Eu、Tb掺杂碱土多硅酸盐发光材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅酸盐体系发光材料由于其化学稳定性好,耐水性强,发光颜色多样,应用广泛等特点,越来越引起人们的重视。这类材料多采用传统的高温固相法制备,该法具有烧结温度高,反应时间长,产物晶粒大,硬度高等诸多缺点。
     凝胶-燃烧法是结合溶胶-凝胶法离子分散均匀和燃烧法快速高效的优点而开发出来的一种新型软化学方法。与传统的高温固相法相比,该法具有离子分散均匀,合成温度低,操作简单,晶粒度小,易研磨等优点。为节省能源,降低能耗提供了一种新的思路。
     本论文采用凝胶-燃烧法成功合成了一系列稀土离子掺杂的碱土多硅酸盐发光材料。借助XRD、SEM、荧光光谱等现代测试手段,对合成产物进行了分析和表征,得出以下结论:
     1.采用凝胶-燃烧法成功合成了高亮度蓝紫色发光材料CaMgSi2O6:Eu2+,属单斜晶系。焙烧温度为1000℃时,样品一次颗粒尺寸约300nm,基本成球形,随温度升高,颗粒有所增大。光谱分析表明:此发光体在450nm处有一个宽的发射峰,是由Eu2+的4f65d1-4f7跃迁所导致的,Eu2+在CaMgSi2O6:Eu2+中形成六配位的发光中心。此外,探讨了Eu2+的掺杂浓度和还原温度对材料发光亮度的影响。
     2.采用凝胶-燃烧法成功合成了一种新型碱土多硅酸盐基质SrMgSi2O6,并系统研究了Eu2+、Ln3+(Ln=La、Ce、Nd、Sm、Gd、Dy)共掺杂对材料物相结构、发光性质的影响。结果发现:SrMgSi2O6:Eu2+,Ln3+的晶体结构均为镁黄长石结构,属简单四方晶系;发射光谱的峰形、峰位基本一致,均为宽带连续谱,最大发射峰位于470nm附近,是典型的Eu2+的4f65d1→4f7跃迁引起的。系列材料均有蓝色长余辉发光现象。Ln3+为辅助激活剂,其种类对材料的发光强度和余辉性质有着重要的影响,余辉亮度由强到弱的顺序大致为:Dy3+>Nd3+>Eu2+>La3+>Gd3+>Ce3+>Sm3+;以Dy3+为辅助激活剂时余辉持续时间最长,约4h。此外,还探讨了Eu2+和Dy3+的掺杂浓度,还原温度以及H3BO3用量等对样品发光强度的影响,并用“位型坐标模型”对长余辉发光机理做出合理解释。
     3.采用凝胶-燃烧法成功合成了一种新型黄色发光材料SrMgSi2O6:Tb3+,属四方晶系。焙烧温度为1100℃时,样品一次颗粒近似球形,平均粒径约240nm。发射光谱主要由473nm、491nm、547nm、585nm等一系列窄带发射峰组成,分别归属于Tb3+从5D3→7F3,5D4→7F6,5D4→7F5和5D4→7F4的跃迁发射,547nm、491nm、473nm处的发射峰均较强,在紫外光照射下样品发黄光。此外发现,Tb3+的掺杂浓度及还原温度对材料发光性质有重要影响。
     4.采用凝胶-燃烧法成功合成了蓝色长余辉发光材料Sr3MgSi2O8:Eu2+,Dy3+,属正交晶系结构。发射光谱为—宽带谱,峰值位于460nm处,归属于Eu2+的4f65d1→4f7跃迁。激发光谱也为一宽带,主激发峰位于414nm,次激发峰位于400nm处,与高温固相法制得的Sr3MgSi2O8:Eu2+,Dy3+激发峰相比,出现了明显的红移现象。此外,探讨了还原温度、还原时间、H3BO3用量、尿素用量等对样品发光强度的影响。
     5.采用凝胶-燃烧法合成了系列新型红色多硅酸盐发光材料Sr2MgSi2O7:Eu3+和Sr3MgSi2O8:Eu3+。研究发现:少量Eu3+的掺杂对材料的晶体结构影响较小。系列样品的激发光谱在220-350nm之间均出现一宽带吸收,归属于O2-→Eu3+之间的电荷迁移带;350nm以后的锐线峰为Eu3+的f-f跃迁吸收峰,其最强锐线峰位于400nm。发射光谱由两强发射峰组成,分别位于592nm和618nm处,属于典型的Eu3+的5D0→7F1和5D0→7F2跃迁。此外,探讨了Eu3+浓度对材料发光强度的影响。在Sr2-xMgSi2O7:Eu3+x系列样品中,未发现明显的浓度猝灭,且材料发光强度较大;在Sr3-xMgSi2O8:Eu3+x系列样品中,当Eu3+摩尔浓度达到8%时,出现浓度猝灭现象。
In the recent years, silicates phosphors are attracted more and more attention because of its good chemical stability, strong water resistance, light-emitting color variety and extensive applications.
