固废磷化渣资源化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷化作为金属表面处理技术的一种被广泛应用,在化工、冶金、汽车、航天航空、船舶等领域都有着广泛的应用。然而磷化过程中必然会产生以磷酸铁和磷酸锌为主要成分的固体废弃物磷化渣,如果任意排放固废磷化渣势必将对环境造成二次污染。所以对固废磷化渣资源化的研究具有极其重要的意义。从白色固废磷化渣中提取及其有价值的磷、铁物质并使其转化为经济价值和社会效益都比较高的产品。本文开发以白色固废磷化渣与烧碱处理,提取其中具有价值的磷、铁资源并对其进行综合利用的新工艺。
     通过对湖南某公司的白色固废磷化渣的成分进行化学分析得出,其中的主要离子PO4~(3-)、Fe~(3+)、Zn~(2+)的质量分数分别为51.8%、27.5%和2.35%,以磷酸铁和磷酸锌为主要的形式存在于白色固废磷化渣中。本文以制备十二水磷酸钠,并在此基础上进一步研究合成纳米羟基磷灰石(HAP)和磷酸,从而对白色固废磷化渣的资源化进行研究。
     十二水磷酸钠的制备:本实验配制质量分数为30%的NaOH溶液,并且在110°C和搅拌的条件下,以磷化渣与烧碱的质量比为1.25:1将NaOH溶液缓慢加到磷化渣中反应2h后,加入适量的水来严格控制pH为10~11后,继续反应0.5h,此时固废磷化渣中PO4~(3-)提取率达91.45%。反应后过滤得Na3PO4溶液,蒸发、结晶、过滤后得到十二水磷酸钠晶体,且其质量分数高达98.55%;
     纳米羟基磷灰石的制备:在搅拌和有超声波辅助的条件下,采用化学沉淀法将上述中的Na3PO4溶液缓慢滴加到饱和的Ca(OH)_2溶液中反应获得纳米HAP,并且使用红外吸收光谱(FT-IR)、X射线衍射(XRD)以及扫描电镜(SEM)对纳米HAP粉末进行表征分析。分析结果表明,在常温和有超声波辅助的条件下,控制Na3PO4溶液的滴加速度为0.3mL/min,然后使用无水乙醇来洗涤沉淀物,可获得质量分数高达99.5%、粒径50nm左右、高结晶度以及高分散性的纳米HAP粉末产品。
     磷酸的制备:在常温和搅拌的条件下,将上述中的Na3PO4溶液缓慢加入到Ca(OH)_2溶液中反应制备出HAP,再将HAP与硫酸反应制备出磷酸。实验结果表明:当反应时间为2.5h,酸过量系数1.02,液固比2.5:1以及反应温度75±3℃,从磷酸钠溶液到磷酸反应的过程中,磷酸根的转化率可达96.87%。
Widely used as a metal surface treatment technology, phosphating process has a wide range of applications in the chemical industry, metallurgy, automobile, aerospace,shipbuilding and other fields. Bound to produce the solid waste phosphate residue, with iron phosphate.and zinc phosphate as the main component , phosphating process emits solid waste to the environment, causing secondary pollution. Therefore, the research on the process of transforming phosphate residue in the solid waste into resources has a great significance. In this paper, the new process.of treating solid waste phosphate residue with caustic soda to extract the valuable phosphorus, iron resources has been studied.
     Through chemical analysis, there are four elments in phosphate residue, with PO43-51.8%,Fe~(3+)27.5%,Zn2+2.35% and they main exist in the form of iron phosphate.and zinc phosphate. In this work ,the methods to prepare twelve H2O phosphate sodium , nano-hydroxyapatite (HAP) and phosphoric acid have been studied to utilize the phosphate residue solid waste.
