海洋假单胞菌来源的新型海藻糖合成酶的基因克隆、表达及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻糖是一种稳定的非还原二糖广泛存在于多种生物体内。由于其性质特殊,海藻糖在生物医药、食品、化妆品等多个领域有广泛的应用,但其市场应用由于生产成本过高而受到限制。目前在生物体内已经鉴定了至少5条海藻糖合成酶途径。在这5条途径中,海藻糖合成酶(trehalose synthase, TreS)途径是以低成本的麦芽糖为底物,通过转糖基作用一步法生成海藻糖,具有良好的工业应用前景。
     海洋是一个复杂的生态大环境,具有高盐、高压、低温、缺氧等一系列复杂的特点,来源于海洋微生物的酶通常具有一些特殊的酶学性质。此外,海藻糖能够在极端环境下对微生物产生保护作用,海洋微生物为了能在海洋中生存需要产生较多的海藻糖来对抗环境压力。因此,从海洋微生物中筛选具有潜在工业应用价值的新型TreS是一个非常有用的途径。
     目前,虽然已有多篇来源于不同物种的TreS的克隆、表达及性质研究的文献报道,但还没有一个关于海洋微生物来源的TreS的相关报道。在本研究中,通过筛选本课题组的海洋微生物菌株库,我们获取了一个新型的海洋微生物来源的tres基因。我们将该tres基因在大肠杆菌中重组表达并将重组蛋白纯化。此外,我们对该酶可能参与底物结合或催化的重要残基进行了鉴定,并对该酶催化麦芽糖和海藻糖相互转化过程中可能的机制也进行了探讨。第一部分:新型tres基因的获取、克隆、表达及纯化
     首先,从171株海洋微生物菌株中我们筛选到一个TreS高产菌株P8005。通过设计简并引物与PCR扩增,我们获得了一长648bp的核心序列。随后,通过TAIL-PCR,我们获取了一个长度为3369bp,编码1122aa,理论分子量大小为126kDa的开放式阅读框。通过氨基酸序列比对,我们发现该序列与文献已报道的海藻糖合成酶序列一致在29%-35%之间。该序列已提交至Genbank数据库(GenbankAccession No: JQ951963)。该序列被命名为G526。
     随后,我们以pET-32a为原核表达载体,构建了重组表达载体pET-32a-G526,并将该重组载体导入大肠杆菌BL21(DE3)中进行了重组表达。经过IPTG诱导后,成功诱导出大量重组蛋白(rG526)。含有重组蛋白的菌体经过超声破碎、离心得到的上清液,用Ni柱进行亲和纯化,纯化后得到的蛋白经蛋白电泳分析为单一条带,大小为141kDa(含亲和标签),与理论值一致。
     第二部分:rG526重组蛋白的酶学性质研究
     我们以麦芽糖和海藻糖为底物对rG526的酶学性质进行研究。rG526能够催化麦芽糖和海藻糖的相互转化,反应达到平衡点时麦芽糖和海藻糖间的比例大约是7:3。此外,该酶在催化麦芽糖生成海藻糖的过程中还生成一定量的葡萄糖(占总产物的5%)。经过动力学参数测定,发现相比海藻糖,rG526对麦芽糖具有较高的亲和力和催化效率(Km/kcat)。rG526的最适反应温度和最适反应pH分别是37℃和pH7.2。该酶在0℃-40℃温育1h能保持85%以上活性,当保温温度超过50℃,酶的活性只能保持原来的10%。不同的金属离子和抑制剂对酶的活性有一定的影响,其中Cu2+和SDS对酶的活性有显著抑制作用。K+浓度对酶的活性有显著影响,K+浓度在20-40mM时,rG526具有最高的催化活性。
     第三部分:rG526重要功能残基鉴定与催化特性研究
     通过序列比对,我们发现G526的氨基酸序列与结构已知蛋白的海藻酮糖合成酶MutB(PDB:1_ZJA)的氨基酸序列一致性较高(N端一致性达32%)。我们以MutB的三维结构作为模板,对G526进行同源建模。同源建模结果显示了G526中的一些残基可能参与催化或与底物发生作用。通过定点突变实验,我们发现,D78A、Y81A、H121A、D219A、E261A、H331A和D332A残基的突变会使G526活性大幅降低。此外,我们还对rG526的催化特性进行了研究。通过同位素底物标记实验证实,二氘标记的海藻糖和未标记的海藻糖经过酶的催化反应产生的是二氘标记的二糖以及未标记的二糖。另外,7个氘标记的葡萄糖不会在反应过程中掺入到二糖中,说明该酶的催化机制为分子内转糖基的反应机制。
     结论:
     在本研究中我们从海洋假单胞菌中获得了一新型的TreS。该TreS能够催化麦芽糖和海藻糖之间的相互转化并且其平衡点朝向生成海藻糖的方向,该结果表明该酶可能具有潜在工业应用价值。在本研究中还找到一些可能参与催化或底物结合的重要残基:D78、Y81、H121、D219、E261、H331、D332A。这些氨基酸残基可作为候选残基进一步进行结构和功能的研究。同位素底物标记实验表明:该酶在催化底物麦芽糖和海藻糖相互转化过程中采用的是一个彻底的分子内转化机制。
Trehalose is a stable and non-reducing disacarides showing widespread occurrencein many organisms. Trehalose has many applications in the pharmaceutical, food andcosmetics industries due to its special characteristics. However, its applications arelimited by the high cost of production. Until now, At least five biological pathwayswere found in organisms for trehalose production. Among them, Trehalose synthase(TreS) utilizes the low cost substrate of maltose and convert it to trehalose in one step.This pathway is prospective for the industrial production of trehalose.
     The ocean is a complicated environment which has the characteristics of salinity,high pressure, cold and hypoxia. In addition, trehalose can protect microorganismsagainst environmental pressures. Marine microorganisms, to achieve tolerance, willincrease the level of cytosolic trehalose to cope with external stress. Therefore,screening TreS-producing strains from the ocean and isolating the effective enzyme isprespective for the production of trehalose.
