硅基锑化铟薄膜的制备与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
InSb基化合物半导体材料具有较高的室温电子迁移率,在电场作用下具有优异的电子输运性能。InSb还具有较小的禁带宽度,是制作3~5μm红外探测器和成像系统的重要材料。另外,InSb及其合金的光发射与一些主要气体如CO、CO2等的基本吸收线相匹配,因而也可使用InSb基发光器件和探测器件制成气体传感系统。近年来,通过在硅基上生长高性能的InSb结构,充分利用硅基材料与InSb材料的优点,实现了功能器件和电路的融合,颇具工程价值而成为纳米尺度器件发展的重要方向。本文利用磁控溅射技术在Si衬底上生长了InSb薄膜和InSb/SiO2/Si XOI结构,综合分析了InSb薄膜和InSb/SiO2/Si异质结的晶体结构,并结合光学和电学性能表征,对材料的结构与性能之间的关系进行了深入研究。论文的主要研究内容包括:
     首先使用真空电弧炉制备磁控溅射用的InSb靶材,采用调节靶材成分的方法来实现溅射InSb薄膜的正常化学计量比。研究了不同溅射工艺对InSb薄膜结构和性能的影响。随着溅射功率的增大,InSb薄膜由非晶态向晶态转变,晶粒尺寸增大,结晶性变好;当溅射压强逐渐增大时,晶粒尺寸逐渐变小,结晶性变差。在溅射压强为0.6Pa的InSb薄膜中出现了富In的现象。
     采用快速热退火和常规热退火两种方式对沉积态InSb薄膜进行了退火,并研究了不同退火工艺对薄膜结构和性能的影响。采用快速热退火工艺时,随着退火温度的增加薄膜结晶性变好,晶粒尺寸随之增大,(111)面的择优取向性随之增强。InSb薄膜的透过率随温度的升高而降低,当退火温度从300℃上升到500℃时,InSb的光学带隙从0.22eV红移至0.19eV。不同温度退火的薄膜霍尔测量结果表明,77K和300K下薄膜均为n型,薄膜的迁移率和载流子浓度随着退火温度的上升均有不同程度的增加。在400℃温度下,随着快速热退火时间的增加薄膜晶粒尺寸增大,光学带隙随退火时间的增加逐渐减小。77K和300K下薄膜迁移率均随退火时间的增加而增加,300K下薄膜的载流子浓度随退火时间的增加先增加后减小。与快速热退火工艺相比,采用常规热退火工艺进行退火时,随着退火温度的增加,在相同温度下常规热退火的晶粒尺寸均大于快速热退火的晶粒尺寸。当退火温度从200℃上升到400℃时,薄膜的光学带隙从0.22eV红移至0.2eV。在500℃常规热退火的晶体质量较差,薄膜的光学带隙增大到0.35eV。对比两种不同的退火方式可知,InSb薄膜经常规热退火后的迁移率除200℃退火的样品外,其余皆低于经快速热退火处理后的样品。在400℃温度下,随着常规热退火时间的增加InSb薄膜晶粒尺寸增大,薄膜的光学带隙从0.24eV红移移至0.2eV附近。薄膜的迁移率随退火时间的延长先增加后减小,载流子浓度随退火时间的延长而逐渐增大。分析了快速热退火和常规热退火对晶化过程的影响并计算了快速热退火和常规热退火的晶化激活能,分别为131.5kJ/mol和66.9kJ/mol。
     利用磁控溅射生长了InSb/SiO2/Si XOI结构,通过透射电镜分析可知,InSb层的厚度为35nm,退火后的薄膜为多晶结构,晶粒尺寸约为13nm。采用高分辨透射技术在退火后的InSb薄膜中观察到了[111]、[220]、[311]三种晶体取向的晶粒,与XRD谱图中衍射峰分析的结果相一致。通过高分辨透射电镜对InSb/SiO2/Si XOI的界面进行分析后可知SiO2层的厚度为4nm。超薄InSb薄膜退火后受纳米尺度晶粒的量子限域效应的影响,光学带隙与InSb晶体的能带带隙值(0.18eV)相比蓝移了0.084eV,带隙值为0.264eV。从I-V特性测量可知,InSb/SiO2/Si XOI结构在室温下表现出明显的二极管整流特性,室温下的开启电压为0.35V,77K下的开启电压为0.55V。分析300K时InSb/SiO2/Si XOI的电子输运机制可知,当电压小于0.35V时为扩散和热电子发射复合机制;电压在0.35-3V之间时为热电子发射机制和空间电荷局域两种模式共同作用;电压大于3V时为空间电荷局域模型机制。
InSb-based compound semiconductor material with high room temperatureelectron mobility has excellent electron transport properties under the action of anelectric field. InSb thin films have been used as photo detectors and imagingsystems in the mid infrared wavelength of3-5um since it has a smaller forbiddenband width. Further, InSb and its alloys light-emitting match the fundamentalabsorption lines of some of the main gas such as CO, CO2, etc. Thus InSb-basedlight emitting device and the detector member is made of a gas sensing system mayalso be used. In recent years, high-performance InSb structure has been grown on asilicon substrate, which combine the advantages of silicon and InSb to achieve theintegration of functional devices and circuits, therefore reduced the cost of thedevice, which became an important direction for the development of nano-scaledevices. In this study, InSb films and InSb/SiO2/Si XOI heterostructure aredeposited by magnetron sputtering, the crystal structure of the InSb thin film andInSb/SiO2/Si heterostructure was analyzed, combined with characterization of theoptical and XOI electrical properties, the relationship between the structure andproperties of material are studied in detail. The main content of this thesisincluding:
     The InSb target was prepared by vacuum arc, the normal stoichiometric ratio ofInSb film was completed by adjusting the target component. The structure andproperties of InSb film are studied under different sputtering process, with theincrease of the sputtering power, InSb film transited from amorphous to crystalline,the grain size increased, the crystallinity got better; on the contrary, when thesputtering pressure is gradually increased, the grain size became smaller, and thecrystallinity was poor. When the sputtering pressure is0.6Pa, the InSb film isIn-rich.
