血管内皮生长因子在人胚胎干细胞神经分化过程中的作用及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人胚胎干细胞(human embryonic stem cells,hESCs)向神经细胞诱导分化的成功,为各种难治性神经系统疾病细胞移植治疗提供了理想的载体。从胚胎干细胞诱导分化为特异的神经元或胶质细胞的关键步骤是神经干细胞(neural stem cells,NSCs)的生成。目前采用的hESCs分化为NSCs的诱导方法大致可分为三种:一是经拟胚体(embryonic bodies,EBs)诱导法。通过模仿胚胎内生成神经外胚层的环境来产生神经干细胞,是应用最广泛的诱导方法。但是该法周期长,所需hESCs细胞量大,操作技术含量较高。二是与具有特殊诱导能力的基质细胞共培养法。不过基质细胞所提供因子的具体作用未被阐述,是否对神经细胞有后续作用尚需进一步观察,一定程度上阻碍其应用;三是用特定的诱导因子使胚胎干细胞直接定向分化法。研究发现去除细胞内各种抑制神经分化的信号传导和细胞间相互抑制作用时,未分化的ESCs会自发向神经细胞分化,基于此产生了直接分化法。该法诱导hESCs生成NSCs已有报道,但尚未形成统一有效的诱导方法。对脊椎动物成体内神经发生的研究表明,内皮细胞通过产生血管微环境(vascular niche),促进成体神经干细胞的增殖。在体外,内皮细胞也可以诱导大鼠神经干细胞转化成神经元。血管内皮生长因子(vascular endothelial growth factor,VEGF)是内皮细胞分泌的主要因子,在这些体内外过程中发挥关键作用。VEGF通过VEGFR2.对海马等脑组织内神经发生区的神经干细胞发挥促生长、存活和趋化的作用。研究发现干细胞本身也可以产生分化调控信号来调节自身的增殖分化。诸多研究初步揭示了Notch信号转导通路在维持神经干细胞多能性、调节神经元和胶质细胞分化中有重要作用。此外,研究表明丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)信号转导途径在中枢神经系统广泛表达,各种细胞外刺激信号均可通过这一通路影响突触传递,神经元的重塑和生存等。本研究对经EB法与直接分化法诱导hESCs生成NSCs进行比较,以探索适合临床应用的经济高效的诱导方法。随后将探讨在体外hESCs神经分化中VEGF是否发挥作用,该作用与Notch和p38 MAPK信号转导通路是否相关,以更深入的研究神经发生过程,明确神经细胞分化中的决定因素和其中的各种相互关系。
     第一部分人胚胎干细胞体外分化为神经干细胞诱导方法的研究
     目的探讨适合临床应用的经济高效的人胚胎干细胞分化为神经干细胞的方法。
     方法人胚胎干细胞生长成熟后,将其脱离饲养层,分离消化为单细胞,以1×10~5的细胞密度置于培养皿(板)中,用直接分化培养基培养,诱导细胞向神经干细胞分化。
     结果用直接分化培养基培养脱离饲养层的hESCs,约14~16天生成nestin阳性的NSCs。神经干细胞继续分化,可以得到不同数量的神经元和胶质细胞,MAP2、GFAP分别阳性。
     结论在体外人胚胎干细胞不经EB,可以直接定向分化为神经干细胞。该方法与传统的经EB法相比,周期短、操作过程简单、成本低,可用于神经系统疾病移植治疗研究中hESCs向NSCs分化的大批量诱导。
     第二部分血管内皮生长因子在体外hESCs诱导分化为神经细胞中的作用研究
     目的观察血管内皮生长因子在体外hESCs分化为神经细胞过程中是否发挥作用。
     方法人胚胎干细胞经拟胚体向神经细胞分化,分别给予VEGF(10ng/mL)和VEGF(10ng/mL)+VEGFR2/Fc嵌合体(10ng/mL)添加入神经细胞分化的各个阶段,通过RT-PCR、免疫荧光法检测各阶段细胞标志物,计算并用流式细胞仪检测各组神经干细胞Nestin的阳性率。
     结果RT-PCR检测到各阶段细胞标记物表达,在人神经干细胞检测到VEGFR2表达;免疫荧光法检测,VEGF作用组产生神经干细胞、分化为神经元的比率明显高于常规经EB诱导组和VEGF+VEGFR2/Fc嵌合体作用组,常规诱导组和VEGF+VEGFR2/Fc嵌合体作用组之间各阶段阳性细胞率无明显差异。
     结论人神经干细胞表达VEGFR2;在体外人胚胎干细胞向神经细胞的分化过程中,小剂量(10ng/mL)血管内皮生长因子通过血管内皮生长因子受体2,促进神经干细胞增殖及向神经元分化。
     第三部分人胚胎干细胞定向分化为神经细胞中VEGF作用机制的初步研究
     目的研究血管内皮生长因子在体外hESCs分化为神经元过程中的作用机制。
     方法人胚胎干细胞经拟胚体向神经元分化,在VEGF(10ng/mL)作用之前,分别在各阶段细胞中给予γ-分泌酶抑制剂和p38 MAPK抑制剂作用1h,免疫荧光法计算各阶段细胞阳性率,并与常规诱导组和单独VEGF作用组相比较,半定量RT-PCR分析各组细胞Notch信号靶基因Hes1mRNA和p38αmRNA表达。
     结果hESCs经由EB诱导分化为神经干细胞过程中,γ-分泌酶抑制剂预处理组与常规诱导组神经干细胞的阳性率无明显差异,p38 MAPK抑制剂预处理组的神经干细胞比例与VEGF组无明显差异;RT-PCR检测发现,VEGF作用组Hes1mRNA的表达强于γ-分泌酶抑制剂预处理组和常规诱导组,MTT检测VEGF作用组细胞增殖活性最强。在NSCs进一步分化为神经元中,γ-分泌酶抑制剂预处理组和VEGF作用组的神经元阳性率无明显差异;p38 MAPK抑制剂预处理组与常规诱导组的神经元比例无明显差异,RT-PCR分析显示,VEGF作用组p38αmRNA表达高于p38 MAPK抑制剂预处理组和常规诱导组。
     结论VEGF通过激活Notch信号转导通路,促进人胚胎干细胞经EB分化为神经干细胞。Notch信号抑制剂可以拮抗这一过程中VEGF的作用,而p38 MAPK与这一过程无明显相关。在人神经干细胞定向分化为神经元中,VEGF经由p38 MAPK途径,促进神经干细胞更多的分化为神经元。p38 MAPK抑制剂可以阻断VEGF的这一作用,Notch信号通路对这一过程不产生影响。
In recent years,the differentiation from human embryonic stem cells (hESCs) toneuronal cells provides an ideal vector for cell transplantation therapy of neurodegenerativediseases.The generation of neural stem cells (NSCs) is a key step in the induction fromembryonic stem cells to specific neurons or glial cells.There are broadly three kinds ofmethods used in hESCs differentiated into NSCs:First is the method with embryonic body(EB) culture period.It is the most widely used one.However,this method is too long andrequires a large amount of hESCs.Second one is co-culture with the special-induced stromalcells.But it has not been explained whether the factors secreted from stromal cells have othereffect on the neural cells.So this hinders the application to some extent.Third is the methodof using specific factors to direct differentiate embryonic stem cells.Studies found that whena variety of signal transduction in cells and cell interaction