     At present, the traditional method to synthesize silicate-host luminescence materials is solid-state reaction. But this process has a lot of disadvantages, such as the synthesis temperature is high, the reaction time is long, the partical size is large, and the hardness of the powder is strong, it need grounding to reduce the particle size, which results in the decrease of luminescent brightness and afterglow. So this method is restricted for further development. Therefore, exploring new synthesis method is gradually eyed by more and more people.
     Gel-combustion method is a new soft-chemical process combined with ion homogeneous distribution of sol-gel method and high efficiency of combustion method. Compared with traditional solid state reaction, gel-combustion method has many advantages, such as uniform composition, short calcination time, simple operation, and small particles, and so on. It provides a new idea for saving energy and lowering energy consumption.
     In our pesent work, a series of alkaline earth polysilicate phosphors doped with rare earth ions were successfully synthesized by gel-combustion method. The as-synthesized phosphors were investigated by X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and Fluorescence spectrophotometer. According to that, we get some valuable conclusions as follows:
     1. Blue-purple emitting material CaMgSi2O6:Eu2+ with high brightness was synthesized by gel-combustion method in weak reductive environment. The as-synthesized CaMgSi2O6:Eu2+ has monoclinic crystal structure. When the calcination temperature is 1000℃, the initial particles are nearly spherical in shape, and the mean size is about 300nm. The particle size increases with the increase of the calcination temperature. Spectral analysis indicates that this phosphor has a broad band emission peak at 450 nm, this peak was made by the transition 4f65d1→4f7 of Eu2+, which was caused by the [EuO6] emitting center formed in CaMgSi2O6 host. Moreover, the effects of different concentration of doped Eu2+ and reductive temperature on the luminescent property were investigated.
     2. On the basis of the synthesis of a novel host SrMgSi2O6 by gel-combustion method, the effects of co-doped Eu2+ and Ln3+(Ln=La, Ce, Nd, Sm, Gd, Dy) on the crystal structure and luminescent properties were investigated in detial. It is found that SrMgSi2O6:Eu2+,Ln3+ phosphors have akermanite structure and belong to tetragonal crystal structure. The shape and position of peaks in emission spectrums have almost no change with the variation of co-doped Ln3+. The emission spectrums are all broad band continuous spectrums and the main peak is at 470nm. The series of samples show long afterglow properties. But the kind of doped auxiliary activators has great effects on the luminescent intensity and the long afterglow properties of the materials. The approximate order of long afterglow intensity are as folows:Dy3+> Nd3+> Eu2+> La3+> Gd3+> Ce3+> Sm3+. Among them, Dy3+ is best on. The persistence time of Sr0.94MgSi2O6:Eu2+0.02, Dy3+0.04 is the longest, about 4h. Moreover, the effects of the concentration of Eu2+ and Dy3+, the reductive temperature and the dosage of H3BO3 on luminescent intensity were discussed. Also, the long afterglow luminescence mechanism of SrMgSi2O6:Eu2+,Ln3+ was explained.