     As-deposited InSb films were preceded by rapid thermal annealing andconventional annealing; the influence of annealing process was studied. Thecrystallinity was improved with the rapid thermal annealing temperature increased,the grain size increased, and the preferred orientation of the (111) plane along wasalso enhanced. InSb film’s transmittance decreased with increasing temperature.When the annealing temperature increased from300°C to500°C, the optical bandgap of InSb changed from0.22eV to0.19eV. Hall measurements showed that thefilm annealed at77K and300K were n-type. Mobility and carrier concentration ofthe film had different levels of increasing as the annealing temperature raised. At a temperature of400°C, the grain size of film increased with rapid thermal annealingtime increased, the optical band gap gradually decreases. Film migration rateincreased with increasing annealing time at77K and300K, the carrier concentrationfirstly increased and then decreased lately with increasing annealing time at300K.Compared with the rapid thermal annealing process, the grain size of theconventional annealing film at the same temperature were larger than the grain sizeof the rapid thermal annealing film with the annealing temperature increased. Whenthe annealing temperature increased from200°C to400°C, the optical band gap offilm changed from0.22eV to0.2eV. The crystal quality was poor under500°Cconventional annealing, and the optical band gap increased to0.35eV. Comparisonof the two different annealing method shows that the mobility of the InSb film afterthe conventional annealing film with the exception of200°C annealed samples,were less than the sample treated by rapid thermal annealing. At a temperature of400°C, the InSb film grain size increases with conventional thermal annealing timeincreasing, the optical band gap red-shifted from0.24eV to0.2eV. The mobility ofthe films increased with annealing time decreased, the carrier concentrationincreased gradually with the annealing time. According to Avrami-Mehl-Johnsonformula and theoretical Arrhenian formula, the crystallization activation energy is131.5kJ/mol and66.9kJ/mol under rapid thermal annealing or conventional thermalannealing, respectively.
     InSb/SiO2/Si XOI heterostructure was grown by magnetron sputtering. TEManalysis shows that the thickness of InSb layer is35nm. The film after annealing isthe polycrystalline structure; the grain size is approximately13nm. Using ahigh-resolution transmission electricity microscope technology, the InSb film afterannealing is mainly along [111],[220],[311] three orientations, which is consistentwith the XRD analysis. HRTEM analysis revealed that the thickness of the SiO2layer is about4nm. InSb films annealed were influenced by the nano-scale quantumconfinement effect, the optical band gap of nano-scale InSb is blue-shifted about0.084eV and up to the0.264eV compared to the InSb crystal (0.18eV). From the I-Vcharacteristic measurement, it is shown that InSb/SiO2/Si XOI structure at ambienttemperature exhibited significantly diode rectifying characteristics. At roomtemperature, the turn-on voltage is0.35V, and then at77K it is0.55V. At300K, theelectron transport mechanism of InSb/SiO2/Si XOI structure is thermal electronemission recombination and diffusion mechanism when the voltage is less than0.35V; hot electron emission mechanism and space-charge local modes combinedeffect were mainly mechanism when the voltage is between0.35V and3V; as thevoltage is greater than3V, the local space-charge model mechanism is the mainly mechanism.