were removal,ESCsspontaneously differentiated into the neuronal cells.The inductions of NSCs from hESCsusing this method have been reported,but there does not form a unified and effective method.Researches of neurogenesis in the vertebrate have shown that vascular endothelial cellspromote adult neural stem cell proliferation through vascular niche In vitro,endothelial cellscan induce rat neural stem cells into neurons.Vascular endothelial growth factor (VEGF)secreted by endothelial cells,play an essential role in these process in vitro and in vivo.In the hippocampus,VEGF promot neural stem cells growth and survival through VEGFR2.Studiesfound that stern cells could produce signals to regulate the proliferation and differentiation ofthemselves.Preliminary studies have revealed Notch signal transduction pathway has animportant effect in the proliferation of multipotent neural stem cells.In addition,mitogenactivated protein kinase (MAPK) signal transduction pathway is widely expressed in thecentral nervous system.A variety of extracellular signals through this pathway may affect thesynaptic transmission and neurons survival.In this study,we use the EB method and thedirect differentiation to induce human embryonic stem cells into neural stem cells in order toexplore the suitable induction method.Then we will explore whether VEGF play a role in theneural differentiation of human embryonic stem cells in vitro and the effect of VEGF isrelated to Notch and p38 MAPK signal transduction pathway or not.
     PartⅠDifferentiation of Human Embryonic Stem Cells intoNeural Stem Cells in vitro
     Objective To find an efficient and economical method to differentiate humanembryonic stem cells into neural stem cells in vitro
     Methods hESCs were matured and free from the feeder layer,digested for thesingle-cell.The cells with 1×10~5 density cultured in dish and induced by Noggin and ITSFndirectly without EB culturing.
     Results By the direct differentiation,Nestin-positive NSCs were generated after 14~16days.The neural stem cells could be differentiated into neurons and glial cells.MAP2 andGFAP were detected after the differentiation of neural stem cells.
     Conclusion hESCs can successfully differentiate into neural stem cells without EBculture period in vitro.This method has the better effect than the traditional one and will beused for the cell transplantation in the research of nervous system diseases.
     PartⅡEffect of VEGF on Neural Differentiation ofHuman Embryonic Stem Cells in vitro
     Objective To observe the effect of VEGF on neural differentiation of human embryonicstem cells in vitro
     Methods After embryonic body formation,hESCs were differentiated into neuronalcells.10ng/mL VEGF or 10ng/mL VEGF + 10ng/mLVEGFR2/Fc were added at every stageof differentiation.The markers of every stage were detected through RT-PCR.Nestin andMAP2 expressing cells were detected via immunofluorescence method.The percentages ofthe imunostaining positive cells were determined by flow cytometer (FCM).
     Results The markers of different stages were detected by RT-PCR.The expression ofVEGFR2 was detected in human neural stem cells using RT-PCR.The percentage of Nestinand MAP2 positive cells in VEGF treated group were much higher than that in routineinduction group and VEGF+VEGFR2/Fc treated group.There was no difference betweenroutine induction group and VEGF+VEGFR2/Fc treated group.
     Conclusion hNSCs express VEGFR2.Low dose (10ng/mL) of VEGF,via VEGFR2,stimulates the proliferation of NSCs and the neuronal cells differentiation from humanembryonic stem cells in vitro.
