固体酸碱催化剂催化酯化改质提升生物油的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际原油价格上涨,燃油供应紧张,液体代用燃料的研究广泛开展。生物质热解液化技术得到的燃料产率很高,是高效率的生物质转化过程,并使生物质成为最有可能部分代替化石能源的可再生能源。然而生物油粘稠、稳定性差、腐蚀性强、化学组成复杂等缺点给生物油部分替代传统石油产品的进程带来极大阻碍,成为生物油工业化利用的瓶颈。对生物油进行精制,提高生物油的品质势在必行。因而本文对改质与酯化反应相结合的提升生物油新方法进行探索,具有重要的应用价值和现实意义。
     目前生物油精制主要方法中,生物油加氢脱氧得到烃类物质的方法成本,设备复杂,操作过程中经常遇到反应器堵塞和催化剂失活的现象;利用催化裂解将生物油中含氧有机物转化为轻质组分的方法成本低廉,但是由于此方法结焦率高,得到的精制油质量较差;水蒸气重整制氢的工艺比较复杂,对设备要求较高,需要开发成熟、稳定、与反应器相适合的催化剂;乳化方法无需过多的化学转化操作,但不可忽视乳化的成本和乳化需要的能量投入,而且作为汽车用油,乳化油对发动机的腐蚀效应比较严重。针对生物油内含有的多种有机羧酸物质、羧酸总含量较高(10-20wt%)的特点,本研究筛选具有高效酯化活性的固体酸和碱催化剂,探索改质与酯化反应相结合的生物油改质提升的新方法,与传统精制方法比较,提高生物油品质的同时,降低了设备及操作成本。
     首先利用模型反应在众多固体酸催化剂体系中筛选了高酯化活性的固体酸催化剂,试制开发了固体酸mix 40STS400高效催化酯化催化剂,结合物理表征手段发现mix 40STS400的高酯化活性与Ti的结合方式、形态和SiO_2含量有关,一定量的四方晶锐钛矿型TiO_2、正交晶硫酸氧钛、少量立方晶金属钛加上高分散、高比表面积的SiO_2组成了具有高酯化活性的催化剂。添加的SiO_2形成Ti-O-Si键,它帮助mix 40STS400与SO_4~(2-)在样品表面形成强相互作用,增强了催化剂与SO_4~(2-)的结合,使SO_4~(2-)不易脱除,结合的SO_4~(2-)主要以无机螯合状双配位和有机硫酸酯两种结构形式存在。固体碱的催化酯化研究表明添加K_2CO_3的γ-Al_2O_3酯化效果最好,30%K_2CO_3-γ-Al_2O_3/NaOH比30%K_2CO_3-γ-Al_2O_3耐水性强,但活性略低。
The research on alternative liquid fuel development has been carried out extensively as s result of rising price of international crude oil and tension of oil supply. Biomass pyrolysis is an efficient process of biomass conversion with high yield of liquid fuel, which makes biomass the most promising renewable energy to substitute the conventional fossil fuel. But the negative properties of bio-oil, such as the high viscosity, instability, severe corrosiveness and complicated composition put a lot of obstacles for its replacing process consequently, and have become a bottle-neck in its full applications. An urgent necessity to upgrade bio-oil is demanding. So the study in this dissertation combining bio-oil upgrading and catalytic esterification deserves great value and realistic significance.
    Among present bio-oil upgrading techniques, hydrodeoxygenation process needs complicated equipments, superior techniques and excessive cost and usually is halted by catalyst deactivation and reactor clogging. Although catalytic cracking is regarded as a cheaper route by converting oxygenated feedstocks to lighter fractions, the results seem not promising due to high coking and poor quality of the fuels obtained. Emulsification does not demand redundant chemical transformations, but the high cost and energy consumption input cannot be neglected. The accompanying corrosiveness to the engine and the subassemblies is inevitably serious. Based on the characteristic of high total amount (10-20wt%) and multi-organic acids existence, solid acid and solid base catalysts with high esterification activity were screened out and put into bio-oil upgrading investigation by esterification in order to lower the operation cost and improve the bio-oil quality.