引文
[1] J. Jankowski, S. El-Ahmar, M. Oszwaldowski. Hall Sensors for ExtremeTemperatures[J]. Sensors,2011,11(1):876-885.
    [2]孙志君.21世纪的红外焦平面阵列技术军用前景[J].现代防御技术,2003,(03):48-54.
    [3]孙志君,刘俊刚,欧代永.红外焦平面阵列技术新军事装备应用[J].传感器世界,2004,(11):6-12.
    [4] J. Fritze, M. Muenzberg. The new megapixel thermal imager family, inInfrared Technology and Applications[C] Xxxvii, B.F. Andresen, et al.,Editors.2011:801205.
    [5] M. Nadimi, A. Sadr. Computer Modeling of MWIR HomojunctionPhotodetector based on Indium Antimonide, in Manufacturing Science andTechnology[C], Pts1-8, W. Fan, Editor.2012:6806-6810.
    [6] B.T. Wysocki, M.A. Marciniak. Discrimination between electronic andoptical blooming in an InSb focal-plane array under high-intensityexcitation[J]. Infrared Physics&Technology.2008,51(3):137-145.
    [7] A. Rogalski. History of infrared detectors[J]. Opto-Electronics Review.2012,20(3):279-308.
    [8] A.R杰哈著.张孝霖,陈世达,舒郁文译.红外技术应用[M].北京:化学工业出版社.2004:60.
    [9] P. Martyniuk, A. Rogalski. Hot infrared photodetectors[J]. Opto-ElectronicsReview.2013,21(2):239-257.
    [10] A. Khan, K. Sun, D.J. Miller, et al. Simultaneous detection of atmosphericnitrous oxide and carbon monoxide using a quantum cascade laser, inSensing Technologies for Global Health, Military Medicine, DisasterResponse, and Environmental Monitoring and Biometric Technology forHuman Identification[M] Viii, S.O. Southern, et al., Editors.2011:80291H.
    [11] D.J.M. Stothard, C.F. Rae, M. Ross, et al. Mid-infrared, broadly tunableactive hyperspectral imaging system for the detection of gaseoushydrocarbon species-art. no.673705, in Electro-Optical and InfraredSystems: Technology and Applications[C] Iv, D.A. Huckridge and R. Ebert,Editors.2007:73705.
    [12] K. Shimoida, H. Tsuchiya, Y. Kamakura, et al. Performance Comparison ofInAs, InSb, and GaSb n-Channel Nanowire Metal-Oxide-SemiconductorField-Effect Transistors in the Ballistic Transport Limit[J]. Applied PhysicsExpress.2013,6(3):034301.
    [13] H.A. Nilsson, P. Caroff, E. Lind, et al. Unipolar and bipolar operation ofInAs/InSb nanowire heterostructure field-effect transistors[J]. Journal ofApplied Physics.2011,110(6):064510.
    [14] T. Ashley, M.T. Emeny, D.G. Hayes, et al. High Performance InSb QWFETsFor Low Power Dissipation Millimetre Wave Applications[C]. Proceedingsof the5th European Microwave Integrated Circuits Conference (EuMIC2010).2010:158-161.
    [15] T. Ashley, M.T. Emeny, D.G. Hayes, et al. High-Performance InSb BasedQuantum Well Field Effect Transistors for Low-Power DissipationApplications[C].2009IEEE International Electron Devices Meeting (IEDM2009).2009:4.
    [16] P. Maj, P. Grybos, R. Szczygiel, et al.18k Channels single photon countingreadout circuit for hybrid pixel detector[J]. Nuclear Instruments&Methodsin Physics Research Section a-Accelerators Spectrometers Detectors andAssociated Equipment.2013:697:32-39.