     PartⅢThe Mechanism of VEGF on Neural Differentiation ofHuman Embryonic Stem in vitro
     Objective To study the mechanism of VEGF on the neural differentiation of hESCs invitro
     Methods hESCs were cultured and differentiated into neurons through the embryonic body.Before the VEGF (10ng/mL) was added,γ-secretase inhibitor and p38 MAPK inhibitorwere given at every stage of induction for 1h.The markers of every stage were detected andthe percentages of the imunostaining positive cells were counted throughimmunofluorescence.The expressions of HeslmRNA and p38αmRNA in each group weredetected by RT-PCR.
     Results The percentage of Nestin in theγ-secretase inhibitors pretreatment group wassimilar with the conventional group.The applications of p38 MAPK inhibitor produced thesimilar number of neural stem cells with the VEGF group;RT-PCR revealed that theexpression of HeslmRNA in the VEGF-treated group was higher thanγ-secretase inhibitorpreconditioning group and the conventional group.After the differentiation of NSCs intoneurons,the neurons generated fromγ-secretase inhibitors group and the VEGF-treated grouphad no significant difference,while the neurons of p38 MAPK inhibitor pretreatment groupand conventional induction group were similar.RT-PCR analysis showed that the expressionof p38αmRNA in the VEGF-treated group was higher than p38 MAPK inhibitorpreconditioning group and the conventional group.
     Conclusion Through the activation of Notch signal transduction pathway,VEGF play arole in promoting human embryonic stem cell differentiated into neural stem cells.Theinhibitor of Notch signaling can antagonize the effect of VEGF in this process.In thedifferentiation of human neural stem cells into neurons,VEGF can promote neural stem cellsto differentiate into more neurons via p38MAPK way.p38 MAPK inhibitors can block therole of VEGF in this process.
引文
1.Thomason JA,Kalishman J,Golos TG,and et al.Embryonic stem cell lines derived from human blastcysts.Science,1998,282(5):1145-1147.
    2.Doetsch F.The glial identity of neural stem cells [J].Nat Neurosci,2003,6(11):1127-1134.
    3.Zhang SC,Wernig M,Duncan ID,and et al.In vitro differentiation of transplantable neural precursors from human embryonic stem cells [J].Nat Biotechnol,2001,19(12):1129-1333
    4.Colombo E,Giannelli SG,Galli R,and et al.Embryonic stem-derived versus somatic neural stem cells:a comparative analysis of their developmental potential and molecularphenotype [J].Stem Cells,2006,24(4):825-834.
    5.Zeng X,Cai J,Chen J,and et al.Dopaminergic differentiation of human embryonic stem cells [J].Stem cells,2004,22(6):925-940
    6.Brederlau A,Correia AS,Anisimov SV,and et al.Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease:effect of in vitrodifferentiation on graft survival and teratoma formation[J].Stem cells,2006,24(6):1433-40.
    7.Shin S,Mitalipova M,Noggle S,and et al.Long-term proliferation of human embryonic stem cell-derived neuroepithelial cells using defined adherent culture conditions[J].Stem Cells,2006,24(1):125-138
    8.Tropepe V,Hitoshi S,Sirard C,and et al.Direct neural fate specification from embryonic stem cells:a primitive mammalian neural stem cell stage acquired through a default mechanism [J].Neuron,2001,30(1):65-78.
    9.Smukler SR,Runciman SB,Xu S,and et al.Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences [J].J Cell Biol,2006,172(1):79-90.
    10.Reubinoff BE,Itsykson P,Turetsky T,and et al.Neural progenitors from human embryonic stem cells[J]. Nat Biotechnol, 2001, 19(12): 1134-1140
    11. Ohlstein B, Kai T, Decotto E, and et al. The stem cell niche: theme and variations [J]. Curr Opin in Cell Bio, 2004; 16 (6): 693-699
    12. Nern C, Momma S. The realized niche of adult neural stem cells [J]. Stem Cell Rev. 2006; 2(3):233-240.
    13. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche [J]. Cell, 2004; 116 (6): 769-778
    14. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis [J]. J Comp Neurol, 2000; 425(4): 479-494.
    15. Peter Carmeliet. Blood vessels and nerves: common signals, pathways and diseases [J]. Nat Rev Genet, 2003, 4(9): 710-720
    16. Wurmser AE, Palmer TD, Gage FH. Neuroscience. Cellular interactions in the stem cell niche [J]. Science, 2004; 304 (5675): 1253-1255
    17. Breier G, Clauss M, Risau W. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development [J].Dev Dyn 1995; 204(3): 228-239.
    18. Millauer B, Wizigmann-Voos S, Schnurch H, and et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis [J]. Cell, 1993; 72(2): 835-846.
    19. Stone J, Itin A, Alon T, and et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor expression by neuroglia [J]. J Neurosci, 1995; 15(7): 4738-4747
    20. Maurer MH, Tripps WK, Feldmann RE Jr, and et al. Expression of vascular endothelial growth factor and its receptors in rat neural stem cells [J]. Neurosci Lett 2003; 344(3): 165-168.
    1. Thomason JA, Kalishman J, Golos TG, and et al. Embryonic stem cell lines derived from human blastcysts. Science, 1998,282(5): 1145-1147.
    2. Shamblott MJ, Axelman J, Wang S, and et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A. 1998, 95(23): 13726-31.