    Solid acid "mix 40STS400" was chosen and accepted for its high esterification activity by model reaction of ethanol and acetic acid esterification. The physical characterization proved that the connection between high activity and crystalline phase composition, crystallographic state of Ti and existence of SiO_2. And the combination of tetragonal anatase TiO_2, orthorhombic crystal titanium oxide sulfate and cubic crystal titanium with highly-scattered and amorphous SiO_2 ensured the
引文
[1] 生物质能现代化利用技术 吴创之 马隆龙 化学工业出版社 2003.5
    [2] Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass. Sustainable and Renewable Energy Reviews 2000, 4(1): 1-73
    [3] Scott D S, Piskorz J, Radlein D. Liquid products from the continuous flash pyrolysis ofbiomass. Ind Eng Chem Process Des Dev 1985, 24(3): 581-586
    [4] Czemik S R, Bridgwater A V. Overview of Applications of biomass fast pyrolysis oil. Energy and Fuels 2004, 18(2): 590-598
    [5] Moore A. Environmentally sound production of liquid biofuels: The view of the European commission. In: Worgetter, M(Ed.). Proceedings of the international workshop on environmental aspects of energy crop production. Wieselburg: BLT, 1998.43-67
    [6] Demirbas A., Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management 2001, 42(11): 1357-1378
    [7] Oasmaa A, Czemik S. Fuel oil quality of biomass pyrolysis oils-state of the art for the end-users. Energy and Fuels 1999, 13(4): 914-921
    [8] Shihadeh A, Hochgreb S. Impact ofbiomass pyrolysis oil process conditions on ignition delay in compression ignition engines. Energy and Fuels 2002, 16(3): 552-561
    [9] Scholze B, Meier D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin) Part Ⅰ. PY-GC/MS, FTIR, and functional groups. Journal of Analytical and Applied Pyrolysis 2001, 60(1): 41-54
    [10] Luo Zhongyang, Wang Shurong, LiaoYanfen, Jinsong Zhou, Yueling Gu, Kefa Cen. Research on biomass fast pyrolysis for liquid fuel. Biomass and Bioenergy 2004, 26(5): 455-462
    [11] Sipilaè K, Kuoppala E, Fagernaès L, Oasmaa A. Characterization of biomass-based flash pyrolysis oils. Biomass and Bioenergy 1998, 14(2): 103-113
    [12] Diebold J.P. A review of the chemical and physical mechanisms of the Storage stability of fast pyrolysis bio-oil. Subcontractor report NREL/SR-570-27613, 2000 Jan
    [13] Boucher M E, Chaala A, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part Ⅰ: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass and Bioenergy 2000, 19(5): 337-350
    [14] Beis S H, Onay O, Kockar O M. Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renewable Energy 2002, 26(1): 21-32
    [15] Ozcimen D, Karaosmanoglu F. Production and characterization of bio-oil and biochar from rapeseed cake. Renewable Energy 2004, 29(5): 779-787
    [16] Scahill J, Diebold J P, Feik C. Removal of residual char fines from pyrolysis vapors by hot gasification. In: Bridgewater A V, Bock D G B, eds. Developments in thermochemical biomass conversion. London: Blakie Academic and Professional 1996. 253-266
    [17] 郭艳,王壶,魏飞.生物质快速裂解液化技术的研究进展.化工进展,2001,20(8):13-17
    [18] 王树荣,骆仲泱,谭洪.生物质热裂解生物油特性的分析研究.工程热物理学报,2004,25(6):1049-1052
    [19] Adam J, Blazsó M, Mészáros E. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 2005, 84(12-13): 1494-1502
    [20] 张素萍,颜涌捷,任铮伟.生物质快速裂解液体产物分析.华东理工大学学报,2001,27(6):666-668
    [21] 彭为民,吴庆余.生物质热解燃料的生产.新能源,2000,22(11):35-44
    [22] Pindoria RV, Lim J Y, Hawkes J E. Structural characterization of biomass pyrolysis tars/oils from eucalyptus wood wastes: Effect of H2 pressure and samples configuration. Fuel 1997, 76(11): 1013-1023
    [23] Pindoria R V, Megaritis A, Herod A A. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: Effect of catalyst temperature, pressure and catalyst ageing time on product characteristics. Fuel 1998, 77(15): 1715-1726
    [24] Zhang Suping, Yan Yongjie, Li Tingchen. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresource Technology 2005, 96(5): 545-550
    [25] Elliott D. C, Neuenschwander G. G. Liquid fuel by low-Severity hydrotreating of biocrude. In: Bridgewater A V, Bock D G B, eds. Developments in thermochemical biomass conversion. London: Blackie Academic and Professional 1996.611-621
    [26] Senol O I, Viljava T R, Krause A O I. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catalysis Today 2005, 100(3-4): 331-335
    [27] Nokkosmaki M I, Kuoppala E T, Leppamaki E A. Catalytic conversion of biomass pyrolysis vapours with zinc oxide. Journal of Analytical and Applied Pyrolysis 2000, 55(1): 119-131.