    [17] Q. Yu, L. Zhang, Q. Meng. Structural Stress Analysis of16x16InSb InfraredFocal Plane Array with Underfill, in Frontiers of Manufacturing and DesignScience[C] Ii, Pts1-6, D. Sun, et al., Editors.2012:4320-4324.
    [18] Q.-D. Meng, Q. Yu, L.-W. Zhang, et al. Mechanical parameters selection inInSb focal plane array detector normal direction[J]. Acta Physica Sinica.2012,61(22).
    [19]周治平,郜定山,汪毅,et al.硅基集成光电子器件的新进展[J].激光与光电子学进展,2007,493(02):31-38.
    [20]许娅明,任华.320×240混合式非制冷红外焦平面探测器芯片工艺研究[J].红外技术,2010,32;No.205(01):1-5.
    [21] D.G. Avery, D.W. Goodwin, W.D. Lawson, et al. Optical and Photo-ElectricalProperties of Indium Antimonide[C]. Proceedings of the Physical Society.Section B.1954,67(10):761.
    [22]王志芳,王燕华.大尺寸锑化铟晶体生长等径技术研究[J].红外.2011,32(01):27-30.
    [23]朱明华.高纯锑化铟晶体的研制[J].红外与激光技术,1981,(03):24-32.
    [24]王燕华,程鹏,王志芳.大直径高质量锑化铟单晶的生长研究[J].红外,2009,30(08):9-13.
    [25]宋海明,韩海,郑一阳.锑化铟霍尔器件在电子罗盘中的应用研究[J].电子测量技术,2008,167(03):118-121.
    [26]刘恩科,朱秉生,罗晋生.半导体物理学[M].北京:国防工业出版社,2006:30.
    [27]刘恩科,朱秉生,罗晋生.半导体物理学[M].北京:电子工业出版社,2008:31.
    [28]刘恩科,朱秉生,罗晋生.半导体物理学[M].北京:电子工业出版社,2008:45.
    [29] D.T.J. Hurle. A thermodynamic analysis of native point defect and dopantsolubilities in zinc-blende III-V semiconductors[J]. Journal of AppliedPhysics.2010,107(12):121301.
    [30] S. Khamseh, Y. Yasui, K. Nakayama, et al. Effects of Deposition Conditionsof First InSb Layer on Electrical Properties of n-Type InSb Films GrownWith Two-Step Growth Method via InSb Bilayer[J]. Japanese Journal ofApplied Physics.2011,50(4):04DH13.
    [31] G.W. Gobeli, H.Y. Fan. Infrared Absorption and Valence Band in IndiumAntimonide[J]. Physical Review.1960,119(2):613-620.
    [32] I.I. Ukhanov. Optical properties of semiconductors[J]. Moscow IzdatelNauka.1977,1.
    [33] T.S. Moss. The Interpretation of the Properties of Indium Antimonide[C].Proceedings of the Physical Society. Section B.1954,67(10):775.
    [34] C.L.Littler, D.G.Seiler. Temperature-depedence of the energy-gap of InSbusing nonlinear optical techniques. Applied Physics Letters.1985,46(10):986-988.
    [35] S.V. Ivanov, A.A. Boudza, R.N. Kutt, et al. Molecular-beam epitaxial-growthof InSb/GaAs(100) and InSb/Si(100) heteroepitaxial layers (Thermodynamicanalysis and characterization)[J]. Journal of Crystal Growth.1995,156(3):191-205.
    [36] M.Y. Yen, R. People, K.W. Wecht. Long wavelength(3.5um and8-12um)photoluminescence of InAs1-xSbxgrown on (100) GaAs by molecular-beamepitazy[J]. Journal of Applied Physics.1988,64(2):952-955.
    [37] S. Ohkubo, K. Aoki, D. Eto. Temperature dependence of optical constants forInSb films including molten phases[J]. Applied Physics Letters.2008,92(1):011919.
    [38]林达荃.锑化铟的物理特性及其应用[J].物理通报,1963,(02):72-81.
    [39] J.D. Wiley, Chapter2Mobility of Holes in III-V Compounds, inSemiconductors and Semimetals[M], R.K. Willardson and C.B. Albert,Editors.1975, Elsevier. p.91-174.