    3. Doetsch F. The glial identity of neural stem cells [J]. Nat Neurosci, 2003, 6(11): 1127-1134.
    4. Zhang SC, Wernig M, Duncan ID, and et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells [J]. Nat Biotechnol, 2001, 19(12):1129-1333
    5. Zeng X, Cai J, Chen J, and et al. Dopaminergic differentiation of human embryonic stem cells [J]. Stem cells, 2004, 22(6):925-940
    6. Brederlau A, Correia AS, Anisimov SV, and et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation [J]. Stem cells, 2006, 24(6): 1433-40.
    7. Shin S, Mitalipova M, Noggle S, and et al. Long-term proliferation of human embryonic stem cell-derived neuroepithelial cells using defined adherent culture conditions [J]. Stem Cells, 2006, 24(1):125-138
    8. Tropepe V, Hitoshi S, Sirard C, and and et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism [J]. Neuron, 2001, 30(l):65-78.
    9. Smukler SR, Runciman SB, Xu S, and et al. Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences [J]. J Cell Biol, 2006, 172(l):79-90.
    10. Reubinoff BE, Itsykson P, Turetsky T, and et al. Neural progenitors from human embryonic stem cells[J].Nat Biotechnol, 2001, 19(12): 1134-1140
    11. Chen H, Qian K, Zhang SM, and et al. The derivation of two additional human embryonic stem cell lines from day 3 embryos with low morphological scores [J]. Human Repro, 2005, 20(8):2201-2206
    12. Cai C and Grabel L. Directing the differentiation of embryonic stem cells to neural stem cells [J]. Dev Dyn. 2007, 236(12):3255-3266
    13. Okabe S, Forsberg-Nilsson K, Spiro AC, and et al. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro [J]. Mech Dev, 1996, 59(1):89-102
    14. Bibel M, Richter J, Schrenk K, and et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage [J]. Nat Neurosci, 2004, 7(9): 1003-1009.
    15. Colombo E, Giannelli SG, Galli R, and et al. Embryonic stem-derived versus somatic neural stem cells: a comparative analysis of their developmental potential and molecular phenotype [J].Stem Cells, 2006, 24(4):825-834.
    16. Barberi T, Klivenyi P, Calingasan NY, and et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice [J]. Nat Biotechnol, 2003, 21(10):1200-1207.
    17. Schulz TC, Noggle SA, Palmarini GM, and et al. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture [J]. Stem Cells, 2004, 22(7): 1218-1238.
    18. Schuldiner M, Yanuka O, Itskovitz-Eldor J, and et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells [J]. Proc Natl Acad Sci USA, 2000, 97(21):11307-11312.
    19. Von Bubnoff A, Cho KW. Intracellular BMP signaling regulation in vertebrates: pathway or network? [J]. Dev Biol, 2001, 239(1):1-14.
    20. Munoz-Sanjuan I, Brivanlou AH. Neural induction, the default model and embryonic stem cells [J]. Nat Rev Neurosci, 2002, 3(4):271-280.
    21. Xu RH, Peck RM, Li DS, and et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells [J]. Nat Methods, 2005, 2(3): 185-190.
    1. Peter Carmeliet. Blood vessels and nerves: common signals, pathways and diseases [J]. Nat Rev Genet, 2003, 4(9): 710-720
    2. Ohlstein B, Kai T, Decotto E, and et al. The stem cell niche: theme and variations [J]. Curr Opin in Cell Bio, 2004; 16 (6): 693-699
    3. Nern C, Momma S. The realized niche of adult neural stem cells [J]. Stem Cell Rev. 2006; 2(3):233-240.
    4. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche [J]. Cell, 2004; 116 (6): 769-778
    5. Wurmser AE, Palmer TD, Gage FH. Neuroscience. Cellular interactions in the stem cell niche [J]. Science, 2004; 304 (5675): 1253-1255
    6. Dumont DJ, Fong GH, Puri MC, and et al. Vascularization of the mouse embryo: a study of flic-1, tek, tie, and vascular endothelial growth factor expression during development [J]. Dev Dyn. 1995; 203(1): 80-92.
    7. Millauer B, Wizigmann-Voos S, Schnurch H, and et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis [J]. Cell, 1993; 72(2): 835-846.
    8. Breier G, Clauss M, Risau W. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development [J].Dev Dyn 1995; 204(3): 228-239.
    9. Ogunshola OO, Stewart WB, Mihalcik V, and et al. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain [J]. Brain Res Dev Brain Res. 2000; 119(1): 139-153.
    10. Stone J, Itin A, Alon T, and et al. Development of retinal vasculature is mediated by hypoxia-induccd vascular endothelial growth factor expression by neuroglia [J]. J Neurosci, 1995; 15(7): 4738-4747.
    11. Ferrara N, Carver-Moore K, Chen H, and et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene [J]. Nature, 1996; 380(6573): 439-442.
    12. Chen H, Qian K, Zhang SM, and et al. The derivation of two additional human embryonic stem cell lines from day 3 embryos with low morphological scores [J]. Hum Reprod, 2005, 20(8):2201-2206
    13. Ben-Hur T, Idelson M, Khaner H, and et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats [J]. Stem cells, 2004,22(7): 1246-1255
    14. Emanueli C, Schratzberger P, Kirchmair R, and et al. Paracrine control of vascularization and neurogenesis by neurotrophins [J]. Br J Pharmacol, 2003; 140(4): 614-619.