    [28] Adjaye J D, Bakhshi N. N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part Ⅰ: Conversion over various catalysts. Fuel Processing Technology 1995, 45(3): 161-183
    [29] Adjaye J D, Bakhshi N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part Ⅱ: Comparative catalyst performance and reaction Pathways. Fuel Processing Technology 1995, 45(3): 185-202 2003, 24(12): 206-212
    [31] Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater A V, Grimm H P, Soldaini I, Webster A, Baglioni P. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines. Part 1: Emulsion production. Biomass and Bioenergy 2003, 25(1): 85-99
    [32] Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater A V, Grimm H P, Soldaini I, Webster A, Baglioni P. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines. Part 2: Tests in diesel engines. Biomass and Bioenergy 2003, 25(1): 101-111
    [33] Ikura M, Stanciulescu M, Hogan E. Emulsification of pyrolysis derived bio-oil in diesel fuel. Biomass and Bioenergy 2003, 24(3): 221-232
    [34] Wang D., Czernik S. Montane D. Mann M. Chomet E. Biomass to hydrogen via pyrolysis and catalytic steam reforming of the pyrolysis oil and its Fractions. Ind Eng Chem Res 1997, 36(5): 1507-1518
    [35] Wang D, Czermik S, Chornet E. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolytic oils. Energy and Fuels 1998, 12(1): 19-24
    [36] Czemik S, French R, Feik C. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Ind Eng Chem Res 2002, 41(17): 4209-4215
    [37] Garcia L, French R, Czernik S, Chomet E. Catalytic steam reforming of bio-oils for the production of hydrogen: Effects of catalyst composition. Applied Catalysis, A 2000, 201(2): 225-239
    [38] Takanabe K, Aika K, Seshan K, Lefferts L. Sustainable hydrogen from bio-oil-steam reforming of acetic acid as a model oxygenate. Journal of Catalysis 2004, 227(1): 101-108
    [39] Bridgwater A V, Meier D, Radlein D. An overview of fast pyrolysis ofbiomass. Organic Geochemistry 1999, 30(12): 1479-1493
    [40] 戴先文,吴创之,周肇秋,陈勇.循环流化床反应器固体生物质的热解液化.太阳能学报 2001,22(2):124-130
    [41] 戴先文,吴刨之,陈勇.固体生物质的热解液化.新能源1998,20(8):1-4
    [42] 曹有为,王述洋.国内生物质热解技术的研究进展探究 农业劳动安全2005,18(2):24-26
    [43] 董治国,王述洋,李滨.旋转锥式生物质热解液化装置的实验研究.林业机械与木工设备 2004,32(4):17-19
    [44] 王树荣,骆仲泱,董良杰.几种农林废弃物热裂解制取生物油的研究.农业工程学报 2004,20(2):246-249
    [45] 易维明,柏雪源,何芳.利用热等离子体进行生物质液化技术的研究.山东工程学院学报 2000,14(1):9-12
    [46] 刘荣厚.生物质热裂解特性及闪速热裂解试验研究[D].沈阳:沈阳农业大学 1997.