     Preparation of twelve H_2O phosphate sodium:At 110°C and stirring condition, as the mass ratio of 1.25:1, the NaOH solution was slowly added to the phosphate residue. After reaction about 2 hours, adding a amount of water strictly controled the pH between 10 and 11, then continued to react for 0.5 hours, At this point ,the extraction rate of PO43- in the phosphate residue turned out to be 91.45%.Finally ,Na3PO4 solution was filtered, evaporated, crystallizated, with the mass fraction of sodium phosphate crystals up to 98.55%;
     Preparation of nano-hydroxyapatite:In the stirring and ultrasonic condition, by chemical precipitation ,Na3PO4 solution was slowly dropped into the saturated Ca(OH)_2 solution to prepare nano-HAP, and the HAP was characterized by infrared absorption spectroscopy (FT-IR), X Ray diffraction (XRD) and scanning electron microscopy (SEM) . The results showed that nano-HAP prepared at room temperature and under ultrasonic conditions ,at the drops rate of Na3PO4 solution at 0.3mL/min, and then washed with ethanol to precipitate had a quality such as products purity of about 99.5%, particle size of about 50nm, high crystallinity and high dispersion. Preparation of phosphate acid:Stirring at room temperature, Na3PO4 in (1) solution was added to Ca(OH)_2 solution to prepare HAP, and HAP was reacted with sulfuric acid to prepare phosphoric acid. The results showed that at the condition such as reaction time of 2.5 hours, coefficient of excess acid of 1.02, liquid to solid ratio of 2.5:1, reaction temperature of 75±3℃, the conversion rate of phosphate turned to be 96.87%.
引文
[1]周谟银,方肖露,金属磷化技术[M].中国标准出版社,1999:1~10.
    [2] Ang.K.F, TrugooseS. Trans IMF, 1991, 69(2):58~62.
    [3] Gorecki G.Metal Finishing,1995,93(3):36~39.
    [4]杨健.磷化渣控制与废渣利用[J].矿产保护与利用,1998,10(5):49-51.
    [5]陈慕祖,吴超南.磷化渣的监控与管理[J].材料保护, 1992, 25(12):35-38.
    [6]陈范才主编,金属的磷化[J].现代电镀技术, 2009, 325-335
    [7]李越湘,华国新,吴景探等.磷化渣的再生利用[J].化工环保, 1994, 14(2):121-122
    [8]林宝启,温远庆.磷化渣的综合利用[J].化学世界, 1997, 8(7):439-441
    [9]杨健.磷化渣控制与废渣利用[J].矿产保护与利用, 1998, 10(5):49-51.
    [10]刘娅莉.磷化渣的控制及综合利用[J].电镀与环保, 1998, 18(4):35-38.
    [11]左伏根.一种利用“紫红色中-薄层粉砂质岩”生产防锈颜料的方法:中国, 02139800.3[P]. 2003-05-07.
    [12]左伏根.一种利用磷化渣制取无毒复合防锈颜料的方法:中国, 02139799.6[P]. 2003-05-07.
    [13]熊敬国,姚军.聚合磷酸氯化铁混凝剂及其制备方法:中国,02138239.5[P]. 2003-03-12
    [14]金朝阳.磷化除渣装置综述[J].材料保护, 1992(12):35-38
    [15]陈慕祖,吴超南磷化渣的监控与管理[J].现代涂料与涂装,2002( 2) 19-22
    [16]兰伟,唐辉,王斌等.防治磷化槽异常沉渣方法[J].表面技术, 2006, 35(2):72-74
    [17]王光宙等.用磷铁渣为原料制备磷酸三钠[J].河南化工, 1991(7):26-29
    [18] Kuang Juchi, Zhu Hengxiang, Pang Xijie, et al. Research on effect of rare earth compounds in phosphating process [J] Journal of Rare Earths, 2004(22)262-264
    [19]鲁维国,李淑英,张利华.含羟胺促进剂的低温磷化工艺[J].现代化工,2003,23(增刊):212-214.
    [20]张圣麟,李红玲,郑洪河等.低温锌系磷化促进剂研究[J].涂料工业,2005,35(9):60-62.
    [21]鲁维国,李淑英.磷化促进剂[J].表面技术,2002,31(6):12-14.