    15. Sun Y, Jin K, Childs JT, and et al. Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration [J].Dev Biol. 2006; 289(2):329-335.
    16. Cantarella G, Lempereur L, Presta M, and et al. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo [J]. FASEB J. 2002; 16(10):1307-1309.
    17. Hogan KA, Ambler CA, Chapman DL, and et al. The neural tube patterns vessels developmentally using the VEGF signaling pathway [J]. Development, 2004; 131(7):1503-1513.
    18. Larrivee B, Karsan A. Signaling pathways induced by vascular endothelial growth factor (review) [J]. Int J Mol Med, 2000, 5 (5):447-456.
    19. Narazaki M, Tosato G. Ligand-induced internalization select s use of common receptor neuropilin21 by VEGF165 and emaphorin3A [J] .Blood, 2006, 107 (10):3892-3901.
    20. Meng H, Zhang Z, Zhang R, and et al. Biphasic effects of exogenous VEGF on VEGF expression of adult neural progenitors [J]. Neurosci Lett, 2006, 393(2-3):97-101
    21. Mani N, Khaibullina A, Krum JM, and et al. Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants: receptor mediation and signal transduction pathways. Exp Neurol, 2005, 192 (2):394-406
    22. Raab S, Beck H, Gaumann A, and et al. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor [J]. Thromb Haemost 2004; 91(3): 595-605
    23. Zhu Y, Jin K, Mao XO, and et al. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression [J]. FASEB J, 2003, 17(2):186-193
    24. Kim BK, Kim SE, Shim JH, and et al. Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells [J]. FEBS Lett,2006, 580(25):5869-5874
    25. Maurer MH, Tripps WK, Feldmann RE Jr, and et al. Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett, 2003,344(3):165-168
    26. Schanzer A, Wachs FP, Wilhelm D, and et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor [J]. Brain Pathol 2004; 14(3): 237-248.
    27. Bai Y, Cui M, Meng Z, and et al. Ectopic expression of angiopoietin-1 promotes neuronal differentiation in neural progenitor cells through the Akt pathway [J] .Biochem Biophys Res Commun, 2009, 378(2):296-301
    28. Hansen TM, Moss AJ, Brindle NP. Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke [J]. Curr Neurovasc Res. 2008; 5(4):236-45
    29. Kikuno N, Kawamoto K, Hirata H, Nerve growth factor combined with vascular endothelial growth factor enhances regeneration of bladder acellular matrix graft in spinal cord injury-induced neurogenic rat bladder [J]. BJU Int. 2008, 103(10): 1424-1428
    1. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology [J].Cell, 1997, 88(3):287-298
    2. White PM, Morrison SJ, Orimoto K, and et al. Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals [J].Neuron,2001,29(1):57-71
    3. Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants [J]. Nat Neurosci, 2005, 8 (6):709-715
    4. Chen H, Qian K, Zhang SM, and et al. The derivation of two additional human embryonic stem cell lines from day 3 embryos with low morphological scores [J]. Hum Reprod, 2005, 20(8):2201-2206
    5. Shors TJ, Miesegaes G, Beylin A, and et al. Neurogenesis in the adult is involved in the formation of trace memories [J]. Nature, 2001, 410(6826): 372-376.
    6. Zhang J, Wang B, Xiao Z, and et al. Olfactory ensheathing cells promote proliferation and inhibit neuronal differentiation of neural progenitor cells through activation of Notch signaling [J]. Neuroscience, 2008, 153(2): 406-413
    7. Nam Y, Aster JC, Blacklow SC. Notch signaling as a therapeutic target [J]. Curr Opin Chem Biol, 2002, 6 (4): 501-509
    8. Hammerle B, Tejedor FJ. A novel function of DELTA-NOTCH signalling mediates the transition from proliferation to neurogenesis in neural progenitor cells [J]. PLoS ONE, 2007 14; 2(ll):ell69.
    9. Mizutani K, Yoon K, Dang L, and et al. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors [J]. Nature, 2007, 449(7160): 351-355
    10. Hatakeyama J, Bessho Y, Katoh K, and et al. Hes genes regulate size , shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation [J]. Development, 2004, 131 (22): 5539-5550.
    11. Katsube K, Sakamoto K. Notch in vertebrates -molecular aspects of the signal [J]. Int J Dev Biol, 2005, 49 (223):369-374.
    12. Morohashi Y, Kan T, Tominari Y, and et al. C-terminal fragment of presenilin is the molecular target of a dipeptiic gamma-secretase-specific inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) [J]. J Biol Chem, 2006, 281(21):14670-14676.
    13. Geling A, Steiner H, Willem M, and et al. A gamma-secretase inhibitor blocks Notch signaling in vivo and cause a severe neurogenic phenotype in zebrafish [J]. EMBO Rep, 2002, 3(7):688-694.
    14. Morooka T, Nishida E. Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells [J]. J Biol Chem. 1998,273(38):24285-24258
    15. Trouillas M, Saucourt C, Duval D, and et al. Bcl2, a transcription target of p38 alpha, is critical for neuronal commitment of mouse embryonic stem cells [J]. Cell Death Diff, 2008, 15(9):1450-1459.