     Although cloning, expression and characterization of several tres genes from manydifferent strains have been reported, tres genes from marine microorganisms have notbeen investigated until now. In this study, a novel tres gene was obtained from a marinePseudomonas. This new gene was cloned and expressed in Escherichia coli.(E.coli)and the recombinant enzyme was purified and characterized. Several importantresidues that might be involved in catalysis or substrate binding were identified bysite-directed mutagenesis. In addition, possible mechanism concerning the aglyconerearrangement during the conversion between maltose and trehalose catalyzed by thisenzyme was also investigated in this study.
     Section I: Isolation, cloning, expression and purification of this novel tres gene
     Pseudomonas sp. P8005, which demonstrated the highest activity of trehaloseproduction, was isolated from hundreds of marine bacteria collected by this laborary. Acore region of648bp was obtained by degenerate PCR. Subsequently, an open readingframe (ORF) with a length of3369bp, encoding1122amino acids and with a predictedmolecular weight of126kDa was obtained by thermal asymmetric interlaced PCR(TAIL-PCR). The amino acids sequence identities between this TreS and otherreported TreS was relatively low (29%-35%). The new sequence was submitted toGenbank database (Genbank Accession No: JQ951963). The novel tres gene wasnamed G526.
     Then the recombinant expression vector pET-32a-G526was constructed andtransformed into E. coli strain BL21(DE3). The recombinant TreS (rG526) wasproduced after induction. After ultrasonication and centrifugation, the purified rG526was obtained by using the Ni sepharose affinity chromatography. After purification,one major protein band at about141kDa which corresponded to the theoretical valuecould be found in SDS-PAGE.
     Section II Enzymatic characterization of rG526
     The recombinant enzyme can catalyze the interconversion between maltose andtrehalose. The ratio of maltose to trehalose at equilibrium point is about3:7. In additionto trehalose, a small amount of glucose (about5%of the total yield) is produced duringthe reaction. The novel enzyme has a higher affinity and a higher catalytic efficiency(Km/kcat) towards maltose than towards trehalose. The optimal pH and temperature ofrG526was pH7.2and37℃, respectively. It can remain over80%of its initial activityafter pre-incubated at temperature below40℃for1h. When the pre-incubationtemperature is over50℃,the residual activity is less than10%of its initial activity.Reagents such as Cu2+and SDS had strong inhibition on the enzymatic activity ofrG526. Adequate concentration of K+was necessary for the enzymatic activity. This enzyme demonstrated the highest activity at20-40mM of K+.