     3. A novel yellow emitting material SrMgSi2O6:Tb3+ was synthesized by gel-combustion method in weak reductive environment. The as-synthesized SrMgSi2O6:Tb3+ phosphors possess the similar tetragonal crystal structure. When the calcination temperature is 1100℃, the initial particles are nearly spherical in shape, and the mean size is about 240nm.The emission spectrum is composed of a series of sharp peaks, located respectively at 473nm, 491nm,547nm,585nm. These emission peaks are ascribed respectively to Tb3+ ions transition of 5D3→7F3,5D4→7F6,5D4→7F5,5D4→7F5 in SrMgSi2O6 host. The emission peak at 547nm,491nm and 473nm are all strong, the samples show yellow emitting under UV irradiation. Moreover, it is found that the concentration of doped Tb3+ and reductive temperature have great significant effect on the luminescent property of the phosphors.
     4. The persistent phosphor Sr3MgSi2O8:Eu2+,Dy3+ with orthorhombic system was successfully synthesized by gel-combustion method. Its emission spectrum is a broad band with the peak at about 460nm due to the typical transition of 4f65d1→4f7 from Eu2+; the excitation spectrum is also a broad band with a main peak at about 414nm and the secondary at about 400nm. Compared with Sr2.94MgSi2O8:Eu2+0.02,Dy3+0.04 synthesized by high temperature solid-state reaction, excitation spectrumof as-synthesized sample shift to long wavelength. Moreover, the effects of reductive temperature, reductive time, the mol fraction of H3BO3 and the dosage of urea on the luminescent property were investigated.
     5. A series of new red-emitting polysilicate phosphors Sr2MgSi2O7:Eu3+ and Sr3MgSi2O8:Eu3+ were successfully synthesized by gel-combustion method. It is found that doped Eu3+ has little effect the structure of the host. The excitation spectra of the samples show a broad band between 220nm and 350nm, which is ascribed to the charge transference from O2- to Eu3+. The sharp peaks after 350nm are due to the f-f transition from Eu3+, of which the strongest one is located at 400nm. The excitation spectrum is composed of two strong emission peaks located at 592nm and 618nm respectively, which are attributed to the transition 5D0→7F1 and 5D0→7F2 of Eu3+ respectively. Besides, the effects of different concentration of doped Eu3+ on the luminescent intensity were investigated. It is interesting that the concentration quenching can not be found in the samples of Sr2-xMgSi2O7:Eu3+x, and their red-emitting is very bright. Among the samples of Sr3-xMgSi2O8:Eu3+x, the concentration quenching occurs when the concentration of Eu3+ is 8%.
引文
[1]孔繁清,闫慧忠,赵增祺,等.稀土发光材料在化学复合镀中应用的研究[J]稀土,2002,23(4):43-45.
    [2]于桂贤,袁绍嘏.发光材料的研制和应用[J].化工新型材料,2001,29(6):1-5.
    [3]刘光华.稀土材料与应用技术[M].化学工业出版社,p285.
    [4]郑子樵,李红英主编.稀土功能材料[M].化学工业出版社,2003,p166.
    [5]张中太,张俊英编著.无机光致发光材料及应用[M].化学工业出版社,2005,p99,p100.
    [6]Kato T, Tsutai I, Kamimura T, et al. Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence[J]. Journal of Luminescence,1999,82(3):213-220.
    [7]Katsumata T, Nabae T, Sasajima K, et al. Growth and characteristics of long persistent SrAl2O4-and CaAl2O4-based phosphor crystals by a floating zone technique[J]. Journal of Crystal Growth,1998, 183(3):361-365.
    [8]Jia W Y, Yuan H B, Lu L Z, et al. Phosphorescent dynamics in SrAl2O4:Eu2+, Dy3+ single crystal fibers[J]. Journal of Luminescence,1998,76-77:424-428.
    [9]Qiu J, Kawasaki M, Tanaka K, et al. Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses[J]. Journal of Phys Chem. Solids,1998,59(9):1521-1525.