    16. Sato K, Hamanoue M, Takamatsu K. Inhibitors of p38 mitogen-activated protein kinase enhance proliferation of mouse neural stem cells [J]. J Neurosci Res. 2008, 86(10):2179-89
    17. Takeda K, Ichijo H. Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system [J]. Genes Cells, 2002, 7(11):1099-1111
    18.Aouadi M, Bost F, Caron L,and et al. p38 mitogen-activated protein kinase activity commits embryonic stem cells to either neurogenesis or cardiomyogenesis [J].Stem Cells, 2006, 24(5): 1399-406.
    19. Jung KH, Chu K, Lee ST, and et al. Granulocyte colony-stimulating factor stimulates neurogenesis via vascular endothelial growth factor with STAT activation [J]. Brain Res, 2006, 16:1073-1074
    20. Yasuhara T, Shingo T, Muraoka K. and et al. The differences between high- and low-dose administration of VEGF to dopaminergic neurons of in vitro and in vivo Parkinson's disease model [J]. Brain Res, 2005, 1038(1):1-10
    1.Doetsch F.The glial identity of neural stem cells [J].Nat Neurosci,2003,6(11):1127-1134.
    2.Pierce GB,Dixon FJ,Jr.Testicular teratomas.I.Demonstration of teratogenesis by metamorphosis of multipotential cells [J].Cancer,1959,12(3):573-83.
    3.Stevens LC.Embryology oftesticular teratomas in strain 129 mice [J].J Natl Cancer Inst,1959,23:1249-1295.
    4.Smith AG,Heath JK,Donaldson DD,et al.Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides [J].Nature,1988,336(6200):688-690.
    5.Maye P,Becker S,Siemen H,et al.Hedgehog signaling is required for the differentiation of ES cells into neurectoderm [J].Dev Biol,2004,265(1):276-290.
    6.Rathjen J,Haines BP,Hudson KM,et al.Directed differentiation ofpluripotent cells to neural lineages:homogeneous formation and differentiation of a neurectoderm population [J].Development,2002,129(11):2649-2661.
    7.Lee SH,Lumelsky N,Studer L,et al.Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells [J].Nat Biotechnol,2000,18(6):675-679.
    8.Guan K,Chang H,Rolletschek A,et al.Embryonic stem cell-derived neurogenesis.Retinoic acid induction and lineage selection of neuronal cells [J].Cell Tissue Res,2001,305(2):171-176.
    9.Wobus AM,Guan K,Pich U.In vitro differentiation of embryonic stem cells and analysis of cellular phenotypes [J].Methods Mol Biol,2001,158:263-286.
    10.Okabe S,Forsberg-Nilsson K,Spiro AC,et al.Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro [J].Mech Dev. 1996, 59(1):89-102.
    11. Brustle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants [J]. Science, 1999, 285(5428):754-756.
    12. Bibel M, Richter J, Schrenk K, et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage [J]. Nat Neurosci, 2004, 7(9):1003-1009.
    13. Zhang S C, Wernig M, Duncan I D, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells [J]. Nat Biotechnol, 2001, 19(12):1129-1133
    14. Reubinoff BE, Itsykson P, Turetsky T, et al. Neural progenitors from human embryonic stem cells[J]. Nat Biotechnol, 2001, 19(12): 1134-1140
    15. Gallor, Zazzeroni F, Alesse E, et al. Ren: a novel, developmentally regulated gene that promotes neural cell differentiation [J].J Cell Biol, 2002, 158(4):731-740.
    16. Caldwell MA, He X, Wilkie N, et al. Growth factors regulate the survival and fate of cells derived from human neurospheres [J]. Nat Biotechnol, 2001,19(5):475-479.
    17. Carpenter MK, Cui X, Hu ZY, et al. In vitro expansion of a multipotent population of human neural progenitor cells [J]. Exp Neurol, 1999, 158(2):265-278
    18. Schuldiner M, Yanuka O, Itskovitz-Eldor J, et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells[J]. Proc Natl Acad Sci USA, 2000, 97(21): 11307-11312.
    19. Colombo E, Giannelli SG, Galli R, et al. Embryonic stem-derived versus somatic neural stem cells: a comparative analysis of their developmental potential and molecular phenotype[J].Stem Cells, 2006,24(4):825-834.
    20. Dale DC, Rosenberg PS, Alter BP. Lineage-specific hematopoietic growth factors [J]. N EnglJ Med, 2006, 354(19):2034-2045.
    21. Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity [J]. Neuron, 2000,28(1):31-40.
    22.Brederlau A, Correia AS, Anisimov SV, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation[J]. Stem cells, 2006, 24(6): 1433-40.
    23. Barberi T, Klivenyi P, Calingasan NY, et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice [J]. Nat Biotechnol, 2003, 21(10):1200-1207.
    24. Tropepe V, Hitoshi S, Sirard C, and et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism [J]. Neuron, 2001, 30(l):65-78.
    25. Stern CD. Neural induction: old problem, new findings, yet more questions [J].Development, 2005, 132(9):2007-2021.
    26. Smukler SR, Runciman SB, Xu S, et al. Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences [J]. J Cell Biol, 2006, 172(1):79-90.
    27. Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro [J]. Nat Biotechnol, 2000, 18(4):399-404.