     Section III Identification of functional important residues and investigation ofpossible catalytic mechanisms of rG526
     By searching the PDB database, the amino acids sequence was shown to have highidentities with the structural solved protein, trehalulose synthase MutB (PDB:1_ZJA).Several important residues involved in catalysis or substrate binding have already beenidentified in the crystal structure of MutB. By sequence alignment, severalcorresponding residues were also found in G526(D78, Y81, H121, D219, E261, H331and D332). These residues were individually replaced by alanine. The dramaticallydecrease of each mutant enzyme implied that these residues might be important incatalysis or substrate binding. By using isotope-labeled substrate, it was demonstratedthat [2H2] trehalose combined with unlabeled trehalose could not convert to [2H]trehalose or [2H] maltose and no incorporation of [2H7] glucose into maltose ortrehalose happened during the reaction catalyzed by rG526.
     Conclusion
     A novel TreS was obtained from marine Pseudomonas in this study. This TreS cancatalyze the interconversion between maltose and trehalose and the equilibrium point istowards production of trehalose indicating its potential application in industry. Severalresidues that might be important in catalysis or substrate binding was also identified inthis study, including: D78, Y81, H121, D219, E261, H331and D332. Isotope-labeledsubstrate experiments demonstrated that this enzyme involved a completelyintramolecular mechanism.
引文
[1] Elbein AD, Pan YT, Pastuszak I, Carroll D: New insights on trehalose: amultifunctional molecule [J]. Glycobiology,2003,13:17R–27R.
    [2] Thevelein JM: Regulation of trehalose mobilization in fungi [J]. Microbiol Rev,1984,48:42-59
    [3] Becker A, Schl der P, Steele JE, Wegener G: The regulation of trehalosemetabolism in insects.[J]. Experientia1996,52:433-439
    [4] Simola M, H nninen AL, Stranius SM, Makarow M: Trehalose is required forconformational repair of heat-denatured proteins in the yeast endoplasmic reticulumbut not for maintenance of membrane traffic functions after severe heat stress [J]. MolMicrobiol,2000,37:42-53
    [5] Kandror O, DeLeon A, Goldberg AL: Trehalose synthesis is induced uponexposure of Escherichia coli to cold and is essential for viability at low temperatures[J]. Proc Natl Acad Sci U S A,2002,99:9727-9732
    [6] Mahmud SA, Nagahisa K, Hirasawa T, Yoshikawa K, Ashitani K, Shimizu H:Effect of trehalose accumulation on response to saline stress in Saccharomycescerevisiae [J]. Yeast,2009,26:17-30
    [7] Al-Bader N, Vanier G, Liu H, Gravelat FN, Urb M, Hoareau CM, Campoli P,Chabot J, Filler SG, Sheppard DC: Role of trehalose biosynthesis in Aspergillusfumigatus development, stress response, and virulence [J]. Infect Immun,2010,78:3007-3018
    [8] Brennan PJ, Nikaido H: The envelope of mycobacteria [J]. Annu Rev Biochem1995,64:29-63
    [9] Bansal-Mutalik R, Nikaido H: Quantitative lipid composition of cell envelopes ofCorynebacterium glutamicum elucidated through reverse micelle extraction [J]. ProcNatl Acad Sci U S A,2011,108:15360-15365
    [10] Hunter RL, Armitige L, Jagannath C, Actor JK: TB research at UT-Houston--areview of cord factor: new approaches to drugs, vaccines and the pathogenesis oftuberculosis [J]. Tuberculosis (Edinburgh, Scotland)2009,89Suppl1:S18–25.