    [10]Qiu J R, Hirao K. Long lasting phosphorescence in Eu2+ doped calcium aluminoborate glasses [J]. Journal of Solid State Communications,1998,106(12):795-798.
    [11]张天之,苏锵,王淑彬.MAl2O4:Eu2+,RE3+长余辉发光性质的研究[J].发光学报,1999,20(2):170-175.
    [12]张中太,张俊英编著.无机光致发光材料及应用[M].北京:化学工业出版社,2005,p123.
    [13]Gejihu De, Weiping Qin, Jishen Zhang, etal. Upconversion luminescence properties of Y2O3:Yb3+,Er3+ nanostructures[J]. Journal of Luminescence,2006,119-120:258-263.
    [14]LingDong Sun, Cheng Qian, ChunSheng Liao, etal. Luminescent properties of Li+ doped nanosized Y2O3:Eu[J]. Solid State Communications,2001,119: 393-396.
    [15]李强,高濂,严东生.纳米Y2O3:Eu3+粉体荧光强度的增强[J].无机材料学报,1998,13(6): 899-903.
    [16]焦程敏,卢文庆,王鹏飞,等.纳米光学功能材料Gd2O3:Tb3+的反相微乳合成及发光性能[J].南京师大学报(自然科学版),2004,27(3):61-63.
    [17]江振华.Pb2+离子在CaS中的发光特性与应用[J].光谱实验室,1998,15(3):21-23.
    [18]Chen Z G, Zou J, Liu G, et al. Synthesis and photoluminescence of CdS nanocones. Journal of Chinese Electron Microscopy Society,2007,26(5):423-427.
    [19]陈述春,戴凤妹.CaS:Ce的红外激励发光机制[J].无机材料学报,1995,10(3):277-280.
    [20]张迈生,臧李纳,严纯华.微波合成条件下Sm3+对CaS:Eu2+红色发光的增强[J].材料导报,2001,15(2):70-72.
    [21]Justel T, Bechtel H, Nikol H, et al. Improved VUV phosphors for plasma display panels [A]. Proceedings of the Seventh International Symposium on Physics and Chemistry of Luminescent Materials[C]. Pennington, USA: Electrochemical Society Inc,1999. p103.
    [22]翟永清,姚子华,仇满德,等.Gd2O3:Eu纳米晶的制备及其光谱性质研究[J].光谱学与光谱分析,2003,23(2):236-239.
    [23]徐叙瑢,苏勉曾主编.发光学与发光材料[M].化学工业出版社.2004,p273.
    [24]洪广言,李红云.碱金属碱土金属磷酸盐中Ce3+的发光[J].发光学报,1990,11(1):29-34.
    [25]Song Q M, Huang J F, et al. Study on synthesis and luminescence property of Eu2+ activated strontium aluminates. Journal of Fudan University (Natural Science),1991,12 (2):144-150.
    [26]Chang C K, Xu J, Jiang L, et al. Luminescence of long-lasting CaAl2O4:Eu2+, Nd3+ phosphor by co-precipitation method. Journal of Materials Chemistry and Physics,2006,98:509-513.
    [27]Kamiyanagi Y, Kitaura M, Kaneyoshi M. Temperature dependence of long-lasting afterglow in SrAl2O4:Eu, Dy phosphor[J]. Journal of Luminescence,2007,122-123:509-511.
    [28]张胜渠,孙彦彬,马丽艳,等.长余辉发光材料Sr4Al14O25:Eu2+,Dy3+的制备[J].化工新型材料,2006,34(6):19-21.
    [29]肖志国,肖志强.硅酸盐长余辉发光材料及其制造方法[P].中国专利:ZL98105078,1998,09,30.
    [30]雷炳富,刘应亮,叶泽人,等.稀土离子在CdSiO3基质中的多光色长余辉发光[J].科学通报,2003,48(19):2038-2041.
    [31]李彬,田一光,白玉白.Bi3+和Eu3+在Ca2SiO4中的发光和能量传递[J].发光学报,1989,10(2): 110-116.