    [22]黄润六磷化渣的回收[J].金属制品, 1985, (5)42-44.
    [23] Larson,GB.Volume:95,Issue:4,April 1997,Pl06.
    [24]雷作Qian,胡梦珍编译,金属的磷化处理. [M].北京市:机械工业出版社, 1992, 1-30.
    [25]陈范才主编,金属的磷化[J].现代电镀技术,2009,325-335.
    [26]雷作藏,胡梦珍编译.金属的磷化处理[M].北京:机械工业出版社, 1992.
    [27]李国英主编.表面工程手册[M].北京:机械工业出版社;1998:62-81.
    [28]张卫丽. HAS低温磷化液的研究与应用:(硕士学位论文).大连:大连理工大学,2005.
    [29]杨喜云,龚竹青.常温磷化促进剂的研究[J],表面技术, 1998, 27(4):18.
    [30]刘娅莉,鞠正东.新型内含羟胺促进剂的无亚硝酸盐磷化工艺的研究[J].涂料工业, 1998(6):29.
    [31]滕培棠,孟德军.室温极少渣锌系磷化的研究[J].表面技术, 2000, 29(5):36
    [32]张景双,屠振密.含有稀土复合促进剂的低温磷化工艺[J].电镀与环保, 1995, 15(2):26.
    [33]张景双,王家林.含有稀土复合添加剂的中温磷化[J].电镀与环保, 2000, 20(5):25.
    [34]安茂忠,屠振密.稀土化合物在磷化中的影响和作用[J].材料保护, 2000, 33(11):20.
    [35]朱立群,付宝智.稀土复合作用下常温磷化工艺的研究[J].电镀与涂饰, 2001, 20(4):8.
    [36]蒙文坚,表面技术.常温锌-铁系彩色磷化工艺及应用[J]. 200l, 30(1):41.
    [37]黄霓裳,郭良生.室温磷化加速剂的选择[J].表面技术, 1996, 25(4):19.
    [38]黄霓裳,郭良生.新型常温低渣磷化液[J].腐蚀与保护, 2001, 22(2):61.
    [39]王成,姜喜奎.酸度及钼酸钠对钢铁常温磷化过程的影响[J].表面技术,2001, 30(2):6.
    [40]邬庆平,施东娥,陈晓帆.磷化研究进展[J].材料保护, 1998, 31(4):24-25.
    [41]龚敏.钢铁的中温磷化工艺[J].材料保护, 1994, 12(7):13.
    [42]曾德芳,刘志明,卓海华.环保型单组分低温磷化液的研制与应用[J].表面技术, 2001, 4(2):10.
    [43]王光宙.用磷铁渣为原料制备磷酸三钠[J].河南化工, 1991, 12(7):26-28.
    [44]周宪民. 97汽车涂料装技术交流会论文集[M]. 1997, 11:142-143.
    [45]邓文,邓斌才介绍一种简易的磷酸生产工艺[J].明胶科学与技术, 2007, 6(2):82-83.
    [46]张元琴,马宏佳.洗衣粉中三聚磷酸钠的测定和讨论[J].科技活动, 2001, 11:47-48.
    [47]柳明现.化工分析实验[M].北京:化学工业出版社,2009,31.
    [48]周利敏.容量法测定洗衣粉中的磷酸盐含量[J].宁夏石油化工, 2002, 1:24-25.
    [49]李百杰.分光光度法测定农药中间体中的微量铁[J].辽宁化工, 2009, 38(4):284-286.
    [50]郭小群,谯康全,蔡述兰,李亮,罗俊,邱显奎等.邻菲罗啉分光光度法测定自来水中的铁(III)含量[J].四川理工学院学报(自然科学版), 2008,21(4):72-76.
    [51]周虹,毛云中.水处理剂硫酸铝中铁含量的火焰原子吸收光谱测定法[J].职业与腱康,2008,24(13):2-3.