    [11] Kalscheuer R, Weinrick B, Veeraraghavan U, Besra GS, Jacobs WR Jr:Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential forvirulence of Mycobacterium tuberculosis [J]. Proc Natl Acad Sci U S A,2010,107:21761-21766
    [12] Ohtake S, Wang YJ: Trehalose: current use and future applications [J]. J PharmSci,2011,100:2020-2053
    [13] Kang MS, Jang H, Kim MC, Kim MJ, Joh SJ, Kwon JH, Kwon YK:Development of a stabilizer for lyophilization of an attenuated duck viral hepatitisvaccine [J]. Poult Sci,2010,89:1167-1170
    [14] Lynch AL, Slater NK: Influence of intracellular trehalose concentration andpre-freeze cell volume on the cryosurvival of rapidly frozen human erythrocytes [J].Cryobiology,2011,63:26-31
    [15] Luyckx J, Baudouin C: Trehalose: an intriguing disaccharide with potential formedical application in ophthalmology [J]. Clin Ophthalmol,2011,5:577-581
    [16] Pan YT, Carroll JD, Elbein AD: Trehalose-phosphate synthase of Mycobacteriumtuberculosis. Cloning, expression and properties of the recombinant enzyme [J]. Eur JBiochem,2002,269:6091-6100
    [17] Edavana VK, Pastuszak I, Carroll JD, Thampi P, Abraham EC, Elbein AD:Cloning and expression of the trehalose-phosphate phosphatase of Mycobacteriumtuberculosis: comparison to the enzyme from Mycobacterium smegmatis [J]. ArchBiochem Biophys,2004,426:250-257
    [18] Nakada T, Maruta K, Tsusaki K, Kubota M, Chaen H, Sugimoto T, Kurimoto M,Tsujisaka Y: Purification and properties of a novel enzyme, maltooligosyl trehalosesynthase, from Arthrobacter sp. Q36[J]. Biosci Biotechnol Biochem,1995,59:2210-2214
    [19] Nakada T, Maruta K, Mitsuzumi H, Kubota M, Chaen H, Sugimoto T, KurimotoM, Tsujisaka Y: Purification and characterization of a novel enzyme, maltooligosyltrehalose trehalohydrolase, from Arthrobacter sp. Q36[J]. Biosci Biotechnol Biochem,1995,59:2215-2218
    [20] Nishimoto T, Nakano M, Nakada T, Chaen H, Fukuda S, Sugimoto T, KurimotoM, Tsujisaka Y: Purification and properties of a novel enzyme, trehalose synthase,from Pimelobacter sp. R48[J]. Biosci Biotechnol Biochem,1996,60:640-644
    [21] Pan YT, Koroth Edavana V, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I,Elbein AD: Trehalose synthase of Mycobacterium smegmatis: purification, cloning,expression, and properties of the enzyme [J]. Eur J Biochem2004,271:4259-4269
    [22] Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T,Kurimoto M: Cloning and sequencing of trehalose synthase gene from Thermusaquaticus ATCC33923[J]. Biochim Biophys Acta,1997,1334:28-32
    [23] Chen YS, Lee GC, Shaw JF: Gene cloning, expression, and biochemicalcharacterization of a recombinant trehalose synthase from Picrophilus torridus inEscherichia coli [J]. J Agric Food Chem,2006,54:7098-7104
    [24] Lee JH, Lee KH, Kim CG, Lee SY, Kim GJ, Park YH, Chung SO: Cloning andexpression of a trehalose synthase from Pseudomonas stutzeri CJ38in Escherichiacoli for the production of trehalose [J]. Appl Microbiol Biotechnol.2005,68:213-219
    [25] Xiuli W, Hongbiao D, Ming Y, Yu Q: Gene cloning, expression, andcharacterization of a novel trehalose synthase from Arthrobacter aurescens [J]. ApplMicrobiol Biotechnol2009,83:477-482
    [26] Yue M, Wu XL, Gong WN, Ding HB: Molecular cloning and expression of anovel trehalose synthase gene from Enterobacter hormaechei [J]. Microb Cell Fact2009,8:34
    [27] Zhu Y, Wei D, Zhang J, Wang Y, Xu H, Xing L, Li M: Overexpression andcharacterization of a thermostable trehalose synthase from Meiothermus ruber [J].Extremophiles2010,14:1-8
    [28] Zhang C, Kim SK: Research and application of marine microbial enzymes: statusand prospects [J]. Mar Drugs2010,8(6):1920-34
    [29] Zhang C, Kim SK: Application of marine microbial enzymes in the food andpharmaceutical industries [J]. Adv Food Nutr Res2012,65:423-35
    [30] Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA: Role of trehalose insurvival of Saccharomyces cerevisiae under osmotic stress [J]. Microbiology,1998,144:671-680
    [31] Giannesi GC, Polizeli MLTM, Terenzi HF, et al. A novel a-glucosidase fromChaetomium thermophilum var. coprophilum that converts maltose into trehalose:purification and partial characterization of the enzyme [J]. Process Biochemistry,2006,41:17291735.