    [32]刘文彦,杨丽丽,宫杰,等.溶胶-凝胶法合成Sr2SiO4:Eu3+,Bi3+发光体及其发光行为[J].吉林师范大学学报(自然科学版),2005,(2):107-108,110.
    [33]PENG Zi-fei, YU Jun-bao, XU Jie, etal. Preparation and luminescent property of long afterglow material Zn2Si04:Dy3+[J]. Journal of Shanghai Normal University(Natural Sciences),2006,35(2): 47-50.
    [34]赵凤英,周建国,赵宝林,等.Eu3+和Tb3+掺杂的Y2SiO5体系发光特性研究[J].发光学报,2002,23(6):607-610.
    [35]L Jiang, C Chang, D Mao, et al. Luminescent properties of CaMgSi2O6-based phosphors co-doped with different rare earth ions[J]. Journal of Alloys and Compounds,2004,377:211-215.
    [36]Ling Jiang, Chengkang Chang, Dali Mao. Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu, Dy and Nd[J]. Journal of Alloys and Compounds,2003,360:193-197.
    [37]黄立辉,林海,王晓君,等.Ca3MgSi2O8中Ce3+的光谱及其晶体学格位[J].光谱学与光谱分析,2000,20(3):265-267.
    [38]于立新,曹林,李殿超,单掺杂硅灰石:Dy的荧光特性[J].非金属矿,2002(5):16,63.
    [39]于立新,李殿超,曹林.共掺Tb、Gd偏硅酸钙(CaSiO3)的发光性质[J].武汉理工大学学报,2002,24(5):1-3.
    [40]张晓,刘行仁.CaSiO3中Tb3+的发光及Ce3+→Tb3+的能量传递[J].中国稀土学报,1991,9(4):324-328.
    [41]于立新,曹林,杨殿范,等.CaSiO3:Eu的发光性质[J].硅酸盐学报,2003,31(9):900-902.
    [42]MORELL A, KHIATINE. Green phosphor for large plasma TV screens[J]. Journal of Electrochemical Society,1993,140(7):2019-2021.
    [43]ROBBINS D J, CASWELL NS, AVOURIS P. A diffusion model for electron-hole recombination in Zn2SiO4:(Mn,As)phosphor[J]. Journal of Electrochemical Society,1985,132(11):2784-2793.
    [44]王淑芬,杨萍,吕孟凯,等.Mn2+在Zn2Si04中的发光[J].硅酸盐通报,2003(3):19-21,35.
    [45]林林,尹民,施朝淑,等.红色长余辉材料Mg2Si04:Dy3+,Mn2+的制备及发光特性[J].发光学报,2006,27(3):331-336.
    [46]陈文新,张静娴,易守军,等.Zn2Si04:Ga蓝紫色长余辉的发光特性[J].暨南大学学报(自然科学 版),2004,25(3):322-325,330.
    [47]Zhang H X, Buddhudu S, Kam C H, et al. Luminescence of Eu3+and Tb3+doped Zn2SiO4 nanometer powder phosphors[J]. Mater. Chem. Phys.,2001,68:31-35.
    [48]HE Dawei, LIU Hongli, LU Pengzhi, etal. VUV Luminescent Properties of M2Si04:Re(M=Mg, Ca, Ba) (Re=Ce3+,Tb3+)[J]. Chinese Journal of Luminescence,2007,28(1):53-56.
    [49]W.B. Im, J.H. Kang, D.C. Lee, etal. Origin of PL intensity increase of CaMgSi2O6:Eu2+phosphor after baking process for PDPs application[J]. Solid State Communications, 2005,133:197-201.
    [50]Tuan A.Dang, Anthony F.Kasenqa, Charles F.Chenot. Divalent Europium-Activated Barium Magnesium Silicate Phosphors:Improvement and Characterization [J]. Journal of Electrochemical Society,1990,137(12):3966-3969.
