.
    [133] Bai Y H, Sun Q H, Xing R, et al. Removal of pyridine and quinoline by bio-zeolite composed ofmixed degrading bacteria and modified zeolite. Journal of Hazardous Materials,2010,181(1-3):916-922.
    [134] Zhan Y H, Yu H Y, Yan Y L, et al. Benzoate catabolite repression of the phenol degradation inacinetobacter calcoaceticus PHEA-2. Current Microbiology,2009,59(4):368-373.
    [135] Alexieva Z, Yemendzhiev H, Zlateva P. Cresols utilization by Trametes versicolor and substrateinteractions in the mixture with phenol. Biodegradation,2010,21(4):625-635.
    [136] Chakraborty S, Bhattacharya T, Patel T N, et al. Biodegradation of phenol by nativemicroorganisms isolated from coke processing wastewater. Journal of Environmental Biology,2010,31(3):293-296.
    [137]熊瑞林,陈吕军,刘江江.共基质条件下脱氮副球菌W12对吡啶的降解.清华大学学报(自然科学版)网络预览,2009(6):826-829.
    [138]熊瑞林,陈吕军,刘江江.脱氮副球菌W12降解吡啶的影响因素及其赋存质粒特性.环境科学学报,2009(2):252-258.
    [139]熊瑞林,陈吕军,刘江江.共基质条件下脱氮副球菌W12对吡啶的降解.清华大学学报(自然科学版),2009(6):842-845.
    [140]熊瑞林.微生物对吡啶、喹啉的降解及生物强化作用机理研究[硕士学位论文].北京:清华大学环境科学与工程系,2009.
    [141]柏耀辉,赵翠,肖亚娜,等.降解喹啉的假单胞菌BW003菌株的分离、鉴定和降解特性.环境科学,2008,29(12):3546-3553.
    [142] Zhao C, Zhang Y, Li X B, et al. Biodegradation of carbazole by the seven Pseudomonas spstrains and their denitrification potential. Journal of Hazardous Materials,2011,190(1-3):253-259.
    [143]赵文涛.厌氧/缺氧/好氧膜-生物反应器处理焦化废水的研究[博士学位论文].北京:清华大学环境科学与工程系,2010.
    [144] Lai P, Zhao H Z, Zeng M, et al. Study on treatment of coking wastewater by biofilm reactorscombined with zero-valent iron process. Journal of Hazardous Materials,2009,162(2-3):1423-1429.
    [145] Myers R H, Montgomery D C, Anderson-cook C M. Response surface methodology: processand product optimization using designed experiments, third edition. New York: John Wiley andSons;2009.
    [146] Bradley N. The response surface methodology[South Bend: Indiana University of SouthBendDepartment of Mathematical Sciences,2007.
    [147] Hu L F, Feng H J, Long Y Y, et al. Effect of liquid-to-solid ratio on semi-solid Fenton process inhazardous solid waste detoxication. Waste Management,2011,31(1):124-130.
    [148] Grcic I, Vujevic D, Sepcic J, et al. Minimization of organic content in simulated industrialwastewater by Fenton type processes: A case study. Journal of Hazardous Materials,2009,170(2-3):954-961.
    [149] Wu Y Y, Zhou S Q, Qin F H, et al. Modeling physical and oxidative removal properties ofFenton process for treatment of landfill leachate using response surface methodology (RSM).Journal of Hazardous Materials,2010,180(1-3):456-465.
    [150]吴彦瑜,周少奇,覃芳慧,等.响应面法优化Fenton处理难降解反渗透垃圾浓缩渗滤液.环境工程学报,2010,4(11):2494-2498.
    [151] Kasiri M B, Aleboyeh H, Aleboyeh A. Modeling and optimization of heterogeneousPhoto-Fenton process with response surface methodology and artificial neural networks.Environmental Science and Technology,2008,42(21):7970-7975.
    [152] Zhou M H, Yu Q H, Lei L C, et al. Electro-Fenton method for the removal of methyl red in anefficient electrochemical system. Separation and Purification Technology,2007,57(2):380-387.
    [153] Virkutyte J, Rokhina E, Jegatheesan V. Optimisation of Electro-Fenton denitrification of amodel wastewater using a response surface methodology. Bioresource Technology,2010,101(5):1440-1446.
    [154] Cruz-Gonzalez K, Torres-Lopez O, Garcia-Leon A, et al. Determination of optimum operatingparameters for Acid Yellow36decolorization by electro-Fenton process using BDD cathode.Chemical Engineering Journal,2010,160(1):199-206.