    [32] Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR ArrietaJM, Herndl GJ. Microbial diversity in the deep sea and the underexplored "rarebiosphere"[J]. Proc Natl Acad Sci,2006,103:12115-20
    [33] Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: automatableamplification and sequencing of insert end fragments from P1and YAC clones forchromosome walking [J]. Genomics,1995,25(3):674-81
    [34] Terauchi R, Kahl G: Rapid isolation of promoter sequences by TAIL-PCR: the5'-flanking regions of Pal and Pgi genes from yams (Dioscorea)[J]. Mol Gen Genet2000,263(3):554-60
    [35] Wang JH, Tsai MY, Chen JJ, Lee GC, Shaw JF: Role of the C-terminal domain ofThermus thermophilus trehalose synthase in the thermophilicity, thermostability, andefficient production of trehalose [J]. J Agric Food Chem,2007,55(9):3435-43.
    [36] Wang Y, Zhang J, Wang W, Liu Y, Xing L, Li M: Effects of the N-terminal andC-terminal domains of Meiothermus ruber CBS-01trehalose synthase onthermostability and activity [J]. Extremophiles,2011,16:377-385
    [37] Rose TM: CODEHOP-mediated PCR-a powerful technique for the identificationand characterization of viral genomes [J]. Virol J,2005,2:20
    [38] Staheli JP, Boyce R, Kovarik D, Rose TM: CODEHOP PCR and CODEHOPPCR primer design [J]. Methods Mol Biol,2011,687:57-73
    [39] Buisson G, Duée E, Haser R, Payan F: Three dimensional structure of porcinepancreatic alpha-amylase at2.9A resolution. Role of calcium in structure and activity[J]. EMBO J,1987,6:3909-3916
    [40] Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: TheCarbohydrate-Active EnZymes database (CAZy): an expert resource forGlycogenomics [J]. Nucleic Acids Res.2009;37(Database issue):D233-8.
    [41] MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structureto specificity in the alpha-amylase family of enzymes [J]. Biochim Biophys Acta2001,1546:1-20
    [42] Koh S, Kim J, Shin HJ, Lee D, Bae J, Kim D, Lee DS: Mechanistic study of theintramolecular conversion of maltose to trehalose by Thermus caldophilus GK24trehalose synthase [J]. Carbohydr Res2003,338:1339-1343
    [43] Zhang R, Pan YT, He S, Lam M, Brayer GD, Elbein AD, Withers SG:Mechanistic analysis of trehalose synthase from Mycobacterium smegmatis [J]. J BiolChem,2011,286:35601-35609
    [44] Ravaud S, Watzlawick H, Haser R, Mattes R, Aghajari N. Expression,purification, crystallization and preliminary X-ray crystallographic studies of thetrehalulose synthase MutB from Pseudomonas mesoacidophila MX-45[J]. ActaCrystallogr Sect F Struct Biol Cryst Commun,2005;61(Pt1):100-3.
    [45] Ravaud S, Robert X, Watzlawick H, Haser R, Mattes R, Aghajari N: TrehaluloseSynthase Native and Carbohydrate Complexed Structures Provide Insight into sucroseIsomerization [J]. J Biol Chem,2007,282:28126-28136
    [46]李镭,丁宏标,余晓斌,乔宇.海藻糖酶法合成途径及其酶基因的重组表达研究[J].生物技术通报,2007,(3):80-83
    [47]张文德谷氨酸棒杆菌海藻糖合成相关酶基因的克隆与表达[D].北京:中国农业科学院,2009
    [48] Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP,Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M: Trehalose: a review ofproperties, history of use and human tolerance, and results of multiple safety studies[J]. Food Chem Toxicol2002,40:871-98. Review
    [49] Colaco C, Kampinga J, Roser B: Amorphous stability and trehalose [J]. Science1995;268(5212):788
    [50] Cola o C, Sen S, Thangavelu M, Pinder S, Roser B: Extraordinary stability ofenzymes dried in trehalose: simplified molecular biology [J]. Biotechnology,1992,10(9):1007-11
    [51] Jeffrey GA: Crystallographic studies of carbohydrates [J]. Acta Crystallogr B.1990;46(Pt2):89-103
    [52] Carpenter JF, Crowe JH: An infrared spectroscopic study of the interactions ofcarbohydrates with dried proteins [J]. Biochemistry,1989,28(9):3916-22
    [53] Arakawa T, Kita Y, Carpenter JF: Protein--solvent interactions in pharmaceuticalformulations [J]. Pharm Res,1991,8(3):285-91
    [54]朱玥明.红色亚栖热菌海藻糖合成酶相关基因的克隆、表达以及海藻糖代谢途径的研究[D].天津:天津南开大学,2009.