    28. Chung S, Shin BS, Hedlund E, et al. Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation [J]. J Neurochem, 2006, 97(5):1467-1480.
    29. Fukuda H, Takahashi J, Watanabe K, et al. Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation [J]. Stem Cells, 2006, 24(3):763-771.
    30. Glaser T, Pollard SM, Smith A, et al. Tripotential differentiation of adherently expandable neural stem (NS) cells [J]. PLoS ONE, 2007, 2(3):e298.
    31. Conti L, Pollard SM, Gorba T, et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell [J]. PLoS Biol, 2005, 3(9):e283.
    32. Brons IG, Smithers LE, Trotter MW, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos [J]. Nature. 2007, 448(7150): 191-195.
    33. Tesar PJ, Chenoweth JG, Brook FA, and et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells [J]. Nature, 2007, 448(7150):196-199.
    34. Zhang SC. Neural subtype specification from embryonic stem cells [J]. Brain Pathol, 2006, 16(2):132-142.
    35. Xia C, Wang C, Zhang K, et al. Induction of a high population of neural stem cells with anterior neuroectoderm characters from epiblast-like P19 embryonic carcinoma cells [J]. Differentiation, 2007, 75(10):912-927.
    36. Munoz-Sanjuan I, Brivanlou AH. Neural induction, the default model and embryonic stem cells [J]. Nat Rev Neurosci, 2002, 3(4):271-280.
    37. Von Bubnoff A, Cho KW. Intracellular BMP signaling regulation in vertebrates: pathway or network? [J].Dev Biol, 2001, 239(1):1-14.
    38. Wichterle H, Lieberam I, Porter JA, et al. Directed differentiation of embryonic stem cells into motor neurons [J]. Cell, 2002, 110(3):385-397.
    39. Watanabe K, Kamiya D, Nishiyama A, et al. Directed differentiation of telencephalic precursors from embryonic stem cells [J].Nat Neurosci,2005,8(3):288-296.
    40. Sasal Y, Lu B, Steinbelsser H, et al. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus [J]. Nature, 1995, 378(6555):419.
    41. Otero JJ, Fu W, Kan L, et al. Beta-catenin signaling is required for neural differentiation of embryonic stem cells [J]. Development, 2004, 131(15):3545-3557.
    42. Montcouquiol M, Crenshaw EB 3rd, Kelley MW. Noncanonical Wnt signaling and neural polarity [J]. Annu Rev Neurosci, 2006, 29:363-386.
    43. Ross SE, Greenberg ME, Stiles CD. Basic helix-loop-helix factors in cortical development [J]. Neuron, 2003,39(1):13-25.
    44. Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants [J]. Nat Neurosci, 2005, 8(6):709-715.
    45. Lowell S, Benchoua A, Heavey B, et al. Notch promotes neural lineage entry by pluripotent embryonic stem cells [J]. PLoS Biol, 2006, 4(5):e121.
    46. Xu RH, Peck RM, Li DS, et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells [J]. Nat Methods, 2005, 2(3):185-190.
    47. Ying QL, Smith AG. Defined conditions for neural commitment and differentiation [J]. Methods Enzymol, 2003, 365:327-341.
    48. Sun Y, Jin K, Childs JT, et al. Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration [J].Dev Biol,2006, 289(2):329-335.
    49. Wada T, Haigh JJ, Ema M, et al. Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival [J].J Neurosci,2006,26(25):6803-6812.
    1.Ohlstein B,Kai T,Decotto E,et al.The stem cell niche:theme and variations [J].Curr Opin in Cell Bio,2004;16 (6):693-699
    2.Nern C,Momma S.The realized niche of adult neural stem cells [J].Stem Cell Rev.2006;2(3):233-240.
    3.Fuchs E,Tumbar T,Guasch G.Socializing with the neighbors:stem cells and their niche [J].Cell,2004;116 (6):769-778
    4.Wurmser AE,Palmer TD,Gage FH.Neuroscience.Cellular interactions in the stem cell niche [J].Science,2004;304 (5675):1253-1255
    5.Senger DR,Galli SJ,Dvorak AM,et al.Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid [J].Science,1983,219 (4587):983-985.
    6.Ferrara N,Henzel WJ.Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells [J].Biochem Biophys Res Commun,1989,161 (2):851-858.
    7.Houck KA,Ferrara N,Winer J,et al.The vascular endothelial growth factor family:identification of a fourth molecular species and characterization of alternative splicing of RNA [J].Mol Endocrinol,1991,5 (12):1806-1814.
    8.Siegfried G,Basak A,Cromlish JA,et al.The secretory proprotein convertases furin,PC5,and PC7 activate VEGF-C to induce tumorigenesis [J].J Clin Invest,2003,111 (11):1723-1732.
    9.Ferrara N,Gerber HP,LeCouter J.The biology of VEGF and its receptors [J].Nat Med,2003,9(6):669-676.
    10.Takashima S,Kitakaze M,Asakura M,et al.Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis [J]. Proc Natl Acad Sci USA, 2002, 99 (6) :3657-3662.
    11. Dumont DJ, Fong GH, Puri MC, et al. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development [J].DevDyn. 1995; 203(1): 80-92.
    12. Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis [J]. Cell, 1993; 72(2): 835-846.