    [51]Blasse G, Bril A. Investigation of Some Ce3+-Activated Phosphors[J]. Journal of Chemical Physics, 1967,47:5139-5145.
    [52]Laud K R, Gibbon E F, Tien T Y, etal. Cathodoluminescence of Ce3+ and Eu2+ activated alkaline earth feldspars[J]. Journal of Electrochemical Society,1971,118(6):918-923.
    [53]Uehara S, Ochi Y. Long-lasting phosphor, powdered long-lasting phosphor and method for manufacturing the powdered long-lasting phosphor[P]. US Patent,6,284,156,2001-09-04.
    [54]齐晓霞,赵军武,冯异.长余辉材料Sr2MgSi207:Eu2+,Dy3+的制备及发光性能研究[J].中国稀土学报,2006,24(增刊):69-73.
    [55]李东平,缪春燕,刘丽芳,等.燃烧法合成新型蓝色硅酸盐长余辉材料及其发光性能的研究[J].稀有金属,2004,28(4):662-665.
    [56]Sho Abe, Kazuyoshi Uematsu, Kenji Toda, etal. Luminescent properties of red long persistence phosphors BaMg2Si2O7:Eu2+,Mn2+[J]. Journal of Alloys and Compounds,2006,408:911-914.
    [57]Keith H Butler著.周太明,等译.灯用荧光粉的工艺和理论[M].上海:复旦大学出版社,1989.
    [58]Paul Brian Moore, Takaharu Araki. Atomic arrangement of merwinite, Ca3Mg[SiO4]2, an unusual dense-packed structure of geophysical interest[J]. Am. Mineral,1972,57:1355-1374.
    [59]乔彬,张中太,唐子龙,等.Eu2+, Mn2+共激活碱土镁硅酸盐基红色荧光粉的发光性能[J].中国稀土学报,2003,21(2):192-195.
    [60]Thomas L. Barry. Equilibria and Eu2+ Luminescence of Subsolidus Phases Bounded by Ba3MgSi2O8, Sr3MgSi208, and Ca3MgSi208[J]. Journal of Electrochemical Society,1968,115:733-738.
    [61]A.A. Sabbagh Alvania, F. Moztarzadehb, A. A. Sarabia. Effects of dopant concentrations on phosphorescence properties of Eu/Dy-doped Sr3MgSi2O8[J]. Journal of Luminescence,2005,114: 131-136.
    [62]Yuanhua Lin, Ce-Wen Nan, Xisong Zhou. Preparation and characterization of long afterglow M2MgSi2O7-based(M:Ca, Sr, Ba) photoluminescent phosphors[J]. Materials Chemistry and Physics, 2003,82(3):860-863.
    [63]Yuanhua Lin, Zilong Tang, Zhongtai Zhang. Luminescence of Eu and Dy activated R3MgSi2O8-based(R=Ca, Sr, Ba) phosphors[J]. Journal of Alloys and Compounds,2003,348(1-2): 76-79.
    [64]A.A.Sabbagh Alvani, F. Moztarzadeh, A.A. Sarabi. Preparation and properties of long afterglow in alkaline earth silicate phosphors co-doped by Eu2O3 and Dy2O3[J]. Journal of Luminescence,2005, 115:147-150.
    [65]Geng X J, Chen Y J, Qiu G M, et al. Synthesis of Long Afterglow Photoluminescent Materials Sr2MgSi207:Eu2+,Dy3+by Sod-Gel Method[J]. Journal of Rare Earth,2005,23(2):292-294.
    [66]毛大立,赵莉,常程康,等.纳米Sr2MgSi207:Eu2+,Dy3+f的长余辉发光行为[J].无机材料学报,2005,20(1):220-224.
    [67]马宇平,熊光楠,娄素云,等.燃烧合成法制备IP板荧光粉工艺参数的研究[J].功能材料(增刊),2004,35:438-441.
    [68]S. Ekambaram, M. Maaza. Combustion synthesis and luminescent properties of Eu3+-activated cheap red phosphors[J]. Journal of Alloys and Compounds.2005,395:132-134.