    [55] Xie G, Timasheff SN: The thermodynamic mechanism of protein stabilization bytrehalose [J]. Biophys Chem,1997,64(1-3):25-43
    [56] Baptista RP, Pedersen S, Cabrita GJ, Otzen DE, Cabral JM, Melo EP:Thermodynamics and mechanism of cutinase stabilization by trehalose [J].Biopolymers,2008,89(6):538-47
    [57]宋晓丽,石东升,温佳文,张庆文,洪厚胜.海藻糖的生物合成途径及其生物学功能[J].食品与发酵工业,2013,39(8):167-171
    [58] Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Van derZee P, Wiemken A: Characterization of the56-kDa subunit of yeasttrehalose-6-phosphate synthase and cloning of its gene reveal its identity with theproduct of CIF1, a regulator of carbon catabolite inactivation [J]. Eur J Biochem,1992;209(3):951-9
    [59] Singer MA, Lindquist S: Thermotolerance in Saccharomyces cerevisiae: the Yinand Yang of trehalose [J]. Trends Biotechnol,1998,16(11):460-8.
    [60] Benaroudj N, Lee DH, Goldberg AL. Trehalose accumulation during cellularstress protects cells and cellular proteins from damage by oxygen radicals [J]. J BiolChem,2001,276(26):24261-7
    [61] Vila a R, Mendes V, Mendes MV, Carreto L, Amorim MA, de Freitas V,Moradas-Ferreira P, Mateus N, Costa V: Quercetin protects Saccharomyces cerevisiaeagainst oxidative stress by inducing trehalose biosynthesis and the cell wall integritypathway [J]. PLoS One2012,7(9):e45494. doi:10.1371/journal.pone.0045494. Epub2012Sep18.
    [62] Mahmud SA, Nagahisa K, Hirasawa T, Yoshikawa K, Ashitani K, Shimizu H:Effect of trehalose accumulation on response to saline stress in Saccharomycescerevisiae [J]. Yeast,2009,26:17-30
    [63] Kalscheuer R, Syson K, Veeraraghavan U, Weinrick B, Biermann KE, Liu Z,Sacchettini JC, Besra G, Bornemann S, Jacobs WR Jr.: Self-poisoning ofMycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway [J]. NatChem Biol,2010,6(5):376-84
    [64] Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R,Lunn JE, Stitt M, Schmid M: Regulation of flowering by trehalose-6-phosphatesignaling in Arabidopsis thaliana [J]. Science,2013,339(6120):704-7
    [65]刘俊梅.水生栖热菌海藻糖合酶体外定向进化及重组菌BL35细胞透性化技术研究[D].吉林省长春市:吉林农业大学,2011
    [66] Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A,Thevelein JM: Composition and functional analysis of the Saccharomyces cerevisiaetrehalose synthase complex [J]. J Biol Chem,1998,273(50):33311-9
    [67] Kaasen I, McDougall J, Str m AR: Analysis of the otsBA operon forosmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA andOtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex [J].Gene,1994,145(1):9-15
    [68] Bonini BM, Van Vaeck C, Larsson C, Gustafsson L, Ma P, Winderickx J, VanDijck P, Thevelein JM: Expression of escherichia coli otsA in a Saccharomycescerevisiae tps1mutant restores trehalose6-phosphate levels and partly restores growthand fermentation with glucose and control of glucose influx into glycolysis [J].Biochem J,2000,350Pt1:261-8.