    [40] E. Litwin-Staszewska, W. Szymańska, R. Piotrzkowski. The ElectronMobility and Thermoelectric Power in InSb at Atmospheric and HydrostaticPressures[J]. physica status solidi (b).1981,106(2):551-559.
    [41] Y. Zhang, J. Su, J. Winesett, et al., Cyclotron resonance and hall effectstudies of ultra-high mobility InSb films[M], Narrow Gap Semiconductors1995, J.L. Reno, Editor.1995. p.374-378.
    [42] G.M. Williams, C.R. Whitehouse, C.F. Mcconville, et al. Heteroepitaxialgrowth of InSb on (100)GaAs using molecular-beam epitaxy[J]. AppliedPhysics Letters.1988,53(13):1189-1191.
    [43]宋福英.无GaAs缓冲层MBE生长InSb材料的工艺及其特性[J].红外与激光技术,1995,(05):43-46.
    [44] J.I. Chyi, D. Biswas, S.V. Iyer, et al. Molecular-beam epitaxial-growth andcharacterization of InSb on Si[J]. Journal of Vacuum Science&TechnologyB.1989,7(2):345-347.
    [45] J.E. Oh, P.K. Bhattacharya, Y.C. Chen, et al. Molecular-beamepitaxial-growth of high-quality InSb on InP and GaAs substrates[J]. Journalof Applied Physics.1989,66(8):3618-3621.
    [46] D.K. Gaskill, G.T. Stauf, N. Bottka. High-mobility InSb grown byorganometallic vapor-phose epitaxy[J]. Applied Physics Letters.1991,58(17):1905-1907.
    [47] R.M. Biefeld, G.A. Hebner. Epitaxial-growth of InSb on GaAs bymetalorganic chemical vapor-deposition[J]. Applied Physics Letters.1990,57(15):1563-1565.
    [48] T. Miyazaki, M. Kunugi, Y. Kitamura, et al. Epitaxial growth of InSb filmsby rf magnetron sputtering[J]. Thin Solid Films.1996,287(1-2):51-56.
    [49] R. Rousina, J.B. Webb. Magnetron sputter epitaxy(MSE) of InSb on GaAsand (100.111) InSb for infrared detector applications[J]. SemiconductorScience and Technology.1991,6(12C): C42-C46.
    [50] V.K. Dixit, B. Bansal, V. Venkataraman, et al. High-mobility InSb epitaxialfilms grown on a GaAs (001) substrate using liquid-phase epitaxy[J]. AppliedPhysics Letters.2002,80(12):2102-2104.
    [51]同春,M.Auwarter.薄膜科学技术的重要性[J].真空与低温,1984,(04):55-58.
    [52]方舟,严寒.薄膜科学与技术[J].光机电信息,2000,(11):47-49.
    [53] W. Jaegermann, A. Klein, T. Mayer. Interface Engineering of InorganicThin-Film Solar Cells-Materials-Science Challenges for Advanced PhysicalConcepts[J]. Advanced Materials.2009,21(42):4196-4206.
    [54] M.G. Blamire, J.L. Macmanus-Driscoll, N.D. Mathur, et al. The MaterialsScience of Functional Oxide Thin Films[J]. Advanced Materials.2009,21(38-39):3827-3839.
    [55]许振嘉.半导体器件工艺与薄膜科学[J].真空科学与技术,1997(06):369-373.
    [56] J. Fritsche, A. Klein, W. Jaegermann. Thin film solar cells: Materials scienceat interfaces[J]. Advanced Engineering Materials.2005,7(10):914-920.
    [57] J.I. Chyi, D. Biswas, S.V. Iyer, et al. Molecular-beam epitaxial-growth andcharacterization of InSb on Si[J]. Applied Physics Letters.1989,54(11):1016-1018.
    [58] J.I. Chyi, S. Kalem, N.S. Kumar, et al. Growth of InSb and InAs1-xSbxonGaAs by molecular-beam epitaxy[J]. Applied Physics Letters.1988,53(12):1092-1094.
    [59] M. Mori, Y. Nizawa, Y. Nishi, et al. Effect of current flow direction on theheteroepitaxial growth of InSb films on Ge/Si(001) substrate heated by directcurrent[J]. Applied Surface Science.2000,159:328-334.
    [60] M. Mori, Y. Tsubosaki, T. Tambo, et al. Growth of InSb films on a Si(001)substrate with Ge buffer layer[J]. Applied Surface Science.1997,117:512-517.