    [69]张迈生,祁家雄,杨燕生.Sol-Gel法和微波辐射法合成亚纳米级Zn2Si04:Mn2+,Er3+高效绿色荧光体[J].发光学报,1999,20(3):258-261.
    [70]张迈生,祁家雄,杨燕生. Sol-Gel法和微波法合成亚纳米级Zn2SiO4:Mn2+高效绿色荧光体[J].无机材料学报,1999,14(3):479-482.
    [71]姜岭,常程康,毛大立.稀土激发的CaMgSi2O6的长余辉发光特性[J].功能材料,2004,35(2):233-235.
    [72]Yong-Il Kim, Seung-Hoon Nahm, Won Bin Im, et al. Structural refinement of Eu doped CaMgSi2O6 using X-ray powder diffraction data[J]. Journal of Luminescence,2005,115:1-6.
    [73]周丹,何大伟,侯涛.CaMgSi2O6:Eu的真空紫外光谱特性[J].光谱学与光谱分析,2007,27(5):978-981.
    [74]翟永清,孟媛,曹丽莉,等.蓝色长余辉发光材料Sr2MgSi207:Eu2+,Ln3+的合成和性质[J].材料导报,2007,21(8):125-128.
    [75]石鹏途,舒万艮,于健,等.CaO-SiO2-B2O3玻璃中Sm3+的发光性质[J].稀土,2005,26(6):8-11.
    [76]李强,高濂,严东升.纳米Y2O3:Eu3+的荧光特性[J].无机材料学报,1997,12(2):237-241.
    [77]CHANG Chengkang, MAO Dali, SHEN Jianfeng, et al. Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties[J]. J Alloys Compd,2003,348:224-230.
    [78]林淑英.掺杂焦硅酸盐Sr2ZnSi2O7基质发光材料的合成和表征.福州大学硕士研究生学位论文,2006,06,p5.
    [79]LIU Bo, SHI Chaoshu, YIN Min, et al. The trap states in the Sr2MgSi2O7 and (Sr, Ca)MgSi2O7 long afterglow phosphor activated by Eu2+ and Dy3+[J]. J Alloys Compd,2005,387:65-69.
    [80]刘淼,施朝淑,戚泽明,等.(CaO)20.68(MgO)1.32(SiO2)4S2:Eu2+, Dy3+红光材料的制备与发光特性[J].中国稀土学报,2007,25(1):51-54.
    [81]JIA Dongdong, JIA Weiyi, JIA Yi. Long persistent alkali-earth silicate phosphors doped with Eu2+, Nd3+[J]. Journal of Applied Physics,2007,101,023520:1-6.
    [82]孙家跃,杜海燕,胡文祥编著.固体发光材料[M].北京:化学工业出版社,2003,p558.
    [83]J. J. Kingshey, K. Suresh, K. C. Patil. Combustion synthesis of fine particle metal aluminates[J]. Journal of Material Science,1990,25:1305-1312.
    [84]T. Katsumata, R. Sakai, S. Komuro, et al. Growth and characteristics of long duration phosphor crystals[J]. Journal of Crystal Growth,1999,198-199:869-871.
    [85]王喜贵,吴红英,杨展澜,等.Si5P6O25:Tb3+的结构与荧光性质[J].无机化学学报,2003,19(2):219-224.
    [86]罗昔贤,于晶杰,林广‘旭,等.长余辉发光材料研究进展[J].发光学报,2002,23(5):497-502.
    [87]杨云霞,徐志珍,唐泽伸,等.Si02玻璃涂层的碱土铝酸盐长余辉荧光粉及其制备方法:中国,1324910A[P].2001.
    [88]王继业,石士考.精细粒度Y3Al5O12:Tb荧光材料的燃烧法合成及其特性[J].无机材料学报, 2003,18(1):246-250.
    [89]王飞,张金朝,宋鹂.ZnO掺杂对Gd2O2S:Tb晶体结构及发光性能的影响[J].稀有金属,2007,31(5):661-665.