    [155] Wang C T, Chou W L, Chung M H, et al. COD removal from real dyeing wastewater byelectro-Fenton technology using an activated carbon fiber cathode. Desalination,2010,253(1-3):129-134.
    [156] Li H S, Zhou S Q, Sun Y B, et al. Application of response surface methodology to the advancedtreatment of biologically stabilized landfill leachate using Fenton's reagent. Waste Management,2010,30(11):2122-2129.
    [157] El-Desoky H S, Ghoneim M M, Zidan N M. Decolorization and degradation of Ponceau Sazo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination,2010,264(1-2):143-150.
    [158] Pignatello J J, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminantdestruction based on the Fenton reaction and related chemistry. Critical Reviews inEnvironmental Science and Technology,2006,36(1):1-84.
    [159] Pratap K, Lemley A T. Fenton electrochemical treatment of aqueous atrazine and metolachlor.Journal of Agricultural and Food Chemistry,1998,46(8):3285-3291.
    [160] You J, Das A, Dolan E M, et al. Ammonia-oxidizing archaea involved in nitrogen removal.Water Research,2009,43(7):1801-1809.
    [161] Sanz J L, Kochling T. Molecular biology techniques used in wastewater treatment: An overview.Process Biochemistry,2007,42(2):119-133.
    [162] Nakanishi Y, Murashima K, Ohara H, et al. Increase in terminal restriction fragments ofBacteroidetes-derived16S rRNA genes after administration of short-chainfructooligosaccharides. Applied and Environmental Microbiology,2006,72(9):6271-6276.
    [163] Blackwood C B, Marsh T, Kim S H, et al. Terminal restriction fragment length polymorphismdata analysis for quantitative comparison of microbial communities. Applied and EnvironmentalMicrobiology,2003,69(2):926-932.
    [164] Devereux R, Willis S G. Amplification of ribosomal RNA sequences. In: Molecular microbialecology manual. Netherland: Kluwer Academic Publishers;2004:509-522.
    [165] Binladen J, Gilbert M T P, Bollback J P, et al. The use of coded PCR primers enableshigh-throughput sequencing of multiple homolog amplification products by454parallelsequencing. Plos One,2007,2(2).
    [166] Lee T K, Doan T V, Yoo K, et al. Discovery of commonly existing anode biofilm microbes intwo different wastewater treatment MFCs using FLX Titanium pyrosequencing. AppliedMicrobiology and Biotechnology,2010,87(6):2335-2343.
    [167] Lueders T, Friedrich M W. Evaluation of PCR amplification bias by terminal restrictionfragment length polymorphism analysis of small-subunit rRNA and mcrA genes by usingdefined template mixtures of methanogenic pure cultures and soil DNA extracts. Applied andEnvironmental Microbiology,2003,69(1):320-326.
    [168] Liu W T, Marsh T L, Cheng H, et al. Characterization of microbial diversity by determiningterminal restriction fragment length polymorphisms of genes encoding16S rRNA. Applied andEnvironmental Microbiology,1997,63(11):4516-4522.
    [169] Abdo Z, Schuette U M E, Bent S J, et al. Statistical methods for characterizing diversity ofmicrobial communities by analysis of terminal restriction fragment length polymorphisms of16S rRNA genes. Environmental Microbiology,2006,8(5):929-938.
    [170] Smith C J, Danilowicz B S, Clear A K, et al. T-Align, a web-based tool for comparison ofmultiple terminal restriction fragment length polymorphism profiles. Fems MicrobiologyEcology,2005,54(3):375-380.
    [171] Marsh T L. Culture-independent microbial community analysis with terminal restrictionfragment length polymorphism. Environmental Microbiology,2005,397:308-329.
    [172] Kaplan C W, Kitts C L. Variation between observed and true Terminal Restriction Fragmentlength is dependent on true TRF length and purine content. Journal of Microbiological Methods,2003,54(1):121-125.
    [173] Huson D H, Auch A F, Qi J, et al. MEGAN analysis of metagenomic data. Genome Research,2007,17(3):377-386.
    [174] Figuerola E L M, Erijman L. Bacterial taxa abundance pattern in an industrial wastewatertreatment system determined by the full rRNA cycle approach. Environmental Microbiology,2007,9(7):1780-1789.
    [175] Zhang X J, Yue S Q, Zhong H H, et al. A diverse bacterial community in an anoxicquinoline-degrading bioreactor determined by using pyrosequencing and clone library analysis.Applied Microbiology and Biotechnology,2011,91(2):425-434.
