电网GIC水平评估软件的设计与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网规模的增大,我国广东、江苏等地发现了大量灾害磁暴侵害电网的事件。这些地区电网的地磁感应电流(GIC)实测数据表明,电网GIC水平与磁暴强度、大地电性构造和电网结构等很多因素有关,如何计算评估电网的GIC水平和开发电网GIC分析、计算工具是需要研究、解决的课题。本文针对这一课题,主要完成了以下四个方面的研究工作。
     论述、分析了电网GIC的产生机理和影响因素,比较了不同原理感应地电场模型及算法的优缺点,选择了能满足我国(中低纬地区)工程实际应用的感应地电场计算模型,建立了均匀大地电阻率模型、分层大地电阻率模型和电网GIC等效模型,给出了开发评估软件采用的系列模型和计算方法。
     根据电网GIC的空间物理、地球物理过程,分析了评估电网GIC和开发评估软件的应用需求,设计了评估软件感应地电场计算和电网GIC计算两大功能模块,给出了评估软件管理、感应地电场计算和电网GIC计算等功能模块的流程,阐述了Microsoft C#.NET和MATLAB混合编程的软件开发技术。
     研究了评估软件用户管理、感应地电场计算和电网GIC计算等功能模块的实现方法,推导感应地电场的离散化公式和电网GIC计算的矩阵方程。在此基础上,完成了电网GIC水平评估软件的开发,为电网GIC评估提供了分析、计算工具。
     最后,建立了阳淮输电系统大地电阻率模型和电网GIC模型,用本文开发的评估软件分析、计算了阳淮输电系统的GIC水平,将分析计算结果与上河变电站GIC实测数据进行了对比分析,验证了评估方法和评估软件的有效性。
With the expanding of the power grid, many grids, such as Guangdong power grid, Shandong power grid, suffered magnetic storm disasters. The measured data in these grids showed that, the level of GIC is severely affected by the magnetic storm intensity, the earth electrical structure, the network configuration and many other factors. The questions that how to evaluate power grid GIC level and how to develop a tool for GIC analysis and calculation need to be studied and solved. In order to solve these problems, the following research about GIC is finished.
     The generation mechanism and influence factors of GIC are illustrated and analyzed. Through comparing the advantages and disadvantages of the earth induced geoelectric field model, the model that can meet the need of practical engineering application is proposed. Then the relationships between electric and magnetic fields in uniform earth model and layered earth model are established respectively, the power grid GIC model is set up, and the formulas are deduced for the development of power grid GIC evaluation software.
     According to the mechanism of GIC generation, the need and the function of power grid GIC evaluation software is analyzed, the function modules, including the user manage module, the induced geoelectric field calculation module and the power grid GIC calculation module are designed, and the technology of mixed programming between Microsoft C#.NET and MATLAB is introduced.
     The computer realization methods of all of the functional modules are studied, the digital models of induced geoelectric field calculation and the matrix equation of GIC calculation is derived. Based on the above work, the software of power grid GIC evaluation is developed, which can calculate the power grid GIC for GIC monitoring points selection, equipment selection of planning power grid and so on.
     Finally, the earth model and power grid GIC model for YangHuai power transmission system are set up and the GIC level is calculated with the software of power grid GIC evaluation. The result compared with the measured data indicates that the GIC evaluation method and the software are effective.