    [61] M. Mori, Y. Nizawa, Y. Nishi, et al. Growth temperature effect on theheteroepitaxy of InSb films on a Si(001) substrate covered with Ge islands[J].Thin Solid Films.1998,333(1-2):60-64.
    [62] M. Mori, K. Murata, N. Fujimoto, et al. Effect of AlSb buffer layer thicknesson heteroepitaxial growth of InSb films on a Si(001) substrate[J]. Thin SolidFilms.2007,515(20-21):7861-7865.
    [63] M. Mori, N. Akae, K. Uotani, et al. Heteroepitaxial growth of InSb films on aSi(001) substrate via AlSb buffer layer[J]. Applied Surface Science.2003,216(1-4):569-574.
    [64] M. Mori, N. Fujimoto, N. Akae, et al. Heteroepitaxy of InSb films grown ona Si(001) substrate with AlSb buffer layer[J]. Journal of Crystal Growth.2006,286(2):218-222.
    [65] W.K. Liu, X.M. Fang, J. Winesett, et al. Large mismatch heteroepitaxy ofInSb on Si(111) substrates using CaF2buffer layers[J]. Journal of CrystalGrowth.1997,175:853-859.
    [66] W.K. Liu, J. Winesett, W.L. Ma, et al. Molecular beam epitaxy of InSb on Sisubstrates using fluoride buffer layers[J]. Journal of Applied Physics.1997,81(4):1708-1714.
    [67] M. Saito, M. Mori, K. Maezawa. Effects of In and Sb mono-layers to formrotated InSb films on a Si(111) substrate[J]. Applied Surface Science.2008,254(19):6052-6054.
    [68] M. Mori, M. Saito, Y. Yamashita, et al. Heteroepitaxial growth of rotatedInSb films on a Si(111) substrate via2×2-In surface reconstruction[J].Journal of Crystal Growth.2007,301:207-211.
    [69] M. Mori, K. Nagashima, K. Ueda, et al. High Quality InSb Films Grown onSi (111) Substrate via InSb Bi-Layer[J]. e-Journal of Surface Science andNanotechnology.2009,7:145-148.
    [70] M. Mori, M. Saito, K. Nagashima, et al. High-temperature growth ofheteroepitaxial InSb films on Si(111) substrate via the InSb bi-layer[J].Journal of Crystal Growth.2009,311(7):1692-1695.
    [71] A. Kadoda, T. Iwasugi, K. Nakatani, et al. Characterization of Al2O3/InSb/SiMOS diodes having various InSb thicknesses grown on Si(111) substrates[J].Semiconductor Science and Technology.2012,27(4):045007.
    [72] M. Mori, Y. Yasui, K. Nakayama, et al. Effects of Initial In Coverage forPreparation of InSb Bilayer on Electrical Properties of InSb Films Grown BySurface Reconstruction Controlled Epitaxy[J]. Japanese Journal of AppliedPhysics.2012,51(2):02bh03.
    [73]高国龙.用金属有机汽相外延技术制作焦平面列阵的InSb光电二极管[J].红外,2005(04):46.
    [74] S.W. Li, E. Kubalek, Y.X. Jin, et al. Study of overgrowth heterostructure InSbGaAs by scanning electron acoustic microscopy[J]. Journal of MaterialsScience.1999,34(11):2561-2564.
    [75] X. Weng, R.S. Goldman, D.L. Partin, et al. Evolution of structural andelectronic properties of highly mismatched InSb films[J]. Journal of AppliedPhysics.2000,88(11):6276-6286.
    [76] H. Nagata, H. Homma, S. Yamaguchi. Improvement of Electrical andThermoelectric Properties of MOCVD-Grown InSb Thin Films UsingSi-Doped Interfacial Layer[J]. ECS Transactions.2010,25(33):81-86.
    [77] O. Sugiura, H. Kameda, K. Shiina, et al. Low-temperature growth of InSb byvacuum MOCVD using TEIn and SbH3[J]. Journal of Electronic Materials.1988,17(1):11-14.
    [78]陆大成,段树坤.金属有机化合物气相外延基础及应用[M].北京:科学出版社,2009:187.
    [79] M.A. Mckee, B.S. Yoo, R.A. Stall. Uniform growth of InSb on GaAs in arotating-disk reactor by LP-MOVPE[J]. Journal of Crystal Growth.1992,124(1-4):286-291.