    [176] Stoeck T, Behnke A, Christen R, et al. Massively parallel tag sequencing reveals the complexityof anaerobic marine protistan communities. Bmc Biology,2009,7.
    [177] Wells G F, Park H D, Yeung C H, et al. Ammonia-oxidizing communities in a highly aeratedfull-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundanceof Crenarchaea. Environmental Microbiology,2009,11(9):2310-2328.
    [178] Siripong S, Rittmann B E. Diversity study of nitrifying bacteria in full-scale municipalwastewater treatment plants. Water Research,2007,41(5):1110-1120.
    [179] Jin T, Zhang T, Yan Q M. Characterization and quantification of ammonia-oxidizing archaea(AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. AppliedMicrobiology and Biotechnology,2010,87(3):1167-1176.
    [180] Kim Y M, Cho H U, Lee D S, et al. Influence of operational parameters on nitrogen removalefficiency and microbial communities in a full-scale activated sludge process. Water Research,2011,45(17):5785-5795.
    [181] Schmidt I, Sliekers O, Schmid M, et al. New concepts of microbial treatment processes for thenitrogen removal in wastewater. Fems Microbiology Reviews,2003,27(4):481-492.
    [182] Figuerola E L M, Erijman L. Diversity of nitrifying bacteria in a full-scale petroleum refinerywastewater treatment plant experiencing unstable nitrification. Journal of Hazardous Materials,2010,181(1-3):281-288.
    [183] Blackburne R, Vadivelu V M, Yuan Z G, et al. Kinetic characterisation of an enriched Nitrospiraculture with comparison to Nitrobacter. Water Research,2007,41(14):3033-3042.
    [184] Parameswaran P, Zhang H S, Torres C I, et al. Microbial community structure in a biofilm anodefed With a fermentable substrate: The significance of hydrogen scavengers. Biotechnology andBioengineering,2010,105(1):69-78.
    [185] Zhang L L, Leng S Q, Zhu R Y, et al. Degradation of chlorobenzene by strain Ralstonia pickettiiL2isolated from a biotrickling filter treating a chlorobenzene-contaminated gas stream. AppliedMicrobiology and Biotechnology,2011,91(2):407-415.
    [186] Adebusoye S A, Ilori M O, Picardal F W, et al. Cometabolic degradation of polychlorinatedbiphenyls (PCBs) by axenic cultures of Ralstonia sp strain SA-5and Pseudomonas sp strainSA-6obtained from Nigerian contaminated soils. World Journal of Microbiology andBiotechnology,2008,24(1):61-68.
    [187] Roldan M D, Blasco R, Caballero F J, et al. Degradation of p-nitrophenol by the phototrophicbacterium Rhodobacter capsulatus. Archives of Microbiology,1998,169(1):36-42.
    [188] Arellano-Garcia L, Revah S, Ramirez M, et al. Dimethyl sulphide degradation usingimmobilized Thiobacillus thioparus in a biotrickling filter. Environmental Technology,2009,30(12):1273-1279.
    [189] Bai Y H, Sun Q H, Xing R, et al. Analysis of denitrifier community in a bioaugmentedsequencing batch reactor for the treatment of coking wastewater containing pyridine andquinoline. Applied Microbiology and Biotechnology,2011,90(4):1485-1492.
    [190] Kim Y M, Cho H U, Lee D S, et al. Response of nitrifying bacterial communities to the increasedthiocyanate concentration in pre-denitrification process. Bioresource Technology,2011,102(2):913-922.
    [191] Park S, Yu J, Byun I, et al. Microbial community structure and dynamics in a mixotrophicnitrogen removal process using recycled spent caustic under different loading conditions.Bioresource Technology,2011,102(15):7265-7271.
    [192] Bai Y H, Sun Q H, Zhao C, et al. Aerobic degradation of pyridine by a new bacterial strain,Shinella zoogloeoides BC026. Journal of Industrial Microbiology and Biotechnology,2009,36(11):1391-1400.
    [193] Boon N, Top E M, Verstraete W, et al. Bioaugmentation as a tool to protect the structure andfunction of an activated-sludge microbial community against a3-chloroaniline shock load.Applied and Environmental Microbiology,2003,69(3):1511-1520.
    [194] Manefield M, Griffiths R I, Leigh M B, et al. Functional and compositional comparison of twoactivated sludge communities remediating coking effluent. Environmental Microbiology,2005,7(5):715-722.