引文
[1]Risto Pirjola. Geomagnetically Induced Currents During Magnetic Storms[J]. IEEE Transactions on Plasma Science,2000,28(6):1867-1873
    [2]Pirjola R. Averages of geomagntically induced currents (GIC) in the Finish 400kV electric power transmission system system and the effect of neutral point reactors on GIC[J]. Journal of Atmospheric and Solar-Terrectrial Physica,2005,67:701-708
    [3]刘连光,刘宗歧,张建华.地磁感应电流对我国电网影响的初步分析[J].中国电力,2004,37(11):10-13
    [4]江苏省电力公司.500kV阳城电厂送出输变电工程[M].南京:江苏科学技术出版社,2003:2-50
    [5]蒯狄正,刘成民,万达.直流偏磁对变压器影响的研究[J].南京:江苏电机工程,2004,23(3):1-5
    [6]刘连光,刘春明,张冰等.我国广东电网的几次强磁暴影响时间[J].地球物理学报,2008,51(4):976-981
    [7]刘连光,刘春明,张冰.磁暴对我国特高压电网的影响研究[J].电网技术,2009,33(11):1-5
    [8]Matti Lahtinen. GIC Occurrences and GIC Test for 400 kV System Transformer[J]. IEEE Transactions on Power Delivery,2002,17(2):555-561
    [9]Pirjola R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems[J]. Surveys in Geophysics,2002,23(1):71-90
    [10]S. Boutilier, D. Swatek, Q. Bui-Va, R. Leonard, B. Hughes, L. Hajagos, I.J. Ferguson, H. D. Odwar. Geomagnetically Induced Currents:Geomagnetic Hazard[G] Assessment Phase Ⅱ,1994,67-139
    [11]Jon Berge, Rajiv K. Varma. a software simulator for geomagnetically induced currents in electrical power systems[J]. IEEE Transactions on Power Delivery, 2009,1(2):695-700
    [12]Lesher, R. L.; Porter, J. W.; Byerly, R. T., sunburst-a network of GIC monitoring systems[J]. Power Delivery, IEEE Transactions on Volume 9, Issue 1, Jan.1994 Page(s):128-137
    [13]J. N. Towle, F. S. Prabhakara, J. Z. Ponder. Geomagnetic effects modeling for the PJM interconnection system part Ⅰ-earth surface potentials computation[J]. IEEE Transactions on Power Systems,1992,7(3):949-954
    [14]马晓冰,Ian J. Ferguso,孔祥儒,Xianghong Wu,闫永利.地磁感应电流(GIC)的作用与评估[J].地球物理学报,2005,48(6):1282-1286
    [15]张燕秉.电网地磁感应电流算法及仿真研究[D].北京:华北电力大学,2004:2-35
    [16]史卫萍.沿输电走廊地面感应电势理论及其算法的研究[D].北京:华北电力大学,2006:1-30
    [17]陈鸿飞,徐文耀.1998年5月磁暴磁层电流体系的地磁效应分析[J].地球物理 学报,2001,44(4):490-499
    [18]王泽忠,全玉生,卢斌先.工程电磁场[M].北京:清华大学出版社,2004:10-60
    [19]Elovaara J. Geomagnetic induced currents in the Nordic power system and their effects on equipment:control, protection and operation[C].1992:36-301
    [20]刘连光,大规模电网应对空间灾害天气的问题[J].电网技术,2010,34(6):1-5
    [21]刘春明.中低维度电网地磁感应电流及其评估方法研究[D].北京:华北电力大学.2009:1-77
    [22]焦新敬,刘连光.考虑海岸效应因素的电网GIC算法的研究[D].北京:华北电力大学,2010 12-30
    [23]Kappenman JG. The Evolving Vulnerability of Electric Power Grids[J]. Space Weather,2004,8(4):3-11
    [24]Boteler DH, Bui-Van Q and Lemary J. Directional sensitivity to geomagnetically induced currents of the Hydro-Quebec 735 power system[J]. IEEE Transactions on Power Delivery,1994,9(4):1963-1969
    [25]陈鸿飞,徐文耀.1998年5月磁暴磁层电流体系的地磁效应分析[J].地球物理学报,2001,44(4):55-64
    [26]Pirjola R. On currents induced in power transmission systems during geomagnetic variations[J]. IEEE Transactions on Power Apparatus and Systems, October 1985, PAS-104:2825-2831
    [27]Pirjola R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems[J]. Surveys in Geophysics,2002,23(1):71-90
    [28]D. H. Boteler, R. J. Pirjola. The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet[J]. Geophysical J. Int.,1998,132(1):31-40