    [47] Liu Ronghou, Niu Weisheng, Yu Xiaofang. Effects of biomass fast Pyrolysis key parameters on yields and distributions of products. Transactions of the CSAE 2003, 19(5): 204-207
    [48] 刘荣厚,王华.生物质快速热裂解反应温度对生物油产率及特性的影响.农业工程学报 2006,22(6):138-143
    [49] 郭晓亚,颜涌捷,李庭琛.生物质裂解油催化裂解精制.过程工程学报2003,3(1):91-95
    [50] 郭晓亚,颜涌捷.生物质快速裂解油的催化裂解精制.化学反应工程与工艺 2005,21(3):227-233
    [51] 朱锡峰,Venderbosch R H.生物质热解油气化试验研究.燃料化学学报2004,32(4):510-512
    [52] Hino M., Arata K. Solid catalysts treated with anions. I catalytic activity of iron oxide treated with sulfate ion for dehydration of 2-propanol and ethanol and polymerization of isobutyl vinylether. Chemistry Letters 1979, 89(5): 477-480
    [53] 彭振山,陈亚中,蔡铁军.固体酸催化材料的研究进展.贵州大学学报(自然科学版)2001,18(3):212-217,224
    [54] 沈文霞,王志斌,李春志.固体酸催化剂的制备与应用研究.宁夏大学学报 (自然科学版)2001,22(2):123-124
    [55] 韩文爱.固体酸催化剂在酯化反应中的应用.石家庄职业技术学院学报2002,14(4):5-7
    [56] 杜迎春,吴彩金.固体酸催化剂酯化反应研究进展.工业催化,2003,11(5):30-33
    [57] 新固体酸和碱基其催化作用 (日)田部浩三 郑禄彬译 化学工业出版社 1992
    [58] 崔秀兰,林明丽,郭海福.稀土固体超强酸催化合成乙酸异戊酯的研究.化学世界 2003,44(1):27-30
    [59] 张小曼.稀土固体超强酸对合成乙酸乙酯的催化性能研究.化学试剂2002,24(4):233-234,250
    [60] 金华峰,李文戈.纳米复合固体超强酸SO_4~(2-)/ZnFe_2O_4的制各与催化合成癸二酸二乙酯的研究.无机化学学报2002,18(3):265-268
    [61] 王绍艳,张志强,吕玉珍等.纳米固体超强酸SO_4~(2-)/Fe_2O_3的制备及其催化合成乙酸乙酯.无机化学学报2002,18(3):279-283
    [62] 常铮,郭灿雄,李峰.新型磁性纳米固体酸催化剂ZrO_2/Fe_3O_4的制备及表征.化学学报 2002,60(2):298-304
    [63] 梅长松,景晓燕,林茹春.磁性固体超强酸的制备及催化酯化反应的研究.化学试剂 2002,24(1):1-2,42
    [64] Sridarala Ramu, Lingaiah N, Prabhavathi Devi B L A, Prasad R B N, Suryanarayana I, Sai Prasad P S. Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts: effect of method of preparation of the catalyst on its structural stability and reactivity. Applied catalysis A: General 2004, 276(1-2): 163-168
    [65] Khodadadi Moghaddam M, Gholami M R. Preparation of titania based solid strong acid and study of its catalytic activity in esterification of phthalic anhydride and sebacic acid. Materials Letters 2006, 60(6): 715-719
    [1] Luo Zhongyang, Wang Shurong, Liao Yanfen. Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy, 2004, 26(5): 455—462
    [2] Sipilaè K, Kuoppala E, Fagemaès L. Characterization of Biomass-Based Flash Pyrolysis Oils. Biomass Bioenergy, 1998, 14 (2): 103—113
    [3] Sridarala R, Lingaiah N, Prabhavathi Devi B L A, Prasad R B N, Suryanarayana I, Sai Prasad P S. Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts: effect of method of preparation of the catalyst on its structural stability and reactivity. Applied Catalysis A: General, 2004, 276(1-2): 163-168
    [4] Khodadadi Moghaddam M, Gholami M R. Preparation of titania based solid strong acid and study of its catalytic activity in esterification of phthalic anhydride and sebacic acid Materials Letters 2006, 60(6): 715-719
    [5] 王绍艳,张志强,吕玉珍,侯鑫.纳米固体超强酸SO_4~(2-)/Fe_2O_3的制备及催化合成乙酸乙酯.无机化学学报2002,18(3):279-283