    [195] Kraigher B, Kosjek T, Heath E, et al. Influence of pharmaceutical residues on the structure ofactivated sludge bacterial communities in wastewater treatment bioreactors. Water Research,2008,42(17):4578-4588.
    [196] Shokrollahzadeh S, Azizmohseni F, Golmohammad F, et al. Biodegradation potential andbacterial diversity of a petrochemical wastewater treatment plant in Iran. BioresourceTechnology,2008,99(14):6127-6133.
    [197] Aslam Z, Im W T, Kim M K, et al. Flavobacterium granuli sp nov., isolated from granules usedin a wastewater treatment plant. International Journal of Systematic and EvolutionaryMicrobiology,2005,55:747-751.
    [198] Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems.Current Opinion in Biotechnology,2002,13(3):218-227.
    [199] USEPA. Fish acute toxicity mitigated by humic acid. Washington DC: Office of Water, USEPA,1996.
    [200] Chen C M, Shih M L, Lee S Z, et al. Increased toxicity of textile effluents by a chlorinationprocess using sodium hypochlorite. Water Science and Technology,2001,43(2):1-8.
    [201] Cao N, Yang M, Zhang Y, et al. Evaluation of wastewater reclamation technologies based on invitro and in vivo bioassays. Science of the Total Environment,2009,407(5):1588-1597.
    [202]王丽莎.氯和二氧化氯消毒对污水生物毒性的影响研究[博士学位论文].北京:清华大学环境科学与工程系,2007.
    [203] Villalobos S A, Papoulias D M, Meadows J, et al. Toxic responses of medaka, d-rR strain, topolychlorinated naphthalene mixtures after embryonic exposure by in ovo nanoinjection: Apartial life-cycle assessment. Environmental Toxicology and Chemistry,2000,19(2):432-440.
    [204]陈中智,朱琳,姚琨,等. Ca2+与Pb2+相互作用对斑马鱼胚胎毒性效应的影响.环境科学,2009(4):1205-1209.
    [205] Kashiwada S, Ishikawa H, Miyamoto N, et al. Fish test for endocrine-disruption and estimationof water quality of Japanese rivers. Water Research,2002,36(8):2161-2166.
    [206] Farwell A, Nero V, Croft M, et al. Modified Japanese medaka embryo-larval bioassay for rapiddetermination of developmental abnormalities. Archives of Environmental Contamination andToxicology,2006,51(4):600-607.
    [207] Yang Z, Yang J X. Effect of photoperiod on the embryonic development of obscure puffer(Takifugu obscurus). Journal of Freshwater Ecology,2004,19(1):53-58.
    [208] Ishibashi H, Matsumura N, Hirano M, et al. Effects of triclosan on the early life stages andreproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. AquaticToxicology,2004,67(2):167-179.
    [209] Orrego R, Guchardi J, Beyger L, et al. Comparative embryotoxicity of pulp mill extracts inrainbow trout (Oncorhynchus mykiss), American flagfish (Jordanella floridae) and Japanesemedaka (Oryzias latipes). Aquatic Toxicology,2011,104(3-4):299-307.
    [210]蔡颖,赫文秀.焦炉煤气脱硫脱氰方法研究.内蒙古石油化工,2006(10):1-2.
    [211]江大好,宿亮虎,陆殿乔,等.焦化粗苯的组成及其加氢精制工艺技术的开发.现代化工,2009(5):72-75+77.
    [212] European IPPC Bureau. Integrated Pollution Prevention and Control (IPPC): Best AvailableTechniques Reference Document on the Production of Iron and Steel. Seville: European IPPCBureau,2000.
    [213] Environment Agency. Integrated Pollution Prevention and Control (IPPC): Guidance for theProduction of Coke, Iron and Steel. Bristol: Environment Agency,2004.
    [214] Environment Canada. Environmental Code of Practice for Integrated Steel Mills.[2012-3-2].http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=30360F3C-1&offset=8&toc=show.
    [215] Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Germany.Promulgation of the New Version of the Ordinance on Requirements for the Discharge of WasteWater into Waters.[2012-3-2]. http://www.bmu.de/files/pdfs/allgemein/application/pdf/wastewater_ordinance.pdf.
    [216]环境保护部. GB21903-2008.发酵类制药工业水污染物排放标准.北京:中国标准出版社,2008.
    [217]环境保护部. GB21904-2008.化学合成类制药工业水污染物排放标准.北京:中国标准出版社,2008.
    [218]环境保护部. GB21906-2008.中药类制药工业水污染物排放标准.北京:中国标准出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700