    [80] R.M. Biefeld. The preparation of InAs1-xSbxalloys and strained-layersuperlattices by MOCVD[J]. Journal of Crystal Growth.1986,77(1-3):392-399.
    [81] M.W. Pelczynski, J.J. Heremans. MOCVD growth of high mobility InSb onSi substrates for Hall effect applications[J]. Journal of Electronic Materials.1999,28(7):1053-1054.
    [82]张卫峰.真空太阳集热管磁控溅射镀膜机的自动化实现[J].太阳能,2012,203(15):23-25.
    [83]程建平,杨晓东.真空磁控溅射镀膜设备及工艺技术研究[J].电子工业专用设备,2009,38;No.178(11):27-31.
    [84] F. Mugwang’a, P. Karimi, W. Njoroge, et al. Optical Characterization ofCopper Oxide Thin Films Prepared By Reactive Dc Magnetron SputteringFor Solar Cell Applications[J]. International Journal of Advanced RenewableEnergy Research (IJARER).2012,1(8):474-480.
    [85] F. Noori, S. Shaban, R. Al-Haddad RMS. Fabrication of ZnO/α-SiH/polymerthin films heterojunction for organic solar cells[J].Journal of ElectronDevices.2013,17:1469-1475.
    [86] T.S. Rao, J.B. Webb, D.C. Houghton, et al. Heteroepitaxy of InSb on Siliconby Metalorganic magnetron sputtering[J]. Applied Physics Letters.1988,53(1):51-53.
    [87] T.S. Rao, C. Halpin, J.B. Webb, et al. Effect of substrate-temperature on thegrowth-rate and surface-morphology of heteroepitaxial Indium-Antimonidelayers grown on (100) GaAs by metalorganic magnetron sputtering[J] Journalof Applied Physics.1989,65(2):585-590.
    [88]孔金丞,李志,孔令德.非晶态锑化铟薄膜的射频磁控溅射生长及其结构和光学特性研究[J].红外技术,2008, No.186(06):351-354.
    [89] M.D. Robertson, J.M. Corbett, J.B. Webb. Transmission electron microscopycharacterization of InAlSb/InSb bilayers and superlattices[J]. Micron.1997,28(2):175-183.
    [90]温作晓,孙承松,魏永广.溅射法制备InSb薄膜工艺探索——In与Sb的原子比问题[J].仪表技术与传感器,2001(07):35-36.
    [91]张国栋,孙维国,倪永平. Mg离子注入成结制备InSb光电二极管阵列研究[J].红外与激光工程,2005(01):19-22.
    [92] C.E.Hurwitz, J.P.Donnelly,高仲侠.用Be和Mg离子注入制备InSb平面光电二极管[J].红外技术,1981(04):16-21.
    [93] A. Rogalski, M. Razeghi,贡树行.窄禁带半导体光电二极管的最新进展(上)[J].红外,2000(12):17-22.
    [94] A. Tevke, C. Besikci, C. Van Hoof, et al. InSb infrared p-i-n photodetectorsgrown on GaAs coated Si substrates by molecular beam epitaxy[J].Solid-State Electronics.1998,42(6):1039-1044.
    [95] E. Michel, J. Xu, J.D. Kim, et al. InSb infrared photodetectors on Sisubstrates grown by molecular beam epitaxy[J]. IEEE Photonics TechnologyLetters.1996,8(5):673-675.
    [96] A. Kepten, Y. Shacham-Diamand, S.E. Schacham. Monolithic focal planecell in InSb[J]. Proceedings of the SPIE-The International Society forOptical Engineering.1992,1735:277-286.
    [97] A. Kepten, Y. Shacham-Diamond, S.E. Schacham. p-channel MISdouble-metal process InSb monolithic unit cell for infra-red imaging[C].Proceedings of the SPIE-The International Society for Optical Engineering.1992,1685:305-316.
    [98] P. Capper, C. Elliott, Infrared detectors and emitters: materials and devices[J].Vol.8.2001: Kluwer Academic Pub.
    [99] Y.H. Choi, C. Besikci, R. Sudharsanan, et al. Growth of In1-xTlxSb a newinfrared material by low-pressure matalorganic chemical-vapor-deposition[J].Applied Physics Letters.1993,63(3):361-363.