    [69] Zhang N, Wang F, Meng X, Luo S, Li Q, Dong H, Xu Z, Song R: Molecularcloning and characterization of a trehalose-6-phosphate synthase/phosphatase fromDunaliella viridis [J]. Mol Biol Rep,2011,38(4):2241-8
    [70] Seo JS, An JH, Cheong JJ, Choi YD, Kim CH: Bifunctional recombinant fusionenzyme between maltooligosyltrehalose synthase and maltooligosyltrehalosetrehalohydrolase of thermophilic microorganism Metallosphaera hakonensis [J].Microbiol Biotechnol,2008,18(9):1544-9
    [71] Pan YT, Carroll JD, Asano N, Pastuszak I, Edavana VK, Elbein AD: Trehalosesynthase converts glycogen to trehalose [J]. FEBS J,2008,275(13):3408-20
    [72] Kim HJ, Kim AR, Jeon SJ: Immobilization on chitosan of a thermophilictrehalose synthase from Thermus thermophilus HJ6[J]. J Microbiol Biotechnol,2010,20(3):513-7
    [73] Wannet WJ, Op den Camp HJ, Wisselink HW, van der Drift C, Van Griensven LJ,Vogels GD: Purification and characterization of trehalose phosphorylase from thecommercial mushroom Agaricus bisporus [J]. Biochim Biophys Acta,1998,1425(1):177-88
    [74] Han SE, Kwon HB, Lee SB, Yi BY, Murayama I, Kitamoto Y, Byun MO.Cloning and characterization of a gene encoding trehalose phosphorylase (TP) fromPleurotus sajor-caju [J]. Protein Expr Purif,2003,30(2):194-202
    [75] Schwarz A, Goedl C, Minani A, Nidetzky B. Trehalose phosphorylase fromPleurotus ostreatus: characterization and stabilization by covalent modification, andapplication for the synthesis of alpha,alpha-trehalose [J]. J Biotechnol,2007,129(1):140-50
    [76] Ren Y, Dai X, Zhou J, Liu J, Pei H, Xiang H: Gene expression and molecularcharacterization of a thermostable trehalose phosphorylase from Thermoanaerobactertengcongensis [J]. Sci China C Life Sci,2005,48(3):221-7
    [77] Qu Q, Lee SJ, Boos W: TreT, a novel trehalose glycosyltransferring synthase ofthe hyperthermophilic archaeon Thermococcus litoralis [J]. J Biol Chem,2004,279(46):47890-7. Epub2004Sep13
    [78] Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B: A novel trehalosesynthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax:the unidirectional TreT pathway [J]. Arch Microbiol,2008,190(3):355-69. doi:10.1007/s00203-008-0377-3
    [79] Hirata T, Yokomise H, Fukuse T, Muro K, Inui K, Yagi K, Hitomi S, Wada H:Effects of trehalose in preservation of canine lung for transplants [J]. ThoracCardiovasc Surg1993,41(1):59-63
    [80] Arai C, Kohguchi M, Akamatsu S, Arai N, Yoshizane C, Hasegawa N, Hanaya T,Arai S, Ikeda M, Kurimoto M: Trehalose suppresses lipopolysaccharide-inducedosteoclastogenesis bone marrow in mice [J]. Nutr Res,2001,21(7):993-999
    [81] Zhao J, Wang S, Bao J, Sun X, Zhang X, Zhang X, Ye D, Wei J, Liu C, Jiang X,Shen G, Zhang Z: Trehalose Maintains Bioactivity and Promotes Sustained Release ofBMP-2from Lyophilized CDHA Scaffolds for Enhanced Osteogenesis In Vitro and InVivo [J]. PLoS One2013,8(1):e54645. doi:10.1371/journal.pone.0054645. Epub2013Jan24
    [82] Matsuo T: Trehalose protects corneal epithelial cells from death by drying [J]. BrJ Ophthalmol2001,85(5):610-2
    [83] Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, M ntyl E,Palva ET, Van Dijck P, Holmstr m KO: Improved drought tolerance withoutundesired side effects in transgenic plants producing trehalose [J]. Plant Mol Biol,2007,64(4):371-86. Epub2007Apr24
    [84] Oku K, Watanabe H, Kubota M, Fukuda S, Kurimoto M, Tsujisaka Y, Komori M,Inoue Y, Sakurai M: NMR and quantum chemical study on the OH...pi and CH...Ointeractions between trehalose and unsaturated fatty acids: implication for themechanism of antioxidant function of trehalose [J]. J Am Chem Soc,2003,125(42):12739-48
    [85] Oku K, Kurose M, Ogawa T, Kubota M, Chaen H, Fukuda S, Tsujisaka Y:Suppressive effect of trehalose on acrylamide formation from asparagine and reducingsaccharides [J]. Biosci Biotechnol Biochem,2000,69(8):1520-6
    [86] Pye S, Paul PK: Trehalose in hair care: heat styling benefits at high humidity. JCosmet Sci [J].2012,63(4):233-41.
    [87]王国祥.海洋微生物低温β-半乳糖苷酶的筛选、克隆及性质研究[D].上海:第二军医大学,2012.
    [88] J.萨姆布鲁克, E.F.弗里奇, T.曼尼阿蒂斯,著金冬雁,黎孟枫等译.分子克隆实验指南(第二版)[M].北京:科学出版社1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700