    [29]R. Pirjola, A. Viljanen. Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length[G]. Annales Geophysicae,1998,16:1434-1444
    [30]Risto Pirjola, David Boteler, Ari Viljanen, et al. Prediction of geomagnetically induced currents in power transmission systems[J]. Adv. Space Res.,2000,26(1): 5-14
    [31]Weaver JT. Mathematical methods for geo-electromagnetic induction. Taunton, Somerset[M], England:Research Studies Press LTD,1994:290-335
    [32]Pirjola R and Boteler DH. Calculation methods of the electric and magnetic fields at the Earth's surface produced by a line current[J]. Radio Science,2002,37 (3): 14-19
    [33]李琪,高玉芬.2003年10-11月的大磁暴[J].地震地磁观测与研究,2006,27(2):43-47
    [34]Viljanen A, Pirjola R, Amm O. Magnetotelluric effect due to 3D ionospheric current systems using the complex image method for 1D conductivity structures[J]. Earth Planets Space,1999,51:933-945
    [35]张冰,刘连光,肖湘宁.采用电网直流等效模型评估地磁感应电流水平的影响因素分析[J].电网技术,2009,33(8):13-17
    [36]Amm, O. Ionospheric Elementary Current Systems in Spherical Coordinates and Their Application[J]. J. Geomag. Geoelectr.,1997,49(6):947-955
    [37]Amm O and Viljanen A. Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems[J]. Earth Planets Space,1999,51:431-440
    [38]何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社,2002:10-60
    [39]D. H. Boteler, M. J. Cookson. Telluric currents and their effects on pipelines in the Cook Strait region of New Zealand[J]. Materials Performance, Mar.1986:27-32
    [40]Ari Viljanen, Risto Pirjola. Statistics on Geomagnetically-Induced Currents in the Finnish 400kV Power System Based Recordings of Geomagnetic Variations[J]. J. Geomag. Geoelectr.,1989,41:411-420
    [41]Risto Pirjola. Calculation of geomagnetically induced currents (GIC) in a high-voltage electric power transmission system and estimation of effects of overhead shield wires on GIC modeling[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2007,69:1305-1311
    [42]于超.特高压电网参数及地磁感应电流评估算法研究[D].北京:华北电力大学,2008:1-26
    [43]R. Pirjola. Effects of space weather on high-latitude ground systems[J]. Advances in Space Research,2005,36(12):2231-2240
    [44]王世香.精通MATLAB接口与编程[M].北京:电子工业出版社,2007:8-60
    [45]高成主. Matlab接口技术与应用[M].北京:国防工业出版社,2007:1-70
    [46]吕伟臣. Visual C# 2005入门与提高[M].北京:清华大学出版社,2006:9-38
    [47]刘志俭. Matlab应用程序接口用户指南[M].北京:科学出版社,2000:5-40
    [48]Viljanen A. Relation of geomagnetically induced currents and local geomagnetic variations [J]. IEEE Transactions on Power Delivery,1998,13(4):1285-1290
    [49]Viljanen A, Pulkkinen A, Amm O, et al. Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models[J]. Annales Geophysicae,2004,22(1):101-113
    [50]薛向党,文剑莹,郑云祥等.地磁感应电流消除方法初探.电力系统自动化[J].2000,7:58-60
    [51]王梅义,吴竟昌,蒙定中.大电网系统技术(第2版)[M],北京:中国电力出版社,1995:2-50
    [52]薛向党,郭晖,郑云祥,吉崇庆,尤一鸣.地磁感应电流作用时分析和计算电力变压器特性的一种新方法——时域和频域法.电工技术学报.2000,15(2):1-5
    [53]吴迎燕,徐文耀,陈耿雄等.暴时环电流不对称性的地面磁场特征研究.中国科学D辑:地球科学,2008 38(4):424-431
    [54]国家地震局地学断面编委会编著.江苏响水至内蒙满都拉地学断面.北京:地震出版社,1991:1-30:1-50
    [55]国家地震局地学断面编委会编著.上海奉贤-内蒙阿拉善地学断面.北京:地震出版社.1992:1-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700