    [90]Yu Xibin, Xu Xiaolin, Pingyue, et al. A new luminescent material, SrZnO2:Tb3+[J]. Materials Letters, 2005,59:1178-1182.
    [91]Ren Zhouyun, Tao Chunyan, Yang Hua, et al. A novel green emitting phosphor SrAl2B2O7:Tb3+[J]. Materials Letters,2007,61:1654-1657.
    [92]Khatkar S P, Taxak V B, Han Sang Do, et al. Combustion synthesis and luminescent properties of. MIn2O4:xTb(M=Ca and Sr) phosphors[J]. Materials Chemistry and Physics,2006,98:528-531.
    [93]李彬,史延慧,孙书菊.Tb3+,Ce3+离子在Al6Si2O13中的光致发光[J].吉林大学自然科学学报,1996,3(3):87-90.
    [94]Kee-Sun Sohn, Bonghyun Cho, Hee Dong Park, etal. Effect of heat treatment on photoluminescence behavior of Zn2SiO4:Mn phosphors[J]. Journal of the European Ceramic Society,2000,20(8): 1043-1051.
    [95]D. W. Cooke, K. J. McClellan, B. L. Bennett, etal. Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5[J]. Journal of Applied Physics,2000,88(12):7360-7362.
    [96]R. C. Ropp. Luminescence and the Solid State[M]. Elsevier, Amsterdam,1991.
    [97]X. A. Shen, R. Kachru. High-speed holographic recording of 500 images in a rare earth doped solid[J]. Journal of Alloys and Compounds,1997,250:435-438.
    [98]A. Meijerink, G. Blasse, L. Struye. A new photostimulable phosphor:Eu2+-activated bariumbromosilicate (Ba5Si04Br6)[J]. Materials Chemistry and Physics,1989,21:261-270.
    [99]A. Meijerink, W.J. Scopper, G. Blasse. Photostimulated luminescence and thermally stimulated luminescence of Y2SiO5-Ce,Sm[J]. Journal of Physics D:Applied Physics,1991,82:997-1002.
    [100]S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, etal. Luminescence of Eu2+in silicate host lattices with alkaline earth ions in a row[J]. Journal of Alloys and Compounds,1996,241:75-81.
    [101]Fei Qin, Chengkang Chang, Dali Mao. Luminescent properties of Sr2MgSi207 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+,Dy3+[J]. Journal of Alloys and Compounds,2005,390: 133-137.
    [102]王晓欣,林元华,张中太. Eu, Dy共添加的Sr2MgSi207基长余辉发光材料[J].硅酸盐学报,2002,30(2):216-218.
    [103]宋华杰,尹盛玉,赵长亮,等.H3BO3对SrAl2O4:Eu2+、Dy3+、Nd3+长余辉发光材料性能的影响[J].中南民族大学学报,2006,25(3):16-19.
    [104]杨志平,杨勇,李兴民,等.尿素用量对燃烧法合成CaAl2O4:Eu2+,Nd3+长余辉材料发光性能的影响[J].发光学报,2006,27(2):159-163.
    [105]Pappalardo R G, Hunt Jr. R B. Dye-laser spectroscopy of commercial Y2O3:Eu3+ phosphor[J]. J. Electrochem Soc.1985,132(3):721-730.
    [106]Blasse G, Grabmaier B C. Luminescent Materials., Berlin:Springer,1994. p117.
    [107]杨志平,郭智,朱胜超,等.Eu3+摩尔浓度对Y2O2S: Eu3+,Mg2+,Ti4+红色长余辉材料光谱的影响[J].光谱学与光谱分析,2004,24(12):1506-1510.
    [108]Yamada K, Ohta M., Taguchi T. Ca(Eu1-xLax)4Si3O13 Red Phosphor and its Application to Tri-Chromatic White LEDs[J]. J Light & Vis. Env.,2004,28(2):73-80.
    [109]X.X.Wang, Z.T.Zhang, Z.L.Tang, et al. Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor[J]. Mater.Chem.Phys.,2003,80:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700