    [6] 常铮,郭灿雄,段雪,张密林.磁性超细固体酸催化剂SO_4~(2-)-ZrO_2/Fe_2O_3的组装及表征.催化学报 2003,24(1):47-51
    [7] 朱洪法.催化剂载体制备及应用技术石油工业出版社 2002.5
    [8] 周以力.乙酸乙酯制备实验中化学平衡的研究嘉兴学院学报 2003,15(3):44-46
    [9] 黄卫,李桂云,栗洪道.几种SO_4~(2-)/MxOy型固体超强酸酯化催化活性的研究.石油化工高等学校学报 2001,14(1):37-41
    [10] 高鹏,崔波.低温沉淀法制备固体超强酸及其对酯化反应的催化作用.石油化工 2004,33(1):5-8
    [11] 马德埒,黎源.WO_3-TiO-2-SO_4~(2-)固体超强酸的制备及应用研究.精细化工 2002,19(1):36-38
    [12] 韩文爱.固体酸催化剂在酯化反应中的应用.石家庄职业技术学院学报 2002,14(4):5-7
    [13] 曹剑瑜,卢文庆,焦程敏,王鹏飞.纳米TiO_2的合成、表征及紫外吸收性能.南京师大学报(自然科学版) 2004,27(1):51-54
    [14] Zhao Yongxiang, Xu Linping, Wang Yongzhao, Gao Chunguang, Liu Diansheng. Preparation of Ti-Si mixed oxides by sol-gel one step hydrolysis. Catalysis Today 2004, 93-95: 583-588;
    [15] Seong Moon Jung, Olivier Dupont, Paul Grange. TiO_2-SiO_2 mixed oxide modified with H_2SO_4 I. Characterization of the microstructure of metal oxide and sulfate Applied Catalysis A: General 2001, 208(1-2): 393-401
    [16] Hideshi. Hattori. Heterogeneous basic catalysis. Chemical Reviews. 1995, 95(3): 537-558
    [17] Kazumasa Akutu, Hajime Kabashima, Tsunetake Seki and Hideshi Hattori. Nitroaldol reaction over solid base catalysts. Applied catalysis, A:General, 2003, 247(1): 65-74
    [18] 董林,陈懿.一些离子化合物在CeO和γ-Al_2O_3载体上的分散催化学报1995,16(2):85-86
    [1] Scott D S, Piskorz J, Radlein D. Liquid products from the continuous flash pyrolysis of biomass. Industrial and Engineering Chemistry Process Design and Development, 1985, 24(3): 581-586
    [2] 张琦,常杰,王铁军,徐莹.生物质裂解油的性质及精制研究进展.石油化工 2006,35(5):493-498
    [3] Pindoria Ramesh V, Lira Jin-Yee, Hawkes Janet E, Lazaro Maria-Jesus, Herod Alan A. Kandiyoti Rafael. Structural characterization of biomass pyrolysis tars/ oils from eucalyptus wood wastes: Effect of H2 pressure and samples configuration. Fuel 1997, 76(11): 1013-1023
    [4] Pindoria R V, Megaritis A, Herod A A, Kandiyoti R. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: Effect of catalyst temperature, pressure and catalyst ageing time on product characteristics. Fuel 1998, 77(15): 1715-1726
    [5] Senol O I, Viljava T R, Krause A O I. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al_2O_3 and CoMo/γ-Al_2O_3 catalysts. Catalysis Today 2005, 100(3-4): 331-335
    [6] Nokkosmaki M I, Kuoppala E T, Leppamaki E A, Krause A O I. Catalytic conversion of biomass pyrolysis vapours with zinc oxide. Journal of Analytical and Applied Pyrolysis 2000, 55(1): 119-131
    [7] 郭晓亚,颜涌捷.生物质快速裂解油的催化裂解精制.化学反应工程与工艺 2005,21(3):227-233
    [8] 郭晓亚,颜涌捷,李庭琛,任铮伟,袁传敏.生物质裂解油催化裂解精制.过程工程学报 2003,3(1):91-95
    [9] Chiaramonti D., Bonini M., Fratini E., Tondi G., K.Gartner, Bridgwater A.V., Grimm H.P., Soldaini I., Webster A., Baglioni P. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines. Part 1: Emulsion production. Biomass and Bioenergy 2003, 25(1): 85-99