    [100] Y.H. Choi, P.T. Staveteig, E. Bigan, et al. Characterization of InTlSb/InSbgrown by low-pressure metal-organic chemical-vapor-deposition on a GaAssubstrate[J]. Journal of Applied Physics.1994,75(6):3196-3198.
    [101] J.J. Lee, M. Razeghi. Tl incorporation in InSb and lattice contraction ofIn1-xTlxSb[J]. Applied Physics Letters.2000,76(3):297-299.
    [102] M. Vanschilfgaarde, A. Sher, A.B. Chen. InTlSb-An Infrared detectormaterial[J]. Applied Physics Letters.1993,62(16):1857-1859.
    [103] P.T. Staveteig, Y.H. Choi, G. Labeyrie, et al. Photoconductance measurementson grown InTiSb/InSb/GaAs grown by low-pressure mtalorganicchemical-vapor-deposition[J]. Applied Physics Letters.1994,64(4):460-462.
    [104] J.D. Kim, E. Michel, S. Park, et al. Room-temperature operation of InTlSbinfrared photodetectors on GaAs[J]. Applied Physics Letters.1996,69(3):343-344.
    [105] Tümkaya, ümid. Performance assesment of Indium Antimonidephotodetectors on silicon substrates[D]. MIDDLE EAST TECHNICALUNIVERSITY,2003:34.
    [106] A. Rogalski. Infrared detectors: an overview[J]. Infrared Physics&Technology.2002,43(3-5):187-210.
    [107]左雷,周琪.用于天文观测的先进红外焦平面技术[J].激光与红外,2011,v.41;No.397(10):1061-1066.
    [108]孟庆端,张晓玲,张立文.128×128InSb探测器结构模型研究.物理学报.2012:1-6.
    [109]雷胜琼.昆明物理所锑化铟红外材料、器件研究进展[C].2007年红外探测器及其在系统中的应用学术交流会.中国上海:2007:4.
    [110]黄雪霜,杨洁.集成人生路宇耕大讲堂——访北京大学微纳电子学研究院首席科学家、中国科学院院士王阳元[J].科学中国人,2011, No.208(16):46-53.
    [111] A. Rogalski. New material systems for third generation infraredphotodetectors[J]. Opto-Electronics Review.2008,16(4):458-482.
    [112] H. Ko, K. Takei, R. Kapadia, et al. Ultrathin compound semiconductor oninsulator layers for high-performance nanoscale transistors[J]. Nature.2010,468(7321):286-289.
    [113] M. Krzywiecki, L. Grzadziel, J. Bodzenta, et al. Comparative study ofsurface morphology of copper phthalocyanine ultra thin films deposited on Si(111) native and RCA-cleaned substrates[J]. Thin Solid Films.2012,520(11):3965-3970.
    [114]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2006:213.
    [115]朱贤方. J.S.Williams. L.C.Lim, et al.物理汽相淀积薄膜的微结构和内应力[J].物理,1998,(01):38-41.
    [116]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,2005:53.
    [117] Y. Huang, Optical Characterization of III Nitride Semiconductors UsingCathodoluminescence Techniques[D]. ARIZONA STATE UNIVERSITY,2011:24-26.
    [118] S.T. Tan, B.J. Chen, X.W. Sun, et al. Blueshift of optical band gap in ZnOthin films grown by metal-organic chemical-vapor deposition[J]. Journal ofApplied Physics.2005,98(1):013505.
    [119] H. Reuter, H. Schmitt, M. Boffgen. Properties of sputtered amorphous andmicrocrystalline GaAs films[J]. Thin Solid Films.1995,254(1-2):96-102.
    [120] C. Vasantkumar, A. Mansingh. Properties of RF sputtered tetragonal andhexagonal barium titanate films[J]. Applications of Ferroelectrics,1990.,IEEE7th International Symposium on.1990:713-716.
    [121] A.P. Roth, J.B. Webb, D.F. Williams. Absorption edge shift in ZnO thin filmsat high carrier densities[J]. Solid State Communications.1981,39(12):1269-1271.
    [122] S.K. Bhar, N. Mukherjee, S.K. Maji, et al. Synthesis of nanocrystalline ironoxide ultrathin films by thermal decomposition of iron nitropruside:Structural and optical properties[J]. Materials Research Bulletin.2010,45(12):1948-1953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700