    13. Breier G, Clauss M, Risau W. Coordinate expression of vascular endothelial growth factor receptor-1 (fit-1) and its ligand suggests a paracrine regulation of murine vascular development [J].Dev Dyn 1995; 204(3): 228-239.
    14. Ogunshola OO, Stewart WB, Mihalcik V, et al. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain [J]. Brain Res Dev Brain Res. 2000; 119(1): 139-153.
    15. Stone J, Itin A, Alon T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor expression by neuroglia [J]. J Neurosci, 1995; 15(7): 4738-4747.
    16. Sinor AD, Irvin SM, Cobbs CS, et al. Hypoxic induction of vascular endothelial growth factor protein in astroglial cultures [J]. Brain Res, 1998; 812(1): 289-291.
    17. Krum JM, Rosenstein JM. VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS [J]. Exp Neurol, 1998; 154(1): 57-65.
    18. Samii A, Unger J, Lange W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats [J]. Neurosci Lett 1999; 262(3): 159-162.
    19. Rosenstein JM, Mani N, Silverman WF, and et al. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo [J]. Proc Natl Acad Sci USA, 1998; 95(12): 7086-7091.
    20. Jung KH, Chu K, Lee ST, et al. Granulocyte colony-stimulating factor stimulates neurogenesis via vascular endothelial growth factor with STAT activation [J]. Brain Res,2006, 16 (1073-1074): 190-201.
    21. Louissaint AJr, Rao S, Leventhal C, et al. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain [J]. Neuron, 2002, 34 (6):945-960.
    22. Breier G, Blum S, Peli J, et al. Transformimg growth factor-beta and Ras regulate the VEGF/ VEGF-receptor system during tumor angiogenesis [J]. Int J Cancer, 2002,97(2):142-148.
    23. Cobbs CS, Chen J, Greenberg DA , et al. Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat [J]. Neurosci Lett, 1998, 249 (2-3):79-82.
    24. Lennmyr F, Terent A, Syvanen AC, et al. Vascular endothelial growth factor gene expression in middle cerebral artery occlusion in the rat [J]. Acta Anaesthesiol Scand, 2005, 49 (4):488-493.
    25. Carmeliet P. Blood vessels and nerves: common signals, pathways and diseases [J]. Nat Rev Genet, 2003; 4(9): 710-720.
    26. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene [J]. Nature, 1996; 380(6573): 439-442.
    27. Maes C, Carmeliet P, Moermans K, et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188 [J]. Mech Dev, 2002; 111(1): 61-73.
    28. Schwarz Q, Gu C, Fujisawa H, et al. Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve [J]. Genes Dev, 2004; 18(22): 2822-2834.
    29. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis [J]. J Comp Neurol, 2000; 425(4): 479-494.
    30. Schanzer A, Wachs FP, Wilhelm D, et al. Direct stimulation of aduh neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor [J]. Brain Pathol, 2004; 14(3): 237-248.
    31. Shen Q, Goderie SK, Jin L, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells [J]. Science, 2004; 304(5675): 1338-1340.
    32. Raab S, Beck H, Gaumann A, et al. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor [J]. Thromb Haemost 2004; 91(3): 595-605.
    33. Zhu Y, Jin K, Mao XO, et al. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression [J]. FASEB J 2003; 17(2):186-193.
    34. Qiu MH, Zhang R, Sun FY. Enhancement of ischemia-induced tyrosine phosphorylation of Kv1.2 by vascular endothelial growth factor via activation of phosphatidylinositol 3-kinase [J]. J Neurochem 2003; 87(6): 1509-1517.
    35. Cheng L, Jia H, Lohr M, et al. Anti-chemorepulsive effects of vascular endothelial growth factor and placental growth factor-2 in dorsal root ganglion neurons are mediated via neuropilin-1 and cyclooxygenase-derived prostanoid production [J]. J Biol Chem 2004;279(29): 30654-30661.
    36. Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor stimulates neurogenesis in vitro and in vivo [J]. Proc Natl Acad Sci USA, 2002; 99(18): 11946-11950.
    37. Maurer MH, Tripps WK, Feldmann RE Jr, et al. Expression of vascular endothelial growth factor and its receptors in rat neural stem cells [J]. Neurosci Lett 2003; 344(3): 165-168.
    38. Bagnard D, Vaillant C, Khuth ST, et al. Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor [J]. J Neurosci, 2001, 21(10):3332-3341.
    39. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal [J]. J Mol Neurosci 2000; 14(3): 197-203.
    40. Matsuzaki H, Tamatani M, Yamaguchi A, et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades [J]. FASEB J, 2001; 15(7): 1218-1220.
    41. Wick A, Wick W, Waltenberger J, et al. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt [J]. J Neurosci, 2002; 22(15): 6401-6407.
    42. Jin K, Mao XO, Batteur SP, et al. Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor. Neuroscience 2001; 108(2): 351-358.
    43. Svensson B, Peters M, Konig HG, et al. Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism [J]. J Cereb Blood Flow Metab, 2002; 22(10):1170-1175.
    44. Ogunshola OO, Antic A, Donoghue MJ, et al. Paracrine and autocrine functions of neuronal vascular endothelial growth factor in the central nervous system [J]. J Biol Chem, 2002; 277(13): 11410-11415.
    45. Zhang H, Vutskits L, Pepper MS, et al. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors [J]. J Cell Biol, 2003; 163(6): 1375-1384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700