    [10] Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater A V, Grimm H P, Soldaini I, Webster A, Baglioni P. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines. Part 2: Tests in diesel engines. Biomass and Bioenergy 2003, 25(1): 101-111
    [11] Ikura Michio, Stanciulescu Maria, Hogan Ed. Emulsification of pyrolysis derived bio-oil in diesel fuel. Biomass and Bioenergy 2003, 24(3): 221-232
    [12] Takanabe Kazuhiro, Aika Kenichi, Seshan K, Lefferts Leon. Sustainable hydrogen from bio-oil-steam reforming of acetic acid as a model oxygenate. Journal of Catalysis 2004, 227(1): 101-108
    [13] 王绍艳,张志强,吕玉珍,侯鑫.纳米固体超强酸SO_4~(2-)/Fe_2O_3的制备及其催化合成乙酸乙酯.无机化学学报 2002,18(3):279-283
    [14] 高鹏,崔波.低温沉淀法制备固体超强酸及其对酯化反应的催化作用.石油化工 2004,33(1):5-8
    [15] 常铮,郭灿雄,段雪,张密林.磁性超细固体酸催化剂SO_4~(2-)ZrO_2/Fe_2O_3的组装及表征.催化学报 2003,24(1):47-51
    [16] 廖世军,季山,简弃非,王乐夫,Vladimir Linkov,Leslie Petrik.具有中孔构的so42_/Zr-HMS型固体超强酸的合成和结构表征.高等学校化学学报 2003,24(3):469-472
    [17] 周海峰.固体酸催化酯化反应的研究进展.精细与专用化学品 2004,12(23):1-6
    [18] Zheng Ji-lu, Zhu Xi-feng, Guo Qing-xiang, Zhu Qing-shi. Thermal conversion of rice husks and sawdust to liquid fuel. Waste management 2006 (In press)
    [1] 朱洪法.催化剂载体制备及应用技术.石油工业出版社 2002.5
    [2] 赵阳,郑亚锋,辛峰.整体式催化剂性能及应用的研究进展.化学反应工程与工艺 2004,20(4):357-362
    [3] 唐晓兰,张鑫,陈耀强,龚茂初,周世蓉,郑林,李孝维.整体式甲烷燃烧催化剂的活性研究.天然气化工,2000,25(6):4
    [4] 王丽琼,王大祥,张兴燕,冯长根.不同原料制备γ-Al_2O_3蜂窝陶瓷涂层的研究.工业催化 2002,10(3):52
    [5] 王爱琴,梁东白,徐长海,孙孝英,关文,张涛.堇青石蜂窝陶瓷载体上ZSM-5及Anacime沸石的原位合成.催化学报 2000,1(1):19
    [6] 单学蕾,关旭东,关乃佳,刘双喜,项寿鹤.蜂窝状堇青石上镁碱沸石和Beta分子筛的原位合成.hnp://www.chemistrymag.org/col/2000/c00022.htm
    [7] Shigapov A N, Graham G W, McCabe R W, Peck M P ,Plummer H KJ r. The preparation of high-surface-area cordierite monolith by acid treatment. Applied Catalysis A 1999,182 (1) : 137
    [8] Joshi H K, Sarkar S. Ind Eng Chem Res, A Novel in Situ γ-Alumina Coating Method and CO Oxidation over MoO3/Cu. Catalysts 2001, 40 (23): 5543
    [9] 潘泽琳,王学香,刘爱萍.氧化铝孔容测定方法改进研究.轻金属 1994,10:7-10
    [10] 俞杰,卢爱华,白寿春,商连弟,刘毅.快速孔容积测定法.无机盐工业 2004,36(4):52-53
    [1] Roy C., Chaala A. Vacuum pyrolysis of automobile shredder residues. Resources Conservation Recycling 2001,32:1-27
    [2] Scott D.S., Piskorz J. The flash pyrolysis of aspen-poplar wood. The Canadian Journal of Chemical Engineering 1982,60:666-674
    [3] Boucher M.E., Chaala A., Roy C. bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part Ⅰ: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass and bioenergy 2000, 19:337-350
    [4] Boucher M.E., Chaala A., Roy C. bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part Ⅱ: Stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass and bioenergy 2000, 19:351-361
    [5] Krieger-Bockett B. Microwave pyrolysis of biomass. Research on chemical intermediates 1994, 20(1): 39-49
    [6] 田部浩三著 郑禄彬译 新固体酸和固体碱及其催化作用.化学工业出版社 1992
    [7] 王积涛,胡青眉,张宝申,王永梅.有机化学.南开大学出版社 1993
    [8] 徐寿昌.有机化学.高等教育出版社 1983
    [9] 吴越.催化化学.科学出版社 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700