    [52]岳敏,吕佳萍,周乃东.火焰原子吸收法测定氧化锌的有效含量[J].橡胶工业, 2010, 57(10):631-633.
    [53] HG/T 3493-2000,中华人民共和国化工行业标准.化学试剂磷酸钠[S].北京:国家石油和化学工业局发布, 2000.
    [54]汤德元,瞿德泸.磷、磷肥和磷酸盐生产工艺[M].贵阳:贵州科技出版社.1993,175.
    [55]王海,王友法.纳米羟基磷灰石在药物载体中的应用[J].精细与专用化学品, 2006, 14(1):9– 11.
    [56] Damien CJ, Parsons J R.Bone graft and bone graft substitutes: a review of current technology and applications [J]. J Appl Biomaterials, 1990, 2(1):187– 208.
    [57] Harper JL. The meanings of rarity In: Synge, H, et al. The Biological Aspects of Rare Plant Conservation [M]. New York: WiLey, 1981, 30(4):387-400.
    [58]温喜梅,郭进武,张军等.山梨醇辅助下羟基磷灰石晶须的水热制备[J].无机盐工, 2008,40(11):21– 23.
    [59]姚秀敏,谭寿洪,江东亮.多孔羟基磷灰石陶瓷的制备[J].无机材料学报, 2000, 15(3):467—472.
    [60] Toriyama M, Ravaglioli A .Synthesis of hydroxyapatite– based powder by mechanochemical method and their sintering[J] . J . Eur. Ceram. Soc. ,1996 ,16 (4):427~436
    [61] Nakahira Atsushi , Kijima Kazunori. Synthesis and sintering behavior of hydroxyapatite by chemical process[J]. Fantai Oyobi Funmatsuyakin, 1997, 44(4):340~344.
    [62] Pramanik S, Agarwal A K, Rai K N , et al. [J]. CeramInt, 2007, 33(3):419– 426.
    [63] Fathi M H, Hanifi A. Evaluation and characterization of nanostruc-ture hydroxyapatite powder prepared by simple sol-gelmethod [J]. Mater. Lett. 2007, 61(18):3978– 398.
    [64]黄志良,王大伟,刘羽等.不同类型的CO32-替换羟基磷灰石固溶体晶体化学FT2IR研究[J].无机化学学报, 2002, 18(5):469– 473.
    [65]卢文庆,王鹏飞,焦程敏等.双连续微乳模板合成羟磷灰石仿生物骨材料的研究[J].无机化学学报, 2004, 20(9):1035– 1039.
    [66]魏强,杨小平,陈国强等.超声辅助湿法合成纳米HA及MWNT/HA复合材料[J].新型炭材料, 2005, 20(2):164– 170.
    [67]王扬,王宇明,李海东等.纳米羟基磷灰石的制备及工艺优化[J].长春工业大学学报, 2009, 30(2):137– 141.
    [68]王志强,马铁成,韩趁涛等.湿法合成纳米羟基磷灰石粉末的研究[J]. 2001, 33 (1):3– 5.
    [69]冉旭,冉均国等.超声合成纳米含碳酸根羟基磷灰石粉体[J].稀有金属材料与工程,2007, (36):46– 48.
    [70]宋云京,温树林,李木森等.高品质羟基磷灰石纳米粉体的制备及物理化学过程研究无机材料学报, 2002, 17(6):985– 991.
    [71] Bouyer E , Gitzhofer F ,Boulos M I. Morphological study of hydroxyapatite nanocrystal suspension[J ].J Mater Sci :Mater Med ,2000 ,11(3):523 - 531
    [72]方小龙,杨传芳,陈家镛.湿化学工艺条件对ZrO2(Y2O3)超细颗粒团聚的影响[J].硅酸盐学报, 1998, 26 (6):732– 739.
    [73] Jiashan Hu, D.K. Agrawal, YI Fang, R. ROY. Preperation of hydroxyapatite ceramics by supersonic [J]. Journal of Materials Science, 1993, (28):5297– 5300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700